SUBMITTED TO:
Alaska Department of
Transportation & Public
Facilities
2301 Peger Road
Fairbanks, Alaska 99709

Shannon & Wilson, Inc. 2355 Hill Road Fairbanks, Alaska 99709

(907) 479-0600 www.shannonwilson.com

_ | | | | King Salmon Airport Initial PFAS Site Characterization
KING SALMON, ALASKA

March 2022

Shannon & Wilson No: 102582-011

PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING

102582-011 March 2022

Submitted To: Alaska Department of Transportation & Public Facilities

2301 Peger Road

Fairbanks, Alaska 99709

Attn: Mr. Marcus Zimmerman and Ms. Sammy Cummings

Subject: FINAL SUMMARY REPORT, KING SALMON AIRPORT INITIAL PFAS SITE

CHARACTERIZATION, KING SALMON, ALASKA

Shannon & Wilson prepared this report and participated in this project as a consultant to Alaska Department of Transportation and Public Facilities (DOT&PF). Shannon & Wilson's services were authorized by Professional Services Agreement Number 25-19-013 Per- and *Polyfluorinated Substances (PFAS) Related Environmental & Engineering Services,* issued by the DOT&PF on May 31, 2019, under Amendment 36 and notice to proceed (NTP) P3-8 dated March 23, 2021.

This report presents a summary of Shannon & Wilson's initial PFAS site characterization effort at and near the King Salmon Airport (AKN). Ongoing water supply well monitoring activities are reported separately.

We appreciate the opportunity to be of service to you on this project. If you have questions concerning this report, or we may be of further service, please contact us.

Sincerely,

SHANNON & WILSON, INC.

Michael Jaramillo Senior Chemist

Role: Project Manager

Kristen Freiburger Associate

Role: Statewide Project Manager

MXJ:KRF:CDB/vty

EXECUTIVE SUMMARY

The King Salmon Airport (AKN) was an active USAF installation known as the King Salmon Divert (KSD) in the 1930's. Ownership transferred to the Federal Aviation Administration (FAA) following World War II and remained a federal property until it was transferred to the State of Alaska upon statehood in 1959. The USAF continues to lease parcels of land surrounding the existing runway.

Aqueous film forming foam (AFFF) was used for aircraft rescue firefighting (ARFF) training and systems testing at the AKN for many years. Annual AFFF systems testing was required to maintain FAA certification. Prior to 2019, FAA inspections required the release of AFFF to ground surface; a small amount of AFFF would be discharged so the inspector could visually confirm the foam consistency. AFFF training activities at AKN likely occurred twice per year at two training areas beginning in the 1970s, and at least once per year at various locations along the AKN runways by the USAF and DOT&PF, with 11 known AFFF-release areas associated with the KSD. The precise timeline and locations of AFFF use are currently unknown.

The purpose of this project was to sample surface and subsurface soil, surface water, and groundwater at and near the AKN. The objective of this initial site characterization effort was to understand the extent of per- and polyfluoroalkyl substances (PFAS) contamination, if present, resulting from the historic use of AFFF by the DOT&PF at the AKN. Site characterization activities were conducted in accordance with the *General Work Plan Addendum 001-AKN-01 Revision 1.1*, dated June 2021.

In August of 2021, Shannon & Wilson, Inc. (S&W) staff traveled to King Salmon to perform initial site characterization activities at and near the AKN. S&W staff collected analytical samples from the AKN for analysis of gasoline range organics (GRO), diesel range organics (DRO), residual range organics (RRO), benzene, toluene, ethylbenzene, and xylenes (BTEX), polycyclic aromatic hydrocarbons (PAHs), and PFAS. PFAS samples were submitted to Eurofins TestAmerica (TestAmerica) in West Sacramento, California and petroleum samples were submitted to SGS North America in Anchorage, Alaska. Soil and sediment results were compared to the most conservative of either the migration to groundwater or human health cleanup levels listed in 18 AAC 75.341 *Tables B1 Method Two and B2, Method Two – Under 40-inch*. Groundwater and surface water samples were compared to 18 AAC 75.345 *Table C, Groundwater Cleanup Level*.

PFOS and PFOA were detected above their respective regulatory levels in:

- five surface soil locations along the runway drainage areas;
- one subsurface soil location identified as a former Fire Training Area;
- five surface water locations, with highest concentrations observed in Fox Creek and the drainage channel sample to the east of Fox Creek; and
- one groundwater sample location identified as a Fire Training Area.

DRO were detected above its regulatory level at a subsurface soil location identified as Fire Training Area B. DRO contamination may have resulted from a fuel spill(s) or use of fuel during training exercises.

S&W recommends conducting further site characterization activities at the AKN. We recommend further delineation of the vertical and horizontal extent of PFOS, PFOA, and DRO contamination at the AKN and adjacent properties by conducting additional surface and shallow subsurface soil, surface water, and/or sediment sampling in the vicinity of regulatory exceedances. These recommendations are based on site conditions observed at the AKN at the time of our field activities, the results of testing performed on samples collected from the site, publicly available literature and data reviewed for this project, our understanding of the project, and information provided by the DOT&PF and other members of the project team.

1	Intr	oauctio	on							
	1.1		ose and Objectives							
	1.2									
		1.2.1	USAF Subsurface Investigations							
		1.2.2	Water Supply Well PFAS Monitoring							
	1.3	Conta	aminants of Potential Concern and Regulatory Levels							
	1.4		e of Services							
2	Field	_	rities							
	2.1		aration and Permitting							
	2.2		Sampling							
		2.2.1	Surface Soil							
		2.2.2	Soil Borings	8						
	2.3	Water	ater Sampling							
		2.3.1	Surface Water	Ç						
		2.3.2	Monitoring Wells	10						
			2.3.2.1 Installation	10						
			2.3.2.2 Development and Sampling	12						
	2.4	Samp	ole Custody, Storage, and Shipping	12						
	2.5	Inves	stigation-Derived Waste	13						
	2.6	Devia	ations	14						
3	Analytical Results									
	3.1	Surfa	ce Soil	15						
	3.2	Soil Borings								
	3.3	Surfa	ce Water	16						
	3.4	Grou	ndwater	17						
	3.5	Inves	stigative Derived Waste	17						
4	Con	ceptual	l Site Model	18						
	4.1	1 Description of Potential Receptors								
	4.2	Potential Exposure Pathways								
		4.2.1	Soil Exposure	18						

		4.2.2	Groundwater Exposure	19
		4.2.3	Surface Water	19
		4.2.4	Sediment	19
		4.2.5	Other Media	20
	4.3	CSM	Summary	20
5	Disc	ussion	and Recommendations	21
6				
O	rere	refrees		20
Exh	nibits			
Exh	ibit 1-	1: COP	Cs, Regulatory and Laboratory Reporting Limits	6
Exh	ibit 2-	1: Surfa	ice soil sample collection near the north end of the Runway 18/36	8
Exh	ibit 2-	2: Geol	ogist James Dutt logging a soil boring during drilling at AKNPW-204	9
			ogist Veselina Yakimova collecting surface water sample 21AKN-SW-07	
Red	l Fox C	Creek, d	lownstream from AKN	10
Exh	ibit 2-	4: Grou	ndwater MW purging prior to sample collection	12
Exh	ibit 2-	5: Filter	ring MW development water through portable GAC filtration system	13
			ice water sample 21AKN-SW-04 collected from the drainage south of	
Kur	ıway 1	12/30		16
Tak	oles			
Tab	le 1:	Aı	ugust 2021 Surface Soil PFAS Results	
Tab	le 2:		- August 2021 Soil Boring PFAS Results	
		b-	- August 2021 Soil Borings Fuel Results	
Tab	le 3:	A	ugust 2021 Surface Water PFAS Results	
Tab	le 4:	a -	- August 2021 Monitoring Well PFAS Results	
		b-	- August 2021 Monitoring Well Fuel Results	
Tab	le 5:	Aı	ugust 2021 IDW PFAS Results	
F* -				
	ures			
O	ure 1:		icinity Map	
_	are 2:		imple Locations	
0	are 3:		urface Soil PFAS Sample Results	
_	ure 4:		oil Boring PFAS Sample Results	
Figu	ure 5:	St	ırface Water PFAS Sample Results	
Figu	are 6:	M	onitoring Well PFAS Sample Results	

Appendices

Appendix A: Boring Logs Appendix B: Field Notes

Appendix C: Analytical Results
Appendix D: QA/QC Summary
Appendix E: Conceptual Site Model

Important Information

AAC Alaska Administrative Code

AFCEC Air Force Civil Engineering Center

AFFF aqueous film forming foam
ARFF aircraft rescue and firefighting

AKN King Salmon Airport bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and total xylenes

CFR Code of Federal Regulations
COC contaminant of concern

COPC contaminant of potential concern

CSM conceptual site model

CSPP Construction Safety and Phasing Plan

CUL Cleanup Level

DEC Alaska Department of Environmental Conservation
DOT&PF Alaska Department of Transportation & Public Facilities

DRO diesel range organics

EPA U.S. Environmental Protection Agency

FAA Federal Aviation Administration

GAC granular activated carbon GRO gasoline range organics

GWP General Work Plan Addendum 001-AKN-01 Revision 1.1

IDW investigative-derived waste

KSD King Salmon Divert

LHA Lifetime Health Advisory

LDRC Laboratory Data Review Checklist

LOQ limit of quantitation LOD limit of detection

mg/kg milligram per kilogram mg/L milligram per liter

MTG migration to groundwater

MW monitoring well

mV millivolt

ng/L nanograms per liter

PAH polycyclic aromatic hydrocarbons PFAS per- and polyfluoroalkyl substances

PFOA perfluorooctanoic acid

PFOS perfluorooctanesulfonic acid PID photoionization detector ppm parts per million
PVC polyvinyl chloride
QA quality assurance
QC quality control
RL reporting limit

RRO residual range organics
SIM selective ion monitoring
S&W Shannon & Wilson, Inc.

TestAmerica Eurofins TestAmerica Laboratories

µg/kg micrograms per kilogram

μS microSiemens

USACE United States Army Corps of Engineers

USAF United States Air Force

YSI multiprobe water quality meter

1 INTRODUCTION

This report documents the initial per- and polyfluoroalkyl substances (PFAS) site characterization activities conducted in summer 2021 at and near the King Salmon Airport (AKN). AKN is an active, Alaska Department of Environmental Conservation (DEC) listed contaminated site due to the known presence of PFAS in groundwater (File Number 2569.38.033, Hazard ID 26981). The geographic coordinates of the AKN terminal are latitude 58.677, longitude -156.651 (Figure 1).

Shannon & Wilson, Inc. (S&W) has prepared this report on behalf of the Alaska Department of Transportation & Public Facilities (DOT&PF) Southcoast Region in accordance with the terms and conditions of S&W's contract. The field effort described herein was conducted in general accordance with:

- DOT&PF Statewide PFAS General Work Plan Revision 1 (GWP), dated July 2020;
- GWP Addendum 001-AKN-01 Revision 1.1 (Addendum), dated June 2021;
- 18 Alaska Administrative Code (AAC) 75.335; and
- relevant DEC regulatory guidance documents.

Site characterization efforts for this Addendum were focused on the portions of the DOT&PF AKN property that are not leased to the United States Air Force (USAF). S&W understands the United States Army Corps of Engineers (USACE), the Air Force Civil Engineer Center (AFCEC), and their contractors have performed environmental investigations on the King Salmon Divert (KSD), a former USAF installation located on DOT&PF-leased land north and north east of the AKN. The USACE and AFCEC investigations are focused on characterizing their leased parcels.

1.1 Purpose and Objectives

The purpose of the services described in this report was to evaluate the extent of PFAS contamination resulting from the historic use of aqueous film forming foam (AFFF) by the DOT&PF at AKN.

The initial PFAS site characterization effort included:

- collecting analytical surface and subsurface soil samples from near the AKN runways and potential AFFF releases areas;
- installing, developing, and sampling monitoring wells (MWs) near three AFFF release areas associated with DOT&PF activities;

- installing, developing, and sampling MW nests (two MWs each), located near the two "affected" properties; and
- collecting analytical surface water samples from AKN drainage ditches, ponds, and creeks.

1.2 Background

General background information relating to sites covered under the GWP is included in Section 1.1 of the GWP. Background information specific to the AKN is detailed below.

The AKN property was an active USAF installation known as the KSD during the 1930s through the 1950s. During the 1940s, the land was used for aircraft storage and fuel stops during World War II. Ownership transferred to the Federal Aviation Administration (FAA) following World War II and remained a federal property until it was transferred to the State of Alaska upon statehood in 1959. The USAF withdrew remaining permanent military personnel and aircraft from the KSD in 1994 but continues to lease multiple parcels of land surrounding the existing runway.

The airport meets the requirements defined in Title 14, Code of Federal Regulations (CFR), Part 139, which requires specific certification through the FAA. This certification requires in part that the airport provide aircraft rescue and firefighting (ARFF) services to ensure safety during air transportation. As part of this certification, Part 139 Airports are required to conduct annual ARFF training for emergency response situations using AFFF to demonstrate compliance with the regulations. The FAA lifted the requirement to use AFFF during training exercises beginning in 2019 and alternate FAA approved testing units have been implemented to test fire apparatus systems without discharging AFFF to the ground surface.

PFAS-containing AFFF was reportedly first used on AKN property in the 1970's. AFFF has been known to be stored and used for training purposes at the AKN runway and at additional locations on DOT&PF property. *CH2M's March 2018 Preliminary Assessment Report for Perfluorinated Compounds, King Salmon Divert, Alaska* summarized 11 known AFFF-release locations at old training areas located on the portions of the airport currently leased by the USAF. Discussions with DOT&PF staff revealed additional sites near the AKN runway where AFFF has been used for DOT&PF training and emergency response purposes. The precise locations of the DOT&PF training areas are unknown.

1.2.1 USAF Subsurface Investigations

The King Salmon area is underlain by glacial outwash plain sediments (Feulner 1963). Known areas of permafrost exist along Eskimo Creek and west of the confluence of Eskimo Creek and the Naknek river. Multiple USAF reports between 1985 and 2006 describe and characterize three aquifers beneath King Salmon, denoted as A, B, and C. CH2M provided the following discussion of the hydrogeology in the area surrounding the King Salmon airport which are currently leased by the USAF in their document *Final Uniform Federal Policy – Quality Assurance Project Plan for Site Inspections of Aqueous Film Forming Foam Areas, KSD, Alaska*, dated July 2019. Some sections are provided below:

Intense glaciation occurred during the Pleistocene period over much of the Alaska Peninsula, which produced the outwash sediment underlying much of KSD. At least three aquifer units are known to be present in the King Salmon area. These aquifers consist of unconsolidated, well-sorted to poorly sorted silty and gravelly sands, separated by aquitard units consisting of silty sands, silts, and clays. The aquitards separating these aquifers may be discontinuous (Science Applications International Corporation [SAIC], 1992).

The shallowest aquifer, the A-Aquifer, is unconfined and comprised of moderately well-sorted sands and silty sands with discontinuous lenses of medium- to coarse-grained gravel at the base. The A-Aquifer outcrops in many areas within KSD, and the total depth to the A-Aquifer ranges from ground surface at water bodies and wetlands, to 45 feet below ground surface (bgs) along the northern margin of KSD. The saturated thickness ranges from 0 to 15 feet. Groundwater movement is generally toward local topographic lows and surface drainages such as wetlands, rivers, creeks, and ditches, and is most likely recharged by precipitation and surface water. Major drainages such as the Eskimo and Red Fox Creeks have eroded through the A-Aquifer. At the base of the A-Aquifer is a zone of lower hydraulic conductivity, consisting of a gravelly clayey silt and sandy silt, referred to as the A-Aquitard. The underlying A-Aquitard is from 7 to 22 feet thick (USAF, 2017b). The A-Aquitard has previously been reported to locally disrupt and modify the regional unconfined groundwater flow pattern (A-Aquifer) in some areas when encountered at its thickest points (SAIC, 1992). Some drinking water wells downgradient of the KSD may be screened in the A-Aquifer.

The top of the B-Aquifer has been encountered at depths ranging from 50 to 80 feet bgs. The known thickness of this aquifer ranges from 15 to 40 feet. The B-Aquifer is situated in interbedded sequences of silty sands, sandy gravels, and silty sandy gravels. A second aquitard (the B-Aquitard) is present at the base of the B-Aquifer. The thickness of this B-Aquitard is estimated at between 10 and 120 feet (USAF, 2017b). This unit is comprised of predominantly sandy clay (SAIC, 1992). Groundwater in the B-Aquifer is probably in equilibrium with the A-Aquifer; similar piezometric surface has been measured in adjacent A-Aquifer and B-Aquifer monitoring wells. Groundwater flow direction in the B-Aquifer is south towards the Naknek River. Numerous residential drinking water-supply wells are screened in this aquifer.

The C-Aquifer underlies the B-Aquitard at a depth of approximately 205 feet bgs. KSD water-supply wells are reported to terminate in the C-Aquifer, which is thought to be a confined aquifer. The aquifer thickness and flow direction are unknown for the C-Aquifer (Paug-Vik Services [PVS], 2009a). Limited data from water supply well No. 5 suggest that the thickness of C-Aquifer is at least 20 feet (SAIC, 1992).

1.2.2 Water Supply Well PFAS Monitoring

DEC collected water supply well samples from nine locations around AKN in December 2018. In response to the detections of PFAS compounds, S&W was contracted by the DOT&PF to conduct a preliminary water supply well search for the areas near AKN. The initial water supply well search was conducted in March 2019 and was focused on the area hydraulically downgradient from AFFF training areas at the AKN. During the initial well search, S&W sampled 21 private wells within the well search area. Several of the buildings southeast of town along the Naknek River were determined to be dry structures that are occupied seasonally. S&W conducted quarterly sampling in July 2019, October 2019, January 2020, July 2020, May 2021, and August 2021 based on the DEC-approved monitoring criteria. Two affected properties were reported from these sampling events. DEC defines affected properties as those with private wells with at least one sample result above the U.S. Environmental Protection Agency (EPA) published a Lifetime Health Advisory (LHA) level of 70 nanograms per liter (ng/L) for the sum of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA).

The following list presents the affected properties associated with the AKN PFAS plume:

- 1. AKNPW-204 (100 South Side Eskimo Creek)
- 2. AKNPW-003 (1 Waterfront Way)

The properties are currently using an interim water solution. Permanent solutions for affected properties are being investigated.

1.3 Contaminants of Potential Concern and Regulatory Levels

General information regarding COPCs for the Statewide projects and the associated regulatory levels is included in Section 2.2 of the GWP. The primary contaminants of concern (COCs) for this project are PFOS and PFOA. DEC's *Field Sampling Guidance* (2019) also identifies gasoline range organics (GRO), diesel range organics (DRO), residual range organics (RRO), benzene, toluene, ethylbenzene, and xylenes (BTEX), and polynuclear aromatic hydrocarbons (PAHs) as COPCs at AFFF training areas and emergency response sites.

King Salmon has an annual average precipitation of approximately 20 inches per year, per the Western Region Climate Center database (https://wrcc.dri.edu/). To evaluate analytical data, soil results were compared to 18 AAC 75.341 Table B2 Method Two – Petroleum Hydrocarbon Soil Cleanup Levels – Under 40-Inch Zone and Table B1 Method Two – Soil Cleanup Levels. The most stringent regulatory value between Human Health and Migration to Groundwater (MTG) cleanup levels is used for reporting purposes. Groundwater and surface water samples were compared to Alaska's 18 AAC 75.341 Table C, Groundwater Human Health Cleanup Level. The current cleanup levels and analytical reporting limits for the site COCs are summarized in Exhibit 1-1.

1.4 Scope of Services

The scope of services summarized in this report includes site access and permitting; targeted soil field screening; analytical soil, groundwater, and surface water sampling; data analysis; and preparing this summary report. Soil sampling included collection of surface soil and subsurface soil from borings. Groundwater sampling included collection of water samples from newly installed MWs. Figure 2 provides an overview of the initial site characterization sample locations.

This report was prepared for the exclusive use of the DOT&PF and its representatives. This work presents S&W's professional judgment as to the conditions of the site. Information presented here is based on the sampling and analyses field staff performed. This report should not be used for other purposes without S&W's approval or if any of the following occurs:

- Project details change, or new information becomes available, such as revised regulatory levels or the discovery of additional source areas.
- Conditions change due to natural forces or human activity at, under, or adjacent to the project site.
- Assumptions stated in this report have changed.
- If the site ownership or land use has changed.
- Regulations, laws, or cleanup levels change.
- If the site's regulatory status has changed.

If any of these occur, S&W should be retained to review the applicability of recommendations. This report should not be used for other purposes without S&W's review. If a service is not specifically indicated in this report, do not assume it was performed.

Exhibit 1-1: COPCs, Regulatory and Laboratory Reporting Limits

Method	Analyte	Soil Limit ^a	Water Limitb	Laboratory LODs/RLsc		
wethod	Analyte	(mg/kg)	(µg/L)	Soil (mg/kg)	Water (µg/L)	
PFAS Analy	tes					
537.1 ^d	PFOS	0.0030	0.40	0.000200	0.00200	
537.1 ^u	PFOA	0.0017	0.40	0.000200	0.00200	
Petroleum A	Analytes					
AK101	GRO	300	2,200	1.25	50	
AK102	DRO	250	1,500	10	300	
AK103	RRO	11,000	1,100	50	250	
	Benzene	0.022	4.6	0.00625	0.2	
EPA SW8260D	Toluene	6.7	1,100	0.0125	0.5	
(BTEX)	Ethylbenzene	0.13	15	0.0125	0.5	
(0,0,0)	Xylenes Total	1.5	190	0.0375	1.5	
PAH Analyte	es					
	1-Methylnaphthalene	0.41	11	0.0125	0.025	
	2-Methylnaphthalene	1.3	36	0.0125	0.025	
	Acenaphthene	37	530	0.0125	0.025	
	Acenaphthylene	18	260	0.0125	0.025	
	Anthracene	390	43	0.0125	0.025	
	Benzo(a)anthracene	0.70	0.30	0.0125	0.025	
	Benzo[a]pyrene	1.9	0.25	0.0125	0.010	
EPA	Benzo[b]fluoranthene	15†	2.5	0.0125	0.025	
SW8270D-	Benzo[g,h,i]perylene	2,300†	0.26	0.0125	0.025	
SIM	Benzo[k]fluoranthene	150†	0.80	0.0125	0.025	
SW(PAH)	Chrysene	600	2.0	0.0125	0.025	
	Dibenzo[a,h]anthracene	1.5†	0.25	0.0125	0.010	
	Fluoranthene	590	260	0.0125	0.025	
	Fluorene	36	290	0.0125	0.025	
	Indeno [1,2,3-c,d] pyrene	15†	0.19	0.0125	0.025	
	Naphthalene	0.38	1.7	0.0100	0.050	
	Phenanthrene	39	170	0.0125	0.025	
	Pyrene	87	120	0.0125	0.025	

Notes:

- a. 18 AAC 75 Table B2 Method Two Petroleum Hydrocarbon Soil Cleanup Levels Under 40-Inch Zone and Table B1 Method Two Soil Cleanup Levels. The most stringent between Human Health and Migration to Groundwater cleanup levels are used for reporting purposes. The Migration to Groundwater cleanup level is reported unless otherwise identified.
- b. 18 AAC 75 Table C. Groundwater Cleanup Levels.
- c. August 2021 LODs from SGS North America, Inc. for petroleum and PAH analyses. August 2021 RLs from TestAmerica for PFAS analyses.
- d. All available PFAS analytes will be requested for analytical reports. However, only PFOS and PFOA have DEC Cleanup Levels and are reported in this table.
- † 18 AAC 75 Table B1 Method Two Human Health cleanup level reported.

BTEX = benzene, toluene, ethylbenzene, and total xylenes; DRO = diesel range organics; EPA = U.S. Environmental Protection Agency; GRO = gasoline range organics; LOD = limit of detection; mg/kg = milligram per kilogram; µg/L = micrograms per liter; PAH = polynuclear aromatic hydrocarbons; PFAS = per- and polyfluoroalkyl substances; PFOA = perfluorooctanoic acid; PFOS = perfluorooctanesulfonic acid; RL = reporting limit; RRO = residual range organics; SIM = selective ion monitoring.

2 FIELD ACTIVITIES

This section summarizes field activities performed between August 13 and August 31, 2021 to implement the GWP Addendum. S&W staff members James Dutt, Environmental Scientist, and Veselina Yakimova, Geologist, conducted the initial site characterization effort described in this report. These individuals are State of Alaska Qualified Environmental Professionals as defined in 18 AAC 75.333[b].

Analytical sample locations are presented in Figure 2, Sample Locations. Soil boring logs are included in Appendix A. Copies of S&W's field notes and included in Appendix B. Copies of the laboratory reports are provided in Appendix C.

2.1 Preparation and Permitting

The FAA was notified of the drilling activities via a FAA 7460-1: Notice of Proposed Construction Form, which was approved by the FAA on September 22, 2020. S&W coordinated with the AKN Airport Manager and DOT&PF's Aviation Safety and Security officer to determine if runway closures were required for these activities. S&W also coordinated with DOT&PF's Division of Leasing, who determined a building permit was not required.

S&W prepared a Construction Safety and Phasing Plan (CSPP) related to sampling activities on and near active runways and taxiways. The CSPP documents project phasing, access and vehicle routes, work zone lighting, and other relevant details. The draft CSPP was submitted on May 26, 2021. The CSPP was revised following the receipt of comments from DOT&PF Southcoast Region Engineering, Aviation Safety and Security, and the AKN Airport Manager. The final CSPP was submitted July 30, 2021. A runway closure was not necessary as the drilling locations were outside of the Runway Safety Areas and Taxiway Safety Areas.

DOT&PF's engineering staff assisted with utility locates near the AKN runways. Naknek Electric Association, Bristol Bay Telephone Cooperative and Bristol Bay Borough assisted with utility locates at the well nests installed near the two "affected" properties.

2.2 Soil Sampling

Soil characterization activities for this project included surface and subsurface soil sample collection, as described in the following sections.

2.2.1 Surface Soil

S&W field staff collected surface soil samples from 20 locations along the drainage system for the two runways at the AKN (Figure 3). Samples were collected immediately beneath the vegetation, where present, using hand tools. Samples were generally comprised of silty sand or sandy silt, some with gravel. Some of the samples were interpreted to be fill and not native soil.

The surface soil samples were field screened using a photoionization detector (PID). The field-screening readings ranged from less than 1 part per million (ppm) to 10.9 ppm. Surface soil field duplicate samples were collected at a rate of one per ten primary samples.

Exhibit 2-1: Surface soil sample collection near the north end of the Runway 18/36.

Rinsate or equipment blank samples were not collected because the soil sampling tools were not reused between different samples. Copies of S&W's *Soil Sample Collection Logs* are included in Appendix B.

2.2.2 Soil Borings

S&W retained the services of drilling contractor GeoTek Alaska, Inc. (GeoTek) to advance soil borings and install long-term groundwater MWs. GeoTek used a Geoprobe Model 8040DT track-mounted drill rig. This drill is equipped with Macro-Core® tooling, a solid barrel (2-inch outside diameter) direct-push device for collecting continuous core samples of unconsolidated materials at depth. James Dutt and Veselina Yakimova observed the drilling and recovered soil for the purpose of determining lithology, collecting analytical soil samples, and preparing a descriptive log of soil conditions encountered during drilling. The boring logs are included in Appendix A. Copies of our *Soil Sample Collection Logs* are also included in Appendix B.

Drilling occurred between August 14 and August 27, 2021. GeoTek staged their equipment and decontaminated the soil barrels outside Runway Safety Areas and Taxiway Safety Areas. GeoTek advanced five soil borings at the following locations (Figure 4):

- Three on-site locations near historical fire training areas of known AFFF use:
 - 21AKN-SB-01: near Fire Training Area A (near intersection of Runway 12/30 and Runway 18/36)
 - 21AKN-SB-02: near Fire Training Area B (north of Runway 12/30)
 - 21AKN-SB-03: near Fire Training Area C (south of Taxiway C)

Two locations near each of the affected properties:

21AKN-SB-04: near AKNPW-204

21AKN-SB-05: near AKNPW-003

Soil cores from on-site locations were field screened at 5-foot intervals for volatile organic compounds using a PID until the groundwater table was observed. The field screening readings ranged from less than 1 ppm to 1.6 ppm. Soil drill cuttings for the borings at the three fire training areas were containerized in a 55-gallon drum pending receipt of analytical results. S&W did not observe indications of petroleum contamination on the soil or groundwater during drilling.

S&W collected two soil samples from each soil boring at the three fire training areas, one

Exhibit 2-2: Geologist James Dutt logging a soil boring during drilling at AKNPW-204.

each from 0 to 1 ft bgs and one within the groundwater vadose zone. The soil samples were submitted for PFAS, GRO, DRO, RRO, BTEX, and PAH analysis at each of these three borings.

Subsurface soil samples were also collected below the groundwater table from each of the deep, off-site boring locations near the affected properties. Field staff selected samples from the presumed A-, B-, and C-Aquifers, based on boring observations of

confining clay layers. However, it was noted by the field staff that the confining clay layers were thin in places and may not be uniform throughout the area. The sampling locations and depths bgs are depicted in the boring logs (Appendix A) and analytical data tables.

2.3 Water Sampling

Water characterization activities for this project included sampling surface water and groundwater at and near AKN. Groundwater characterization was conducted by sampling newly installed MWs after well development.

2.3.1 Surface Water

Surface water sampling was conducted between August 15 through August 29, 2021. No petroleum odors or sheen were noted during sampling. Surface water samples were collected from the following drainage ditches and culverts (Figure 5):

- 21AKN-SW-01: drainage between Runway 18/36 and Taxiway C
- 21AKN-SW-03: drainage north of intersection of Runway 18/36 and Runway 12/30
- 21AKN-SW-04: culvert halfway along southern portion of Runway 12/30
- 21AKN-SW-09: culvert near the intersection of Runway 12/30 and Taxiway M

Surface water samples were collected from the following creeks:

- 21AKN-SW-02: Red Fox Creek culvert diverting the creek under Runway 12/30
- 21AKN-SW-05: Eskimo Creek downstream from AKNPW-204
- 21AKN-SW-06: Eskimo Creek upstream from AKNPW-204
- 21AKN-SW-07: Red Fox Creek downstream form AKN
- 21AKN-SW-08: Red Fox Creek upstream from AKN

The surface water samples were collected using a new, PFAS-free disposable transfer container or the laboratory-supplied sample container. Most of the samples were collected within an arm's reach from the edge of the water. Sample 21AKN-SS-09 was collected using a peristaltic pump and new disposable tubing.

No reusable equipment was employed to sample the surface water. Three surface water field-duplicate samples were collected. The surface water samples were submitted for PFAS analysis.

Copies of S&W's Surface Water Sample Logs are included in Appendix B.

Exhibit 2-3: Geologist Veselina Yakimova collecting surface water sample 21AKN-SW-07 at Red Fox Creek, downstream from AKN.

2.3.2 Monitoring Wells

S&W sampled seven MWs on or near AKN property (Figure 6).

2.3.2.1 Installation

GeoTek installed seven groundwater MWs using a hollow stem auger with the Geoprobe Model 8040DT drill rig. The wells are at the same locations as the soil borings described in

Section 2.2.2 above. The three MWs installed on-site at the fire training areas have well-screen depths targeted to span the groundwater table.

The shallow well near the AKNPW-003 property has a well-screen depth targeted to span the groundwater table. The deeper well is screened at approximately 78 to 83 feet bgs.

Based on field observations by the field staff during drilling, the shallow well at the AKNPW-204 property was not screened to span the observed groundwater table. Field staff noted a confining silt layer (11.0 to 13.5 feet bgs) directly above the observed groundwater table (13.5 feet bgs), with indications of seasonal water above the confining layer. Field staff recommended moving the shallow well deeper into the water table to avoid possible cross contamination of the seasonal water possibly present at this location above 11.0 feet bgs. The shallow well at the AKNPW-204 property is screened at approximately 40 to 45 feet bgs. The deep well is screened at approximately 79 to 84 feet bgs.

GeoTek completed the wells using flush-mounted monuments. The wells were constructed using two-inch inside-diameter schedule 40 polyvinyl chloride (PVC) material. The shallow wells have a 10-foot screened interval, the deeper wells have a 5-foot screened interval. The screens are pre-pack 0.010-inch slotted screen with 20/40 sand and threaded end caps. The filter pack within the 8-inch annular space at and around the screened interval is comprised of 10/20 silica sand. A bentonite pellet seal followed by pea gravel fills the remaining annular space. Well construction details can be found in the individual boring logs (Appendix A) and field forms (Appendix B).

2.3.2.2 Development and Sampling

Exhibit 2-4: Groundwater MW purging prior to sample collection.

The MWs were developed using a Proactive™ stainless steel submersible pump and HDPE tubing. Development proceeded until there was a significant improvement in the clarity of the water. Due to the abundance of silt, the two deep MWs did not produce clear water after pumping 50 gallons or more from each well. The development water was containerized while the sediment settled from suspension prior to treating with granular activated carbon (GAC). Copies of *Well Development Logs* are included in Appendix B.

Following development, the same submersible pump was used to purge the well until the water parameters stabilized or a total of three well volumes had been purged. Field staff measured these parameters using a multiprobe water quality meter

(YSI) and recorded pH, temperature in degrees Celsius (°C), conductivity in microSiemens (μ S), dissolved oxygen (DO) in milligrams per liter (mg/L), and redox potential in millivolts (mV) approximately once every three minutes until sample collection. The following values were used to indicate stability for a minimum of three consecutive readings: ± 0.1 pH, ± 3 percent °C, ± 10 percent DO, ± 3 percent conductivity, and ± 10 mV redox. Water clarity (visual) was also recorded.

The water samples were collected using laboratory-supplied containers immediately after each well was purged. Samples were collected for PFAS, GRO, DRO, RRO, BTEX, and PAH analyses from the three MWs at the fire training areas. Samples were collected for PFAS analysis from the MWs at the two affected properties. Copies of the *Monitoring Well Sampling Logs* are included in Appendix B, Field Forms.

Groundwater field-duplicate samples and submersible pump equipment blank samples were collected at a rate of one per ten primary samples.

2.4 Sample Custody, Storage, and Shipping

Field staff collected, handled, and stored samples in a manner consistent with the GWP and DEC *Field Sampling Guidance*. Immediately after collection, the samples were placed in a designated sample cooler maintained between 0 °C and 6 °C with ice substitute. The PFAS samples were stored in individual Ziploc bags. S&W maintained custody of the samples

until submitting them to the laboratory for analysis. The samples were stored in sample coolers or a small in-room refrigerator at nighttime.

When shipping the analytical samples, chain-of-custody forms were placed in the hard-sided cooler with an adequate quantity of frozen ice substitute to maintain the proper temperature range. The samples were packaged as necessary to prevent bottle breakage and sealed with custody seals on the outside of each cooler. Field staff shipped the samples to TestAmerica in West Sacramento, California using Alaska Air Cargo's Goldstreak service. The non-PFAS samples were received by SGS North America, Inc. (SGS) in Fairbanks, Alaska and delivered to their Anchorage laboratory by currier.

Most of the samples were received by the laboratory within the required temperature range. However, TestAmerica picked up one of the coolers several days late due to an internal laboratory communication error which resulted in several soil and groundwater samples being received out of the required temperature range and hold time. Quality assurance (QA)/qualify control (QC) details can be found in Appendix D.

2.5 Investigation-Derived Waste

MW development and purge water, and decontamination rinse water were filtered using three, new five-gallon GAC units in series (Exhibit 2-5). Silty MW development water was allowed to settle prior to filtration. The filtered water was containerized, sampled for PFAS analyses, and stored on-site to await analytical results. After the analytical results were confirmed to be below the DEC Groundwater Cleanup Levels, DEC approved the discharge of the contents to the ground surface.

Soil cuttings from the three on-site borings drilled near the fire training areas were containerized in a 55-gallon drum. The settled solids from the MW purge water that was too silty to filter was also placed in the investigation-derived waste drum with other soils. The labeled drum containing approximately 20 gallons of investigation-derived waste is stored onsite pending disposal approval from DEC.

Exhibit 2-5: Filtering MW development water through portable GAC filtration system.

Soil cuttings from the other borings were spread on the ground surface at each sample location.

MW tubing, direct push soil liners, nitrile gloves, and other inert investigation-derived waste were disposed of in a dumpster at AKN.

2.6 Deviations

In general, S&W conducted these services in accordance with the approved GWP and the AKN Addendum. The following are the deviations from our agreed-upon scope of services. These modifications do not impact the overall data quality or project objectives.

- S&W collected four additional surface water samples than planned. These samples were collected from drainage ditches along the runways.
- Several sample locations were moved based on local conditions and information provided by DOT&PF staff. The MW nest at AKNPW-003 was moved outside the fenced area due to the limited space around the fishing vessels in the boat yard.
- The shallow well at the AKNPW-204 property was not installed to span the groundwater table. As noted above, S&W field staff noted a confining silt layer (11.0 to 13.5 feet bgs) directly above the observed groundwater table (13.5 feet bgs), with indications of seasonal water above the confining layer. Field staff recommended moving the shallow well deeper into the water table to avoid possible cross contamination of the seasonal water possibly present at this location above 11.0 feet bgs. The shallow well at the AKNPW-204 property is screened at approximately 40 to 45 feet bgs.
- The GWP Addendum described constructing the deep monitoring wells at affected properties with 6-inch inside diameter schedule 40 PVC material with 0.010-inch slotted screen and treaded caps, with the potential to be converted to water supply wells for these properties. The anticipated depths for the two deep wells were approximately 150 to 200 feet bgs. S&W directed GeoTek to install these MWs with 2-inch inside-diameter to approximately 85 feet bgs due to uncertainty in the proposed installation for the 6-inch wells to later be used as water supply wells for the properties and the inability of the Geoprobe 8040DT to reach depths greater than 90 feet bgs.

3 ANALYTICAL RESULTS

The soil and water samples submitted for this project were analyzed for determination of the 18 PFAS compounds listed in Environmental Protection Agency Method 537.1 (waters)/537M (soils). The PFAS samples were analyzed by TestAmerica in West Sacramento, California. In addition, S&W submitted on-site soil boring and groundwater samples for analysis of GRO, DRO, RRO, BTEX, and PAHs by Methods AK101, AK102, AK103, 8260D, and 8270D- SIM, respectively. These samples were analyzed by SGS in Anchorage, Alaska.

The AKN analytical results are summarized in Tables 1 to 5. Our analytical sample QA/QC summary is presented in Appendix D. The TestAmerica and SGS laboratory reports and DEC Laboratory Data Review Checklists (LDRCs) for each work order are included in Appendix C. Figure 2 shows the various sample locations, while Figures 3 through 6 display analytical results. The following sections identify samples detected above the respective regulatory limits.

3.1 Surface Soil

PFOS was detected at concentrations exceeding the DEC MTG soil cleanup level of 3.0 micrograms per kilogram ($\mu g/kg$) in the following samples:

21AKN-SS-12

21AKN-SS-19

21AKN-SS-13

21AKN-SS-20

21AKN-SS-15

In addition, PFOA was detected at a concentration above the DEC MGT soil cleanup level of $1.7 \mu g/kg$ in the following samples:

21AKN-SS-12

21AKN-SS-15

21AKN-SS-13

21AKN-SS-20

The surface soil samples exceeding the DEC MTG cleanup level are located at the north end of Runway 18/36 (21AKN-SS-12 and 21AKN-SS-13), and west of the runway intersection along Runway 12/30 (21AKN-SS-15, 21AKN-SS-19, and 21AKN-SS-20).

Additional detections for PFOS and PFOA were observed but were below the DEC MTG soil cleanup levels. Also, several other PFAS compounds were detected but the remaining PFAS analytes do not have DEC soil cleanup levels.

PFAS results for surface soil samples are summarized in Table 1 and shown on Figure 3.

3.2 Soil Borings

PFOS was detected at concentrations exceeding the DEC MTG cleanup level in the following soil boring samples:

■ 21AKN-SB-03 (0′-1′)

21AKN-SB-04 (12.1'-12.7')

■ 21AKN-SB-03 (7.3′-7.8′)

SB-03 samples were collected from the soil boring near Fire Training Area C and SB-04 samples were collected from the soil boring near the AKNPW-204 property. In addition,

PFOA was detected at a concentration above the DEC cleanup level in sample 21AKN-SB-03(0′-1′), near Fire Training Area C.

Additional detections for PFOS and PFOA were observed but were below the DEC MTG soil cleanup levels. Also, several other PFAS compounds were detected but do not have DEC soil cleanup levels. PFAS results for subsurface soil samples are summarized in Table 2a and Figure 4.

In addition to PFAS samples, subsurface soil from the three soil borings near the fire training areas were submitted for analysis of petroleum compounds. DRO were detected at a concentration exceeding the DEC MTG soil cleanup level of 250 mg/kg in sample 21AKN-SB-02 (0'-1'). Additional detections for GRO, DRO, RRO, and PAHs were observed but were below the associated DEC MTG soil cleanup levels. BTEX analytes were not detected in the project samples. The GRO detections were attributed to laboratory contamination and considered non-detect (refer to Appendix D for details). Petroleum results for the subsurface soil samples are summarized in Table 2b.

3.3 Surface Water

PFOS was detected at concentrations exceeding the DEC groundwater cleanup level of 400 ng/L in the following samples:

- 21AKN-SW-02 (Red Fox Creek in secure area of AKN)
- 21AKN-SW-04 (Drainage along south end of Runway 12/30)
- 21AKN-SW-07 (Red Fox Creek downstream from AKN)
- 21AKN-SW-08 (Red Fox Creek upstream from AKN)
- 21AKN-SW-09 (Drainage along northwest end of Runway 12/30)

PFOA was also detected at a concentration exceeding the DEC groundwater cleanup level of 400 ng/L in sample 21AKN-SW-04.

Additional detections for PFOS and PFOA were observed but were below the DEC MTG groundwater cleanup levels. Also, several other PFAS compounds were detected but the remaining PFAS analytes do not have DEC groundwater cleanup

Exhibit 3-1: Surface water sample 21AKN-SW-04 collected from the drainage south of Runway 12/30.

levels. PFAS results for surface water samples are summarized in Table 3 and shown on Figure 5.

Because several nearby water supply wells use groundwater as drinking water, we also compared the surface water sample results to the EPA LHA of 70 ng/L. In addition to the samples noted above, the following samples also exceed the EPA LHA for the sum of PFOS and PFOA.

- 21AKN-SW-03 (drainage north of intersection of Runway 18/36 and Runway 12/30)
- 21AKN-SW-05/21AKN-SW-105 (Eskimo Creek downstream from AKNPW-204)
- 21AKN-SW-06 (Eskimo Creek upstream from AKNPW-204)

3.4 Groundwater

PFOS was detected at concentrations exceeding the DEC MTG groundwater cleanup level of 400 ng/L in sample 21AKN-MW-03, near Fire Training Area C. Additional detections for PFOS and PFOA were observed but were below the DEC groundwater cleanup levels. Also, several other PFAS compounds were detected but the remaining PFAS analytes do not have DEC groundwater cleanup levels. PFAS results for the groundwater samples are summarized in Table 4a and Figure 6.

As mentioned in Section 3.3, since several nearby water supply wells use groundwater as drinking water, we also compared the groundwater sample results to the EPA LHA of 70 ng/L. In addition to the sample noted above, the following samples also exceed the EPA LHA for the sum of PFOS and PFOA.

- 21AKN-MW-1 (near Fire Training Area A)
- 21AKN-MW-2 (near Fire Training Area B)
- 21AKN-MW-4-45 (shallow well near AKNPW-204)

In addition to PFAS samples, on-site monitoring wells were submitted for analysis of petroleum compounds. DRO, RRO, benzene, 1-methylnaphthalene, fluoranthene, and pyrene were detected in one or more sample but were reported as estimated detections (below the laboratory quantitation limit; LOQ) below the DEC groundwater cleanup levels. Petroleum results for the groundwater samples are summarized in Table 4b and Figure 6.

3.5 Investigative Derived Waste

We collected a post-treatment GAC effluent sample. Only PFOS was detected at an estimated concentration of 1.3 J ng/L in post-filtration water sample *21AKN-Drum-02* (Table 5). These results were provided to DEC and the treated purge water was approved to be

discharged to the ground surface, provided that the water was discharged 100 feet from the monitoring wells and surface water bodies.

4 CONCEPTUAL SITE MODEL

A conceptual site model (CSM) describes potential pathways between a contaminant source and possible receptors (i.e., people, animals, and plants) and is used to determine who may be at risk of exposure to those contaminants. This section describes the suspected contaminant sources, migration and exposure pathways, and potential receptors using the DEC Human Health Conceptual Site Model Scoping and Graphic Forms; these documents included in Appendix E. The COCs at and near the AKN are PFOS, PFOA, and DRO.

A draft CSM was included in the GWP Addendum describing planned site characterization activities. The enclosed CSM has been updated based on observed site conditions and the analytical results discussed in Section 3.

4.1 Description of Potential Receptors

S&W considers residents, commercial/industrial/construction workers, site visitors and trespassers to be current or future potential receptors for one or more exposure pathway. DOT&PF and FAA personnel, airline or cargo employees, emergency responders, and private pilots are permitted within portions of the AKN restricted area. S&W considers recreational users, subsistence harvesters, or subsistence consumers to be potential receptors.

4.2 Potential Exposure Pathways

Potential exposure pathways include:

- incidental ingestion of soil or groundwater;
- dermal exposure to soil, sediment, surface water, or groundwater;
- inhalation of fugitive dust; and
- ingesting of wild or farmed foods.

4.2.1 Soil Exposure

DOT&PF personnel, tenants, construction workers, residents, and visitors/trespassers could inhale wind-blown dust during outdoor, summertime work. The surface soil and fill at AKN have a moderate to high silt content that likely allows for small respirable particles (i.e., less than 10 micrometers).

Direct contact with PFOS-, PFOA-, or DRO-contaminated surface and subsurface soil is unlikely during normal operations. However, runway repairs and other construction could expose contaminated soil to DOT&PF personnel, construction workers, and visitors/trespassers.

4.2.2 Groundwater Exposure

Industrial workers, construction workers, or site visitors could be exposed to shallow contaminated groundwater during future excavation and construction projects.

Exposure of residents and commercial or industrial workers to PFAS-impacted groundwater through ingestion is considered significant. Dermal absorption is considered a possible pathway, however, according to the Alaska Department of Health and Social Services, PFOS and PFOA are not appreciably absorbed through the skin. We therefore consider dermal exposure to these compounds to be insignificant for the purposes of this CSM. Hangars and offices on airport property have water supply wells. Identified water supply wells near the AKN are used for industrial purposes only. Two water supply wells near the AKN have PFAS contamination at concentrations greater than the LHA. Ingestion of groundwater is a potential pathway for these locations. Alternative water is being provided to the owners of these two water supply wells to avoid this potential pathway. However, one of these water supply wells is still operational.

4.2.3 Surface Water

The creeks and drainage ditches sampled during this investigation are not commonly used for drinking water sources. Incidental ingestion of contaminated surface water is not a likely human exposure pathway. However, PFOS and PFOA are documented as being able to absorb through the skin. Direct contact with surface water is an exposure pathway to nearby residents, commercial or industrial workers, visitors, recreational users, and construction workers. However, as mentioned above, PFOS and PFOA are not appreciably absorbed through the skin and dermal exposure to these compounds is considered insignificant for the purposes of this CSM.

4.2.4 Sediment

While sediment was not directly sampled, PFOS and PFOA are expected to be detected in this medium. Direct contact with sediment is an exposure pathway to nearby residents, commercial or industrial workers, visitors, recreational users, and construction workers. As noted above, PFOS and PFOA are not appreciably absorbed through the skin and dermal exposure to these compounds is considered insignificant for the purposes of this CSM.

4.2.5 Other Media

The biota in the area are expected to uptake the PFAS compounds detected in the surficial soils around the runway. Based on conversations with DOT&PF staff, the public are sometimes allowed to harvest fireweed after DOT&PF staff trim it along the runways. Ingestion of wild harvested foods is considered an exposure pathway.

Wildlife, including fish, are known to use the area where PFAS contamination has been identified in surface waters. Eskimo Creek and Red Fox Creek are adjacent to areas of known AFFF use. It is unlikely that subsistence users rely on AKN property for harvesting terrestrial biota but the King Salmon/Bristol Bay region supports a commercial fishery with global reach. Since PFAS can bioaccumulate, subsistence and recreational harvesting of the biota are potential exposure pathways for visitors and residents of the area.

4.3 CSM Summary

Affected media include contaminated soil, sediment, surface water, and groundwater. Potential human exposure pathways include inhalation of fugitive dust, direct contact with contaminated soil/sediment, and ingestion of soil, surface water, and groundwater. Additionally, ingestion of wild foods may be a human exposure pathway as PFOS and PFOA are bioaccumulative. Potential receptors are described below:

- Site investigations and construction activities at the site may result in incidental ingestion of soil, direct contact with soils and sediment, groundwater, and inhalation of outdoor air by nearby residents, commercial/industrial workers, visitors/trespassers, or construction workers. However, according to the Alaska Department of Health and Social Services, PFOS and PFOA are not appreciably absorbed through the skin. We therefore consider dermal exposure to these compounds to be insignificant for the purposes of this CSM.
- Contaminated surface soil may result in fugitive dust that could be an exposure pathway for commercial workers, visitors, construction workers, and nearby residents.
- Two water supply wells near the AKN have PFAS contamination at concentrations greater than the LHA. Ingestion of groundwater is a potential pathway for these locations. Alternative water is being provided to the owners of these two water supply wells to avoid this potential pathway. However, one of these water supply wells is still operational. Refer to Section 1.1.2 for details.
- Incidental ingestion of contaminated surface water is a potential human exposure pathway to commercial workers, visitors, construction workers, and nearby residents, although surface water is not expected to be used as a drinking water source. Direct contact with surface water is an exposure pathway because PFAS analytes can be absorbed through the skin.

Wildlife, including fish, are known to use the area where PFAS contamination has been identified in groundwater and surface water. Eskimo Creek and Red Fox Creek are adjacent to areas of known AFFF use. It is unlikely that subsistence users rely on AKN property for harvesting terrestrial biota but the King Salmon/Bristol Bay region supports a commercial fishery with global reach. Because PFAS can bioaccumulate, subsistence and recreational harvesting of the biota are potential exposure pathways for visitors and residents of the area. However, the lack of data on the nature and extent of PFAS contamination in the project area prevents ruling out this exposure pathway.

5 DISCUSSION AND RECOMMENDATIONS

The site characterization effort described in this report discovered PFAS and/or DRO concentrations exceeding DEC cleanup levels at the AKN in surface soil, subsurface soil, surface water, and groundwater samples. Below is a summary of the areas identified that had detections for these contaminants above DEC Cleanup Levels (CULs).

- Surface soil samples identified PFOS and PFOA at concentrations exceeding DEC CULs at the north end of Runway 18/36 and around the middle of Runway 12/30. These areas do not correspond with DOT&PF identified Fire Training Areas. Further investigation may be required for these areas of high PFAS contamination.
- Subsurface soil samples from Fire Training Area C identified PFOS and PFOA at concentrations exceeding DEC CULs at 0.0 to 1.0 feet bgs and 7.3 to 7.8 feet bgs. In addition, this location had PFAS detections in groundwater samples that exceeded the DEC CULs.
- Subsurface soil samples from the PWAKN-204 property had PFOS at concentrations exceeding DEC CULs at 12.1 to 12.7 feet bgs. This is believed to be in the upper portion of the A-Aquifer.
- Subsurface soil samples from Fire Training Area B identified DRO at concentrations exceeding the DEC CUL for the 0.0 to 1.0 feet bgs sample.
- Surface water samples from Red Fox Creek and nearby drainage channels to the east had high concentrations for PFOS and PFOA that exceeded DEC CULs.
- Surface water sample from the drainage area where Taxiway M and Runway 12/30 intersect had high concentrations for PFOS and PFOA that exceeded DEC CULs.
- Additional analytes were detected at the site with concentrations less than the DEC CULs, or for analytes without CULs. Refer to the analytical summary tables for details.

Some of the samples exceeding regulatory standards are upgradient of the runways and identified DOT&PF Fire Training Areas. These are presumed to be related to DoD AFFF release areas identified with high concentrations of PFAS during their investigation

reported in Summer 2019 Site Investigations (FINAL Site Inspection Report of Aqueous Film-Forming Foam Areas at King Salmon Divert, King Salmon, Alaska dated June 2020).

Based on the results of S&W's initial site characterization effort, we recommend the DOT&PF:

- Coordinate with the USAF to discuss plans for remediation and long-term solutions for affected properties.
- Collect additional surface water samples further upstream in the Eskimo and Red Fox Creeks to better assess the source of the contamination.
- Collect surface water samples from the Naknek River to assess the extent of PFAS contamination.
- Install additional MWs between source areas and the affected properties to further characterize the lateral and vertical extent of PFAS-impacted groundwater.
- Monitor PFAS water sample concentrations quarterly in the 2022 using the newly installed MWs.
- Dispose of remaining investigation-derived waste by shipping to a treatment facility.

These recommendations are based on:

- Site conditions observed at and near the AKN in August 2021.
- The results of testing performed on soil samples, collected borings, the soil surface, and water bodies on and near AKN.
- The results of testing performed on water samples collected from the MWs, and surface water, on, near, and downgradient of the AKN.
- S&W's previous experience at the AKN.
- Publicly available literature and data reviewed for this project.
- S&W's understanding of the project and information provided by DOT&PF and other members of the project team.
- The limitations of our approved scope and schedule described in our approved proposal dated June 2021.

The information included in this report is based on limited sampling and should be considered representative of the times and locations at which the sampling occurred. Regulatory agencies may reach different conclusions than S&W. We have prepared and included the attachment "Important Information about your Geotechnical/Environmental Report" to assist you and others in understanding the use and limitations of this report.

6 REFERENCES

- Alaska Department of Environmental Conservation (DEC), 2020a, 18 AAC 75, Oil and Other Hazardous Substances Pollution Control: Juneau, Alaska, Alaska Administrative Code (AAC), Title 18, Chapter 75, January available: http://dec.alaska.gov/commish/regulations/.
- Alaska Department of Environmental Conservation (DEC), 2020b, 18 AAC 75.345, Groundwater Cleanup Levels: Juneau, Alaska, Alaska Administrative Code (AAC), Title 18, Chapter 75, Section 341, January, available: http://dec.alaska.gov/commish/regulations/.
- Alaska Department of Environmental Conservation (DEC), 2020c, 18 AAC 75.341, Soil Cleanup Levels: Juneau, Alaska, Alaska Administrative Code (AAC), Title 18, Chapter 75, Section 341, January, available: http://dec.alaska.gov/commish/regulations/.
- Alaska Department of Environmental Conservation (DEC), 2019, Technical Memorandum Action Levels for PFAS in Water and Guidance on Sampling Groundwater and Drinking Water (updated): Juneau, Alaska, DEC Division of Spill Prevention and Response Contaminated Sites Program and Division of Environmental Health Drinking Water Program, October, available: http://dec.alaska.gov/spar/csp/guidance_forms/csguidance.htm.
- Alaska Department of Environmental Conservation (DEC), 2017a, Guidance on Developing Conceptual Site Models. DEC Division of Spill Prevention and Response, Contaminated Sites Program, July, available:

 http://dec.alaska.gov/spar/csp/guidance_forms/csguidance.htm.
- Alaska Department of Environmental Conservation (DEC), 2017, Site Characterization Work Plan and Reporting Guidance for Investigation of Contaminated Sites: Juneau, Alaska, DEC Division of Spill Prevention and Response, Contaminated Sites Program, March, available:

 http://dec.alaska.gov/spar/csp/guidance_forms/csguidance.htm.
- Alaska Department of Environmental Conservation (DEC), 2013, Monitoring Well Guidance: Juneau, Alaska, DEC Division of Spill Prevention and Response, Contaminated Sites Program, March, available: http://dec.alaska.gov/spar/csp/guidance_forms/csguidance.htm.Author, year of publication, title, and publishing data—all the information necessary for unique identification and library search

- U.S. Environmental Protection Agency (EPA), 2016, Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA), Document Number 822-R-16-005: Washington, DC, U.S. EPA Office of Water, Health and Ecological Criteria Division, May, available: https://www.epa.gov/sites/production/files/2016-05/documents/pfoa_health_advisory_final_508.pdf
- CH2M Hill, 1989, Installation Restoration Program Stage 1 Final Technical Report Appendices A-J, August.
- CH2M Hill, 2019, Final Uniform Federal Police Quality Assurance Project Plan for Site Inspections of Aqueous Film Forming Foam Areas, KSD, Alaska, July.
- Feulner, A.J. 1963, Data on Wells in the King Salmon Area, Alaska: Alaska Department of Health and Welfare Hydrological Data Report No. 24.

Table 1 - August 2021 Surface Soil PFAS Results

	Sam	ple Name	21AKN-SS-01	21AKN-SS-02	21AKN-SS-03	21AKN-SS-04	21AKN-SS-05	21AKN-SS-06	21AKN-SS-07	21AKN-SS-08
Analyte	Cleanup Level	Units								
Perfluorohexanesulfonic acid (PFHxS)	_	μg/kg	0.059 J	<0.22	0.14 JH*	0.22	<0.20	<0.21	<0.21	<0.20
Perfluorohexanoic acid (PFHxA)	_	µg/kg	0.045 J	<0.22	<0.20	<0.20	<0.20	<0.21	<0.21	<0.20
Perfluoroheptanoic acid (PFHpA)	_	µg/kg	<0.23	0.044 J	<0.20	<0.20	<0.20	<0.21	<0.21	<0.20
Perfluorononanoic acid (PFNA)	_	µg/kg	0.044 JH*	0.097 J	<0.20	0.050 J	<0.20	<0.21	<0.21	<0.20
Perfluorobutanesulfonic acid (PFBS)	_	µg/kg	<0.23	<0.22	<0.20	<0.20	<0.20	<0.21	<0.21	<0.20
Perfluorodecanoic acid (PFDA)	_	µg/kg	<0.23	<0.22	<0.20	<0.20	<0.20	<0.21	<0.21	<0.20
Perfluoroundecanoic acid (PFUnA)	_	µg/kg	<0.23	<0.22	0.17 J	<0.20	<0.20	<0.21	<0.21	<0.20
Perfluorododecanoic acid (PFDoA)	_	µg/kg	<0.23	<0.22	0.071 J	<0.20	<0.20	<0.21	<0.21	<0.20
Perfluorotridecanoic acid (PFTrDA)	_	µg/kg	<0.23	<0.22	0.18 J	<0.20	<0.20	<0.21	<0.21	<0.20
Perfluorotetradecanoic acid (PFTeA)	_	µg/kg	<0.23	<0.22	<0.20	<0.20	<0.20	<0.21	<0.21	<0.20
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	_	µg/kg	<0.23	<0.22	<0.20	<0.20	<0.20	<0.21	<0.21	<0.20
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	_	µg/kg	<0.23	<0.22	<0.20	<0.20	<0.20	<0.21	<0.21	<0.20
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	_	µg/kg	<0.23	<0.22	<0.20	<0.20	<0.20	<0.21	<0.21	<0.20
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	_	µg/kg	<0.23	<0.22	<0.20	<0.20	<0.20	<0.21	<0.21	<0.20
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	_	µg/kg	<0.23	<0.22	<0.20	<0.20	<0.20	<0.21	<0.21	<0.20
Hexafluoropropylene oxide dimer acid (HFPO-DA)	_	µg/kg	<0.23	<0.22	<0.20	<0.20	<0.20	<0.21	<0.21	<0.20
Perfluorooctanesulfonic acid (PFOS)	3.0	µg/kg	0.16 JH*	0.40 JH*	<0.42	2.4	<0.20	<0.21	<0.21	<0.20
Perfluorooctanoic acid (PFOA)	1.7	µg/kg	<0.23	<0.22	<0.20	0.17 J	<0.20	<0.21	<0.21	<0.20

Notes:

Results reported from Eurofins TestAmerica work order 320-77655.

Sample 21AKN-SW-109 is a field-duplicate of sample 21AKN-SW-09.

Sample 21AKN-SW-117 is a field-duplicate of sample 21AKN-SW-17.

Regulatory limits from 18 AAC 75.341 Table B1 Method Two - Soil Cleanup Levels Table (Migration to Groundwater).

- No applicable regulatory limit exists for the associated analyte.
- < Analyte was not detected; reported as <Reporting Limit (RL).

BOLD Detected concentration exceeds regulatory limit.

- J Estimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.
- J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)
- JH* Estimated concentration, biased high, due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)
 - DUP = field-duplicate; $\mu g/kg = micrograms$ per kilogram; PFAS = per- and polyfluoroalkyl substances

Table 1 - August 2021 Surface Soil PFAS Results

	Sa	ımple Name	21AKN-SS-09	21AKN-SS-109	21AKN-SS-10	21AKN-SS-11	21AKN-SS-12	21AKN-SS-13	21AKN-SS-14	21AKN-SS-15
Analyte	Cleanup Level	Units		DUP						
Perfluorohexanesulfonic acid (PFHxS)	_	μg/kg	0.10 J	0.11 J	<0.22	<2.1	1.6	5.4	0.10 J	3.6
Perfluorohexanoic acid (PFHxA)	_	μg/kg	<0.22	<0.19	0.23	<2.1 J*	0.18 J	0.81	<0.23	0.49 J
Perfluoroheptanoic acid (PFHpA)	_	μg/kg	<0.22	<0.19	0.046 J	<2.1	0.061 J	0.35	<0.23	0.40 J
Perfluorononanoic acid (PFNA)	_	μg/kg	<0.22	<0.19	0.030 J	<2.1	0.054 JH*	0.039 J	<0.23	1.0
Perfluorobutanesulfonic acid (PFBS)	_	μg/kg	<0.22	<0.19	<0.22	<2.1	<0.21	0.055 J	<0.23	<0.55
Perfluorodecanoic acid (PFDA)	_	μg/kg	<0.22	<0.19	<0.22	<2.1	<0.21	<0.20	<0.23	0.18 J
Perfluoroundecanoic acid (PFUnA)	_	μg/kg	0.17 J	0.14 J	<0.22	<2.1	0.11 J	<0.20	<0.23	1.1
Perfluorododecanoic acid (PFDoA)	_	μg/kg	0.060 J	0.061 J	<0.22	<2.1	<0.21	0.051 J	<0.23	0.20 J
Perfluorotridecanoic acid (PFTrDA)	_	μg/kg	0.61	0.51	<0.22	<2.1	0.054 J	<0.20	<0.23	0.45 J
Perfluorotetradecanoic acid (PFTeA)	_	μg/kg	0.046 J*	<0.19	<0.22	<2.1	<0.21	<0.20	<0.23	<0.55
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	_	μg/kg	<0.22	<0.19	<0.22	<2.1	<0.21	<0.20	0.56	<0.55
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	_	μg/kg	<0.22	<0.19	<0.22	<2.1	<0.21	<0.20	23	<0.55
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	_	μg/kg	<0.22	<0.19	<0.22	<2.1	<0.21	<0.20	<0.23	<0.55
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	_	μg/kg	<0.22	<0.19	<0.22	<2.1	<0.21	<0.20	<0.23	<0.55
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	_	μg/kg	<0.22	<0.19	<0.22	<2.1	<0.21	<0.20	<0.23	<0.55
Hexafluoropropylene oxide dimer acid (HFPO-DA)	_	μg/kg	<0.22	<0.19	<0.22	<2.1 J*	<0.21	<0.20	<0.23	<0.55
Perfluorooctanesulfonic acid (PFOS)	3.0	μg/kg	1.4	1.0	<0.22	1.9 JH*	3.3	7.3	2.0	100
Perfluorooctanoic acid (PFOA)	1.7	µg/kg	<0.22	<0.19	<0.22	0.62 J	2.4	13	0.060 J	5.8

Notes:

Results reported from Eurofins TestAmerica work order 320-77655.

Sample 21AKN-SW-109 is a field-duplicate of sample 21AKN-SW-09.

Sample 21AKN-SW-117 is a field-duplicate of sample 21AKN-SW-17.

Regulatory limits from 18 AAC 75.341 Table B1 Method Two - Soil Cleanup Levels Table (Migration to Groundwater).

- No applicable regulatory limit exists for the associated analyte.
- < Analyte was not detected; reported as <Reporting Limit (RL).

BOLD Detected concentration exceeds regulatory limit.

- J Estimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.
- J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)
- JH* Estimated concentration, biased high, due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)
 - DUP = field-duplicate; $\mu g/kg = micrograms$ per kilogram; PFAS = per- and polyfluoroalkyl substances

Table 1 - August 2021 Surface Soil PFAS Results

	Sa	ample Name	21AKN-SS-16	21AKN-SS-17	21AKN-SS-117	21AKN-SS-18	21AKN-SS-19	21AKN-SS-20
Analyte	Cleanup Level	Units			DUP			
Perfluorohexanesulfonic acid (PFHxS)	_	μg/kg	0.048 JH*	0.14 J	0.13 J	<0.22	2.0 JH*	5.5
Perfluorohexanoic acid (PFHxA)	_	μg/kg	<0.23	<0.22	<0.23	<0.22	0.46	0.43 JH*
Perfluoroheptanoic acid (PFHpA)	_	μg/kg	<0.23	<0.22	<0.23	<0.22	0.18 J	0.084 J
Perfluorononanoic acid (PFNA)	_	μg/kg	<0.23	<0.22	<0.23	<0.22	0.24	0.19
Perfluorobutanesulfonic acid (PFBS)	_	μg/kg	<0.23	<0.22	<0.23	<0.22	0.079 J	0.049 J
Perfluorodecanoic acid (PFDA)	_	μg/kg	<0.23	<0.22	<0.23	0.063 J	0.32	0.25
Perfluoroundecanoic acid (PFUnA)	_	μg/kg	0.14 J	0.13 J	0.11 J	0.061 J	10	1.1
Perfluorododecanoic acid (PFDoA)	_	μg/kg	0.080 J	0.070 J	0.077 J	0.078 J	0.20 J	0.047 J
Perfluorotridecanoic acid (PFTrDA)	_	μg/kg	0.11 J	0.065 J	0.053 J	0.033 J	0.55	0.11 J
Perfluorotetradecanoic acid (PFTeA)	_	μg/kg	0.074 J	0.041 J	0.058 J	0.043 J	0.065 J	<0.19 J*
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	_	μg/kg	0.034 J	<0.22	<0.23	<0.22	<0.24	0.14 JH*
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	_	μg/kg	<0.23	<0.22	0.78	<0.22	<0.24	0.13 J
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	_	μg/kg	<0.23	<0.22	<0.23	<0.22	<0.24	<0.19
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	_	μg/kg	<0.23	<0.22	<0.23	<0.22	<0.24	<0.19
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	_	μg/kg	<0.23	<0.22	<0.23	<0.22	<0.24	<0.19 J*
Hexafluoropropylene oxide dimer acid (HFPO-DA)	_	μg/kg	<0.23	<0.22	<0.23	<0.22	<0.24	<0.19
Perfluorooctanesulfonic acid (PFOS)	3.0	μg/kg	<0.23	2.5	2.3	<0.31	15 JH*	28
Perfluorooctanoic acid (PFOA)	1.7	μg/kg	<0.23	<0.22	<0.23	0.061 J	0.19 J	2.6

Notes:

Results reported from Eurofins TestAmerica work order 320-77655.

Sample 21AKN-SW-109 is a field-duplicate of sample 21AKN-SW-09.

Sample 21AKN-SW-117 is a field-duplicate of sample 21AKN-SW-17.

Regulatory limits from 18 AAC 75.341 Table B1 Method Two - Soil Cleanup Levels Table (Migration to Groundwater).

- No applicable regulatory limit exists for the associated analyte.
- < Analyte was not detected; reported as <Reporting Limit (RL).

- J Estimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.
- J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)
- JH* Estimated concentration, biased high, due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)
 - DUP = field-duplicate; $\mu g/kg = micrograms$ per kilogram; PFAS = per- and polyfluoroalkyl substances

Table 2A - August 2021 Soil Boring PFAS Results

Sample Name			21AKN-SB-01 (0'-1')	21AKN-SB-01 (6.5'-7.5')	21AKN-SB-101 (6.5'-7.5')	21AKN-SB-02 (0'-1')	21AKN-SB-02 (6'-7')	21AKN-SB-03 (0'-1')	21AKN-SB-03 (7.3'-7.8')
	Soil Boring Sa	mple Depth	0.0 - 1.0 feet bgs	6.5 - 7.5 feet bgs	6.5 - 7.5 feet bgs	0.0 - 1.0 feet bgs	6.0 - 7.0 feet bgs	0.0 - 1.0 feet bgs	7.3 - 7.8 feet bgs
Analyte	Cleanup Level	Units			DUP				
Perfluorohexanesulfonic acid (PFHxS)	_	µg/kg	0.071 J	<0.23	0.032 J	0.050 J	0.088 J	12	7.5
Perfluorohexanoic acid (PFHxA)	_	µg/kg	<0.22	<0.23	<0.22	<0.20	<0.24	3.8	1.6
Perfluoroheptanoic acid (PFHpA)	_	µg/kg	<0.22	<0.23	<0.22	<0.20	<0.24	0.89 J	0.43
Perfluorononanoic acid (PFNA)	_	µg/kg	<0.22	<0.23	<0.22	<0.20	<0.24	14	2.5
Perfluorobutanesulfonic acid (PFBS)	_	µg/kg	<0.22	<0.23	<0.22	<0.20	<0.24	0.99 J	0.28
Perfluorodecanoic acid (PFDA)	_	μg/kg	<0.22	<0.23	<0.22	<0.20	<0.24	1.9	<0.24
Perfluoroundecanoic acid (PFUnA)	_	µg/kg	<0.22	<0.23	<0.22	<0.20	<0.24	52	<0.24
Perfluorododecanoic acid (PFDoA)	_	μg/kg	<0.22	<0.23	<0.22	<0.20	<0.24	0.38 J	<0.24
Perfluorotridecanoic acid (PFTrDA)	_	μg/kg	<0.22	<0.23	<0.22	<0.20	<0.24	4.3	<0.24
Perfluorotetradecanoic acid (PFTeA)	_	μg/kg	<0.22	<0.23	<0.22	<0.20	<0.24	<1.1	<0.24
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	_	μg/kg	<0.22	<0.23	<0.22	<0.20	<0.24	<1.1	<0.24
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	_	μg/kg	<0.22	<0.23	<0.22	<0.20	<0.24	<1.1	<0.24
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	_	µg/kg	<0.22	<0.23	<0.22	<0.20	<0.24	<1.1	<0.24
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	_	μg/kg	<0.22	<0.23	<0.22	<0.20	<0.24	<1.1	<0.24
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	_	μg/kg	<0.22	<0.23	<0.22	<0.20	<0.24	<1.1	<0.24
Hexafluoropropylene oxide dimer acid (HFPO-DA)	_	µg/kg	<0.22	<0.23	<0.22	<0.20	<0.24	<1.1	<0.24
Perfluorooctanesulfonic acid (PFOS)	3.0	µg/kg	<0.95	0.091 J	0.11 J	0.35	0.23 J	340	17
Perfluorooctanoic acid (PFOA)	1.7	μg/kg	<0.22	<0.23	<0.22	<0.20	<0.24	1.9	1.2

Notes: Results reported from Eurofins TestAmerica work orders 320-77655, 320-78376, and 320-7891.

Sample 21AKN-MW-101 is a field-duplicate of sample 21AKN-MW-01.

Sample 21AKN-MW-105-15 is a field-duplicate of sample 21AKN-MW-05-15.

Regulatory limits from 18 AAC 75.341 Table B1 Method Two - Soil Cleanup Levels Table (Migration to Groundwater).

- No applicable regulatory limit exists for the associated analyte.
- Analyte was not detected; reported as <Reporting Limit (RL).</p>

- J Estimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.
- N* Analyte result is considered tentatively unidentified (non-detects)/identified (detects) due to analysis outside of hold time. Flag applied by Shannon & Wilson, Inc.
- J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)
- JH* Estimated concentration, biased high, due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)
 - bgs = below ground surface; DUP = field-duplicate; µg/kg= micrograms per kilogram; PFAS = per- and polyfluoroalkyl substances

Table 2A - August 2021 Soil Boring PFAS Results

	Sa	mple Name	21AKN-SB-04 (12.1-12.7)	21AKN-SB-04 (18.6-19.3)	21AKN-SB-04 (63.7-64.5)	21AKN-SB-04 (82-82.6)	21AKN-SB-04 (87-87.5)	21AKN-SB-05(3.1'-3.6')	21AKN-SB-05(4.2'-4.7')
	Soil Boring Sa	mple Depth	12.1 - 12.7 feet bgs	18.6 - 19.3 feet bgs	63.7 - 64.5 feet bgs	82.0 - 82.6 feet bgs	87.0 - 87.5 feet bgs	3.1 - 3.6 feet bgs	4.2 - 4.7 feet bgs
Analyte	Cleanup Level	Units							
Perfluorohexanesulfonic acid (PFHxS)	_	μg/kg	0.048 N*	0.036 N*	<0.22 N*	<0.22 N*	<0.21	0.13 J	0.069 J
Perfluorohexanoic acid (PFHxA)	_	μg/kg	<0.24 N*	<0.23 N*	<0.22 N*	<0.22 N*	<0.21	0.081 J	0.039 J
Perfluoroheptanoic acid (PFHpA)	_	μg/kg	<0.24 N*	<0.23 N*	<0.22 N*	<0.22 N*	<0.21	<0.24	<0.23
Perfluorononanoic acid (PFNA)	_	µg/kg	0.060 N*	<0.23 N*	<0.22 N*	<0.22 N*	<0.21	<0.24	<0.23
Perfluorobutanesulfonic acid (PFBS)	_	μg/kg	<0.24 N*	<0.23 N*	<0.22 N*	<0.22 N*	<0.21	<0.24	<0.23
Perfluorodecanoic acid (PFDA)	_	μg/kg	0.19 N*	<0.23 N*	<0.22 N*	<0.22 N*	<0.21	<0.24	<0.23
Perfluoroundecanoic acid (PFUnA)	_	μg/kg	<0.24 N*	<0.23 N*	<0.22 N*	<0.22 N*	<0.21	<0.24	<0.23
Perfluorododecanoic acid (PFDoA)	_	μg/kg	<0.24 N*	<0.23 N*	<0.22 N*	<0.22 N*	<0.21	<0.24	<0.23 J*
Perfluorotridecanoic acid (PFTrDA)	_	μg/kg	<0.24 N*	<0.23 N*	<0.22 N*	<0.22 N*	<0.21	<0.24	<0.23
Perfluorotetradecanoic acid (PFTeA)	_	μg/kg	<0.24 N*	<0.23 N*	<0.22 N*	<0.22 N*	<0.21	<0.24 J*	<0.23 J*
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	_	μg/kg	0.33 N*	<0.23 N*	<0.22 N*	<0.22 N*	<0.21	<0.24	<0.23
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	_	μg/kg	2.9 N*	<0.23 N*	<0.22 N*	<0.22 N*	<0.21	<0.24	<0.23
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	_	μg/kg	<0.24 N*	<0.23 N*	<0.22 N*	<0.22 N*	<0.21	<0.24	<0.23
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	_	μg/kg	<0.24 N*	<0.23 N*	<0.22 N*	<0.22 N*	<0.21	<0.24	<0.23
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	_	μg/kg	<0.24 N*	<0.23 N*	<0.22 N*	<0.22 N*	<0.21	<0.24	<0.23
Hexafluoropropylene oxide dimer acid (HFPO-DA)	_	µg/kg	<0.24 N*	<0.23 N*	<0.22 N*	<0.22 N*	<0.21	<0.24	<0.23
Perfluorooctanesulfonic acid (PFOS)	3.0	µg/kg	3.5 N*	<0.23 N*	<0.22 N*	<0.22 N*	0.48	0.34 JH*	<0.23
Perfluorooctanoic acid (PFOA)	1.7	µg/kg	<0.24 N*	<0.23 N*	<0.22 N*	<0.22 N*	<0.21	0.095 J	0.065 J

Notes: Results reported from Eurofins TestAmerica work orders 320-77655, 320-78376, and 320-7891.

Sample 21AKN-MW-101 is a field-duplicate of sample 21AKN-MW-01.

Sample 21AKN-MW-105-15 is a field-duplicate of sample 21AKN-MW-05-15.

Regulatory limits from 18 AAC 75.341 Table B1 Method Two - Soil Cleanup Levels Table (Migration to Groundwater).

- No applicable regulatory limit exists for the associated analyte.
- Analyte was not detected; reported as <Reporting Limit (RL).</p>

BOLD Detected concentration exceeds regulatory limit.

- J Estimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.
- N* Analyte result is considered tentatively unidentified (non-detects)/identified (detects) due to analysis outside of hold time. Flag applied by Shannon & Wilson, Inc.
- J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)
- JH* Estimated concentration, biased high, due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)

bgs = below ground surface; DUP = field-duplicate; µg/kg= micrograms per kilogram; PFAS = per- and polyfluoroalkyl substances

Table 2A - August 2021 Soil Boring PFAS Results

	Sa	ample Name	21AKN-SB-05(58'-63')	21AKN-SB-105(58'-63')	21AKN-SB-05(70'-70.5')	21AKN-SB-05(82.8-83.3)
	Soil Boring Sa	mple Depth	58.0 - 63.0 feet bgs	58.0 - 63.0 feet bgs	70.0 - 70.5 feet bgs	82.8 - 83.3 feet bgs
Analyte	Cleanup Level	Units		DUP		
Perfluorohexanesulfonic acid (PFHxS)	_	μg/kg	<0.23	<0.22	<0.20	<0.23
Perfluorohexanoic acid (PFHxA)	_	μg/kg	<0.23	<0.22	<0.20	<0.23
Perfluoroheptanoic acid (PFHpA)	_	μg/kg	<0.23	<0.22	<0.20	<0.23
Perfluorononanoic acid (PFNA)	_	μg/kg	<0.23	<0.22	<0.20	<0.23
Perfluorobutanesulfonic acid (PFBS)	_	μg/kg	<0.23	<0.22	<0.20	<0.23
Perfluorodecanoic acid (PFDA)	_	μg/kg	<0.23	<0.22	<0.20	<0.23
Perfluoroundecanoic acid (PFUnA)	_	μg/kg	<0.23	<0.22	<0.20	<0.23
Perfluorododecanoic acid (PFDoA)	_	μg/kg	<0.23	<0.22	<0.20	<0.23
Perfluorotridecanoic acid (PFTrDA)	_	μg/kg	<0.23	<0.22	<0.20	<0.23
Perfluorotetradecanoic acid (PFTeA)	_	μg/kg	<0.23	<0.22	<0.20	<0.23
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	_	μg/kg	<0.23	<0.22	<0.20	<0.23
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	_	μg/kg	<0.23	<0.22	<0.20	<0.23
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	_	μg/kg	<0.23	<0.22	<0.20	<0.23
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	_	μg/kg	<0.23	<0.22	<0.20	<0.23
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	_	μg/kg	<0.23	<0.22	<0.20	<0.23
Hexafluoropropylene oxide dimer acid (HFPO-DA)	_	μg/kg	<0.23 J*	<0.22	<0.20	<0.23
Perfluorooctanesulfonic acid (PFOS)	3.0	μg/kg	<0.23	0.048 J	<0.20	<0.23
Perfluorooctanoic acid (PFOA)	1.7	μg/kg	<0.23	<0.22	<0.20	<0.23

Notes: Results reported from Eurofins TestAmerica work orders 320-77655, 320-78376, and 320-7891.

Sample 21AKN-MW-101 is a field-duplicate of sample 21AKN-MW-01.

Sample 21AKN-MW-105-15 is a field-duplicate of sample 21AKN-MW-05-15.

Regulatory limits from 18 AAC 75.341 Table B1 Method Two - Soil Cleanup Levels Table (Migration to Groundwater).

- No applicable regulatory limit exists for the associated analyte.
- Analyte was not detected; reported as <Reporting Limit (RL).</p>

- J Estimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.
- N* Analyte result is considered tentatively unidentified (non-detects)/identified (detects) due to analysis outside of hold time. Flag applied by Shannon & Wilson, Inc.
- J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)
- JH* Estimated concentration, biased high, due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)
 - bgs = below ground surface; DUP = field-duplicate; µg/kg= micrograms per kilogram; PFAS = per- and polyfluoroalkyl substances

Table 2B - August 2021 Soil Borings Fuel Results

		S	ample Name	21AKN-SB-01 (0'-1')	21AKN-SB-01 (6.5'-7.5')	21AKN-SB-101 (6.5'-7.5')	21AKN-SB-02 (0'-1')	21AKN-SB-02 (6'-7')	21AKN-SB-03 (0'-1')	21AKN-SB-03 (7.3'-7.8')
		Soil Boring Sa	ample Depth	0.0 - 1.0 feet bgs	6.5 - 7.5 feet bgs	6.5 - 7.5 feet bgs	0.0 - 1.0 feet bgs	6.0 - 7.0 feet bgs	0.0 - 1.0 feet bgs	7.3 - 7.8 feet bgs
Analytical Method	Analyte	Cleanup Level	Units			DUP				
AK101	Gasoline Range Organics	300	mg/kg	<4.84 B*	<4.55 B*	<4.44 B*	<3.58 B*	<5.75 B*	<4.44 B*	<4.34 B*
AK102	Diesel Range Organics	250	mg/kg	38.0	<11.7	<11.6	302	<11.9	210	9.05 J
AK103	Residual Range Organics	11,000	mg/kg	334	<58.5	<58.0	3,250	<60.0	1,900	118 J
	Benzene	0.022	mg/kg	<0.0121	<0.0114	<0.0111	<0.00895	<0.0144	<0.0111	<0.0109
	Toluene	6.7	mg/kg	<0.0242	<0.0227	<0.0222	<0.0179	<0.0288	<0.0222	<0.0217
SW8260D	Ethylbenzene	0.13	mg/kg	<0.0242	<0.0227	<0.0222	<0.0179	<0.0288	<0.0222	<0.0217
(BTEX)	m,p-xylenes	1.5	mg/kg	<0.0483	<0.0455	<0.0444	<0.0357	<0.0575	<0.0445	<0.0434
	o-Xylene	1.5	mg/kg	<0.0242	<0.0227	<0.0222	<0.0179	<0.0288	<0.0222	<0.0217
	Total Xylenes	1.5	mg/kg	<0.0725	<0.0680	<0.0665	<0.0535	<0.0865	<0.0665	<0.0650
	1-Methylnaphthalene	0.41	mg/kg	<0.0730	<0.0144	<0.0145	<0.134	<0.0150	<0.137	<0.0147
	2-Methylnaphthalene	1.3	mg/kg	<0.0730	<0.0144	<0.0145	<0.134	<0.0150	<0.137	<0.0147
	Acenaphthene	37	mg/kg	<0.0730	<0.0144	<0.0145	<0.134	<0.0150	<0.137	<0.0147
	Acenaphthylene	18	mg/kg	<0.0730	<0.0144	<0.0145	<0.134	<0.0150	<0.137	<0.0147
- - -	Anthracene	390	mg/kg	<0.0730	<0.0144	<0.0145	0.159 J	<0.0150	<0.137	<0.0147
	Benzo(a)anthracene	0.7	mg/kg	<0.0730	<0.0144	<0.0145	0.323	<0.0150	<0.137	<0.0147
	Benzo(a)pyrene	1.9	mg/kg	<0.0730	<0.0144	<0.0145	0.359	<0.0150	<0.137	<0.0147
	Benzo(b)fluoranthene	15†	mg/kg	<0.0730	<0.0144	<0.0145	0.493	<0.0150	<0.137	<0.0147
SW8270D-SIM	Benzo(g,h,i)perylene	2,300†	mg/kg	<0.0730	<0.0144	<0.0145	0.317	<0.0150	<0.137	<0.0147
(PAH)	Benzo(k)fluoranthene	150†	mg/kg	<0.0730	<0.0144	<0.0145	0.130 J	<0.0150	<0.137	<0.0147
	Chrysene	600	mg/kg	<0.0730	<0.0144	<0.0145	0.499	<0.0150	<0.137	<0.0147
	Dibenzo(a,h)anthracene	1.5†	mg/kg	<0.0730	<0.0144	<0.0145	<0.134	<0.0150	<0.137	<0.0147
	Fluoranthene	590	mg/kg	<0.0730	<0.0144	<0.0145	0.898	<0.0150	<0.137	<0.0147
	Fluorene	36	mg/kg	<0.0730	<0.0144	<0.0145	<0.134	<0.0150	<0.137	<0.0147
Dibe Fluc Fluc	Indeno(1,2,3-cd)pyrene	15†	mg/kg	<0.0730	<0.0144	<0.0145	0.215 J	<0.0150	<0.137	<0.0147
	Naphthalene	0.038	mg/kg	<0.0585	<0.0116	<0.0116	<0.107	<0.0121	<0.110	<0.0117
	Phenanthrene	39	mg/kg	<0.0730	<0.0144	<0.0145	0.600	<0.0150	<0.137	<0.0147
	Pyrene	87	mg/kg	<0.0730	<0.0144	<0.0145	0.709	<0.0150	<0.137	<0.0147

Table 2B - August 2021 Soil Borings Fuel Results

Notes: Results reported from SGS North America, Inc. work order 1215191.

Sample 21AKN-MW-101 is a field-duplicate of sample 21AKN-MW-01.

Regulatory limits from 18 AAC 75.341 Table B2 Method Two - Petroleum Hydrocarbon Soil Cleanup Levels - Under 40-Inch Zone or Table B1 Method Two - Soil Cleanup Levels Table. The most stringent between Human Health and Migration to Groundwater cleanup level reported unless otherwise identified.

† 18 AAC 75 Table B1 Human Health cleanup level reported.

Analyte not detected; listed as less than the limit of detection (LOD) unless otherwise flagged due to quality-control failures.

<Bold The laboratory's limit of detection (LOD) is greater than the regulatory limit.

BOLD Detected concentration exceeds the

J Estimated concentration, detected greater than the detection limit (DL) and less than the limit of quantitation (LOQ). Flag applied by the laboratory.

B* Result is included in the same batch as a blank detection for the associated analyte. Flag applied by Shannon & Wilson, Inc. (*)

BTEX = benzene, toluene, ethylbenzene, and xylenes; bgs = below ground surface; mg/kg = milligrams per kilogram; PAH = polynuclear aromatic hydrocarbon

Table 3 - August 2021 Surface Water PFAS Results

	Sample Name		21AKN-SW-01	21AKN-SW-101	21AKN-SW-02	21AKN-SW-03	21AKN-SW-04	21AKN-SW-05	21AKN-SW-105	21AKN-SW-06
Analyte	Cleanup Level	Units		DUP					DUP	
Perfluorohexanesulfonic acid (PFHxS)	_	ng/L	<1.9	<2.0	200	130	1,600	60	58	50
Perfluorohexanoic acid (PFHxA)	_	ng/L	3.5	3.4	48	19	600	11	13	9.6
Perfluoroheptanoic acid (PFHpA)	_	ng/L	1.8 J	2.0	19	9.8	120	5.0	4.6	4.4
Perfluorononanoic acid (PFNA)	_	ng/L	1.5 J	1.7 J	5.2	2.1	14	0.94 J	1.0 J	0.87 J
Perfluorobutanesulfonic acid (PFBS)	_	ng/L	<1.9	<2.0	8.2	5.7	54	3.0	3.2	2.4
Perfluorodecanoic acid (PFDA)	_	ng/L	<1.9	<2.0	<1.9	<1.9	1.7 J	<1.9	<1.9	<1.9
Perfluoroundecanoic acid (PFUnA)	_	ng/L	<1.9	<2.0	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9
Perfluorododecanoic acid (PFDoA)	_	ng/L	<1.9	<2.0	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9
Perfluorotridecanoic acid (PFTrDA)	_	ng/L	<1.9	<2.0	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9
Perfluorotetradecanoic acid (PFTeA)	_	ng/L	<1.9	<2.0	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	_	ng/L	<4.8	<4.9	<4.7	<4.8	<4.8	<4.7	<4.8	<4.8
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	_	ng/L	<4.8	<4.9	<4.7	<4.8	<4.8	<4.7	<4.8	<4.8
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	_	ng/L	<1.9	<2.0	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	_	ng/L	<1.9	<2.0	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	_	ng/L	<1.9	<2.0	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9
Hexafluoropropylene oxide dimer acid (HFPO-DA)	_	ng/L	<3.9	<3.9	<3.8	<3.8	<3.9	<3.7	<3.8	<3.9
Perfluorooctanesulfonic acid (PFOS)	400	ng/L	<2.0	1.0 J	1,900	230	4,100	110	130	110
Perfluorooctanoic acid (PFOA)	400	ng/L	<1.9	<2.0	64	26	1,500	30	32	31

Notes: Results reported from Eurofins TestAmerica work order 320-77653-1 and 320-78371-1.

Sample 21AKN-SW-101 is a field-duplicate of sample 21AKN-SW-01.

Sample 21AKN-SW-105 is a field-duplicate of sample 21AKN-SW-05.

Sample 21AKN-SW-107 is a field-duplicate of sample 21AKN-SW-07.

Groundwater-Cleanup Levels from 18 AAC 75.345, Table C.

No applicable regulatory limit exists for the associated analyte.

Analyte was not detected; reported as <Reporting Limit (RL).</p>

BOLD Detected concentration exceeds regulatory limit.

J Estimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.

J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)

DUP = field-duplicate; ng/L = nanograms per liter; PFAS = per- and polyfluoroalkyl substances

Table 3 - August 2021 Surface Water PFAS Results

	Sa	ımple Name	21AKN-SW-07	21AKN-SW-107	21AKN-SW-08	21AKN-SW-09
Analyte	Cleanup Level	Units		DUP		
Perfluorohexanesulfonic acid (PFHxS)		ng/L	320	290	330 J*	460
Perfluorohexanoic acid (PFHxA)	_	ng/L	84	78	74 J*	55
Perfluoroheptanoic acid (PFHpA)	_	ng/L	39	39	34 J*	24
Perfluorononanoic acid (PFNA)	_	ng/L	8.0	8.4	7.5 J*	9.5
Perfluorobutanesulfonic acid (PFBS)	_	ng/L	10	11	11 J*	14
Perfluorodecanoic acid (PFDA)	_	ng/L	<1.9	<1.9	<1.9 J*	<1.9
Perfluoroundecanoic acid (PFUnA)	_	ng/L	6.7	5.2	<1.9 J*	<1.9
Perfluorododecanoic acid (PFDoA)	_	ng/L	<1.9	0.60 J	<1.9 J*	<1.9
Perfluorotridecanoic acid (PFTrDA)	_	ng/L	1.8 J*	2.8 J*	<1.9 J*	<1.9
Perfluorotetradecanoic acid (PFTeA)	_	ng/L	<1.9	<1.9	<1.9 J*	<1.9
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	_	ng/L	<4.8 J*	<4.8	<4.7 J*	<4.6
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	_	ng/L	<4.8	<4.8	<4.7 J*	<4.6
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	_	ng/L	<1.9	<1.9	<1.9 J*	<1.9
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	_	ng/L	<1.9	<1.9	<1.9 J*	<1.9
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	_	ng/L	<1.9	<1.9	<1.9 J*	<1.9
Hexafluoropropylene oxide dimer acid (HFPO-DA)	_	ng/L	<3.8	<3.9	<3.8 J*	<3.7
Perfluorooctanesulfonic acid (PFOS)	400	ng/L	2,400	2,200	3,200	1,500
Perfluorooctanoic acid (PFOA)	400	ng/L	170	180	130 J*	120

Notes:

Results reported from Eurofins TestAmerica work order 320-77653-1 and 320-78371-1.

Sample 21AKN-SW-101 is a field-duplicate of sample 21AKN-SW-01.

Sample 21AKN-SW-105 is a field-duplicate of sample 21AKN-SW-05.

Sample 21AKN-SW-107 is a field-duplicate of sample 21AKN-SW-07.

Groundwater-Cleanup Levels from 18 AAC 75.345, Table C.

No applicable regulatory limit exists for the associated analyte.

Analyte was not detected; reported as <Reporting Limit (RL).</p>

BOLD Detected concentration exceeds regulatory limit.

J Estimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.

J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)

DUP = field-duplicate; ng/L = nanograms per liter; PFAS = per- and polyfluoroalkyl substances

Table 4A - August 2021 Monitoring Well PFAS Results

		Sample Name	21AKN-MW-01	21AKN-MW-01	21AKN-MW-02	21AKN-MW-03	21AKN-MW-04-45	21AKN-MW-04-85	21AKN-MW-04-85F
	Monitoring Well Sc	reened Depth	4 - 14 feet bgs	40-45 feet bgs	80-85 feet bgs	80-85 feet bgs			
Analytes	Cleanup Level	Units		DUP					Filtered
Perfluorohexanesulfonic acid (PFHxS)	_	ng/L	370	380	200	2100	140	<1.8 B*	<1.8 B*
Perfluorohexanoic acid (PFHxA)	_	ng/L	63	70	7.7	1300	110	0.65 J	0.68 J
Perfluoroheptanoic acid (PFHpA)	_	ng/L	29	34	<1.9 B*	190	25	<1.8	<1.8
Perfluorononanoic acid (PFNA)	_	ng/L	<1.9 B*	<1.9 B*	<1.9 B*	270	<1.8	<1.8	<1.8
Perfluorobutanesulfonic acid (PFBS)	_	ng/L	18	18	7.3	390	45 J*	<1.8	<1.8
Perfluorodecanoic acid (PFDA)	_	ng/L	<1.9	<1.9	<1.9	<1.9 B*	<1.8	<1.8	<1.8
Perfluoroundecanoic acid (PFUnA)	_	ng/L	<1.9	<1.9	<1.9	2.3	<1.8	<1.8	<1.8
Perfluorododecanoic acid (PFDoA)	_	ng/L	<1.9	<1.9	<1.9	<1.9	<1.8	<1.8	<1.8
Perfluorotridecanoic acid (PFTrDA)	_	ng/L	<1.9	<1.9	<1.9	<1.9	<1.8	<1.8	<1.8
Perfluorotetradecanoic acid (PFTeA)	_	ng/L	<1.9	<1.9	<1.9	<1.9	<1.8	<1.8	<1.8
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	_	ng/L	<4.8	<4.6	<4.7	<4.7	<4.5	<4.6	<4.6
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	_	ng/L	<4.8	<4.6	<4.7	<4.7	<4.5	<4.6	<4.6
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	_	ng/L	<1.9	<1.9	<1.9	<1.9	<1.8	<1.8	<1.8
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUd	S) —	ng/L	<1.9	<1.9	<1.9	<1.9	<1.8	<1.8	<1.8
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	_	ng/L	<1.9	<1.9	<1.9	<1.9	<1.8	<1.8	<1.8
Hexafluoropropylene oxide dimer acid (HFPO-DA)	_	ng/L	<3.8	<3.7 J*	<3.7 J*	<3.8	<3.6 J*	<3.6	<3.7
Perfluorooctanesulfonic acid (PFOS)	400	ng/L	360	360	56	800	11	<1.8 B*	<1.8
Perfluorooctanoic acid (PFOA)	400	ng/L	170	180	35	250	140	<1.8 B*	<1.8 B*

Notes: Results reported from Eurofins TestAmerica work order 320-78371-1 and 320-78378-1.

Sample 21AKN-MW-101 is a field-duplicate of sample 21AKN-MW-01.

Sample 21AKN-MW-105-15 is a field-duplicate of sample 21AKN-MW-05-15.

Groundwater-Cleanup Levels from 18 AAC 75.345, Table C.

- No applicable regulatory limit exists for the associated analyte.
- Analyte was not detected; reported as <Reporting Limit (RL).

- J Estimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.
- B* Result is included in the same preparatory batch as a blank detection for the associated analyte. Flag applied by Shannon & Wilson, Inc. (*)
- J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)
- JH* Estimated concentration, biased high, due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*) bgs = below ground surface; DUP = field-duplicate; ng/L = nanograms per liter; PFAS = per- and polyfluoroalkyl substances

Table 4A - August 2021 Monitoring Well PFAS Results

		Sample Name	21AKN-MW-05-15	21AKN-MW-105-15	21AKN-MW-05-85	21AKN-MW-05-85F
	Monitoring Well So	reened Depth	10-15 feet bgs	10-15 feet bgs	80-85 feet bgs	80-85 feet bgs
Analytes	Cleanup Level	Units		DUP		Filtered
Perfluorohexanesulfonic acid (PFHxS)	_	ng/L	49	46	5.0 JH*	32
Perfluorohexanoic acid (PFHxA)	_	ng/L	45	48	23	37
Perfluoroheptanoic acid (PFHpA)	_	ng/L	8.4	8.8	3.4	6.6
Perfluorononanoic acid (PFNA)	_	ng/L	<3.2 B*	<3.7 B*	<1.9	<1.8
Perfluorobutanesulfonic acid (PFBS)	_	ng/L	33	32	8.4	16
Perfluorodecanoic acid (PFDA)	_	ng/L	<1.9	<1.8	<1.9	<1.8
Perfluoroundecanoic acid (PFUnA)	_	ng/L	<1.9	<1.8	<1.9	<1.8
Perfluorododecanoic acid (PFDoA)	_	ng/L	<1.9	<1.8	<1.9	<1.8
Perfluorotridecanoic acid (PFTrDA)	_	ng/L	<1.9	<1.8	<1.9	<1.8
Perfluorotetradecanoic acid (PFTeA)	_	ng/L	<1.9	<1.8	<1.9	<1.8
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	_	ng/L	<4.6	1.3 J	<4.8	<4.6
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	_	ng/L	<4.6	<4.6	<4.8	<4.6
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	_	ng/L	<1.9	<1.8	<1.9	<1.8
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS	S) —	ng/L	<1.9	<1.8	<1.9	<1.8
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	_	ng/L	<1.9	<1.8	<1.9	<1.8
Hexafluoropropylene oxide dimer acid (HFPO-DA)	_	ng/L	<3.7	<3.7	<3.8	<3.7
Perfluorooctanesulfonic acid (PFOS)	400	ng/L	10	10	<1.9 B*	<2.6 B*
Perfluorooctanoic acid (PFOA)	400	ng/L	26	27	12	35

Notes: Results reported from Eurofins TestAmerica work order 320-78371-1 and 320-78378-1.

Sample 21AKN-MW-101 is a field-duplicate of sample 21AKN-MW-01.

Sample 21AKN-MW-105-15 is a field-duplicate of sample 21AKN-MW-05-15.

Groundwater-Cleanup Levels from 18 AAC 75.345, Table C.

- No applicable regulatory limit exists for the associated analyte.
- Analyte was not detected; reported as <Reporting Limit (RL).</p>

- J Estimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.
- B* Result is included in the same preparatory batch as a blank detection for the associated analyte. Flag applied by Shannon & Wilson, Inc. (*)
- J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)
- JH* Estimated concentration, biased high, due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*) bgs = below ground surface; DUP = field-duplicate; ng/L = nanograms per liter; PFAS = per- and polyfluoroalkyl substances

Table 4B - August 2021 Monitoring Well Fuel Results

Method AK101 AK102 AK103 SW8260D (BTEX)		Sa	mple Name	21AKN-MW-01	21AKN-MW-101	21AKN-MW-02	21AKN-MW-03
		Monitoring Well Scre	ened Depth	4 - 14 feet bgs			
	Analyte	Cleanup Level	Units		DUP		
AK101	Gasoline Range Organics	2.2	mg/L	<0.0500	<0.0500	<0.0500	<0.0500
AK102	Diesel Range Organics	1.5	mg/L	0.198 J	<0.294	<0.300	<0.300
AK103	Residual Range Organics	1.1	mg/L	<0.236	<0.245	<0.250	0.381 J
	Benzene	4.6	μg/L	<0.200	<0.200	0.270 J	<0.200
-	Toluene	1,100	μg/L	<0.500	<0.500	<0.500	<0.500
SW8260D	Ethylbenzene	15	μg/L	<0.500	<0.500	<0.500	<0.500
(BTEX)	m,p-xylenes	400	μg/L	<1.00	<1.00	<1.00	<1.00
-	o-Xylene	190	μg/L	<0.500	<0.500	<0.500	<0.500
	Total Xylenes	190	μg/L	<1.50	<1.50	<1.50	<1.50
	1-Methylnaphthalene	11	μg/L	<0.0240	0.0250 J	<0.0245	<0.0240
AK101 (AK102 EAK103 FAK103 FAK	2-Methylnaphthalene	36	μg/L	<0.0240 J*	<0.0510 B*	<0.0490 B*	<0.0240 J*
	Acenaphthene	530	μg/L	<0.0240 J*	<0.0255 J*	<0.0245 J*	<0.0240 J*
	Acenaphthylene	260	μg/L	<0.0240 J*	<0.0255 J*	<0.0245 J*	<0.0240 J*
-	Anthracene	43	μg/L	<0.0240 J*	<0.0255 J*	<0.0245 J*	<0.0240 J*
-	Benzo(a)anthracene	0.30	μg/L	<0.0240	<0.0255	<0.0245	<0.0240
-	Benzo(a)pyrene	0.25	μg/L	<0.00960	<0.0102	<0.00980	<0.00960
-	Benzo(b)fluoranthene	2.5	μg/L	<0.0240	<0.0255	<0.0245	<0.0240
	Benzo(g,h,i)perylene	0.26	μg/L	<0.0240	<0.0255	<0.0245	<0.0240
(PAHs)	Benzo(k)fluoranthene	0.8	μg/L	<0.0240	<0.0255	<0.0245	<0.0240
-	Chrysene	2.0	μg/L	<0.0240	<0.0255	<0.0245	<0.0240
-	Dibenzo(a,h)anthracene	0.25	μg/L	<0.00960	<0.0102	<0.00980	<0.00960
=	Fluoranthene	260	μg/L	<0.0240	<0.0255	0.0255 J	<0.0240
-	Fluorene	290	μg/L	<0.0240 J*	<0.0255 J*	<0.0245 J*	<0.0240 J*
-	Indeno(1,2,3-cd)pyrene	0.19	μg/L	<0.0240	<0.0255	<0.0245	<0.0240
_	Naphthalene	1.7	μg/L	<0.0481 J*	<0.0510 J*	<0.0490 J*	<0.0481 J*
=	Phenanthrene	170	μg/L	<0.0481 B*	<0.0510 B*	<0.0490 B*	<0.0481 B*
-	Pyrene	120	μg/L	<0.0240	<0.0255	0.0189 J	<0.0240

Notes:

Results reported from SGS North America, Inc work order 1215513.

Sample 21AKN-MW-101 is a field-duplicate of sample 21AKN-MW-01.

Groundwater-Cleanup Levels from 18 AAC 75.345, Table C.

- < Analyte not detected; listed as less than the limit of detection (LOD) unless otherwise flagged due to quality-control failures.
- J Estimated concentration, detected greater than the detection limit (DL) and less than the limit of quantitation (LOQ). Flag applied by the laboratory.
- B* Result is included in the same batch as a blank detection for the associated analyte. Flag applied by Shannon & Wilson, Inc. (*)
- ${\sf J^{\star}} \quad \text{Estimated concentration due to quality control failures. Flag applied by Shannon \& Wilson, Inc. ({}^{\star}{})$

 $BTEX = benzene, \ toluene, \ ethylbenzene, \ and \ xylenes; \ bgs = below \ ground \ surface; \ \mu g/L = micrograms \ per \ liter; \ mg/L = milligrams \ per \ liter; \ PAH = polynuclear \ aromatic \ hydrocarbon$

Table 5 - August 2021 IDW PFAS Results

	S	ample Name	21AKN-Drum-01	21AKN-Drum-101	21AKN-Drum-02	21AKN-Drum-03	21AKN-Drum-04	21AKN-Drum-06	21AKN-Drum-07	21AKN-Drum-08	21AKN-Drum-10
Analyte	Cleanup Level	Units		DUP							
Perfluorohexanesulfonic acid (PFHxS)	_	ng/L	<1.9	<1.8	<1.8	<1.9	<1.8	<1.9	<1.8	<1.8	<1.8
Perfluorohexanoic acid (PFHxA)	_	ng/L	<1.9	<1.8	<1.8	<1.9	<1.8	<1.9	<1.8	<1.8	<1.8
Perfluoroheptanoic acid (PFHpA)	_	ng/L	<1.9	<1.8	<1.8	<1.9	<1.8	<1.9	<1.8	<1.8	<1.8
Perfluorononanoic acid (PFNA)	_	ng/L	<1.9	<1.8	<1.8	<1.9	<1.8	<1.9	<1.8	<1.8	<1.8
Perfluorobutanesulfonic acid (PFBS)	_	ng/L	<1.9	<1.8	<1.8	<1.9	<1.8	<1.9	<1.8	<1.8	<1.8
Perfluorodecanoic acid (PFDA)	_	ng/L	<1.9	<1.8	<1.8	<1.9	<1.8	<1.9	<1.8	<1.8	<1.8
Perfluoroundecanoic acid (PFUnA)	_	ng/L	<1.9	<1.8	<1.8	<1.9	<1.8	<1.9	<1.8	<1.8	<1.8
Perfluorododecanoic acid (PFDoA)	_	ng/L	<1.9	<1.8	<1.8	<1.9	<1.8	<1.9	<1.8	<1.8	<1.8
Perfluorotridecanoic acid (PFTrDA)	_	ng/L	<1.9	<1.8	<1.8	<1.9	<1.8	<1.9	<1.8	<1.8	<1.8
Perfluorotetradecanoic acid (PFTeA)	_	ng/L	<1.9	<1.8	<1.8	<1.9	<1.8	<1.9	<1.8	<1.8	<1.8 J*
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	_	ng/L	<4.7	<4.5	<4.6	<4.7	<4.5	<4.7	<4.6	<4.6	<4.5
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	_	ng/L	<4.7	<4.5	<4.6	<4.7	<4.5	<4.7	<4.6	<4.6	<4.5
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	_	ng/L	<1.9	<1.8	<1.8	<1.9	<1.8	<1.9	<1.8	<1.8	<1.8
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	_	ng/L	<1.9	<1.8	<1.8	<1.9	<1.8	<1.9	<1.8	<1.8	<1.8
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	_	ng/L	<1.9	<1.8	<1.8	<1.9	<1.8	<1.9	<1.8	<1.8	<1.8
Hexafluoropropylene oxide dimer acid (HFPO-DA)	_	ng/L	<3.7	<3.6	<3.6	<3.7	<3.6	<3.7	<3.6	<3.7	<3.6
Perfluorooctanesulfonic acid (PFOS)	400	ng/L	<1.9	<1.8	1.3 J	<1.9	<1.8	<1.9	<1.8	<1.8	<1.8
Perfluorooctanoic acid (PFOA)	400	ng/L	<1.9	<1.8	<1.8	<1.9	<1.8	<1.9	<1.8	<1.8	<1.8

Notes: Results reported from Eurofins TestAmerica work order 320-78371-1.

Sample 21AKN-DRUM-101 is a field-duplicate of sample 21AKN-DRUM-01.

Groundwater-Cleanup Levels from 18 AAC 75.345, Table C.

No applicable regulatory limit exists for the associated analyte.

< Analyte was not detected; reported as <Reporting Limit (RL).

J Estimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.

J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)

DUP = field-duplicate; ng/L = nanograms per liter; PFAS = per- and polyfluoroalkyl substances

- PFAS Analyte(s) Do Not Exceed DEC Cleanup Level
- PFAS Analyte(s) Exceed DEC Cleanup Level

DOT&PF Statewide PFAS Site Characterization Report King Salmon, Alaska

SURFACE SOIL PFAS SAMPLE RESULTS

March 2022

102582-011

SHANNON & WILSON, INC. geotechnical and environmental consultants

PFAS Analyte(s) Do Not Exceed DEC Cleanup Level

PFAS Analyte(s) Exceed DEC Cleanup Levels

DOT&PF Statewide PFAS Site Characterization Report King Salmon, Alaska

SOIL BORING **PFAS SAMPLE RESULTS**

March 2022

102582-011

- PFAS Analyte(s) Do Not Exceed DEC Cleanup Level
- PFAS Analyte(s) Exceed DEC Cleanup Level

Creeks and Rivers

DOT&PF Statewide PFAS Site Characterization Report King Salmon, Alaska

SURFACE WATER PFAS SAMPLE RESULTS

March 2022

102582-011

- PFAS Analyte(s) Do Not Exceed DEC Cleanup Level
- PFAS Analyte(s) Exceed DEC Cleanup Level

DOT&PF Statewide PFAS Site Characterization Report King Salmon, Alaska

MONITORING WELL PFAS SAMPLE RESULTS

March 2022

102582-011

SHANNON & WILSON, INC.

Appendix A Boring Logs

				LOG OF BO	RING	;							
Date	e Starte	d 8/14/21	Location Fi	re Training Area A		G	rounc	l Ele	evatio	n:	NA		
Date	e Compl	leted 8/14/21				T	ypical	Ru	n Len	gth	5 feet		
Tota	al Depth	(ft) 15.0	Drilling Co	mpany: GeoTek Alaska, Inc.		Н	ole Di	iam			4.5 inche	es	
Depth (ft)	Probe Run	and probing me	So ort text for a pro ethods. The stra boundaries betw	Il Description Des	als e	Depth, ft.	Symbol	PID, ppm	Well		Desci	Number, ription, Results	Depth (ft)
- - - - - -				Sand with Gravel (SM); moist. by Graded Sand (SP); moist.	1.	8		0	**************************************	2	1AKN-SB-01	(0'-1')	
-5 - - - - - - - - - - - - - - - - - -		Dark brown to	o grey, <i>Poorly</i>	Graded Sand (SP); wet.	7.	0		0.1	During Drilling I	2	1AKN-SB-01	(6.5'-7.5')	5—
770: VTY	5	Monitoring W		TOM OF BORING W-01 completed 8/14/21	15	5.0							15—
11/12/21 Log: VTY/JLD Rev:		Construction Flush-mount Top of casing 2-inch diame 10/20 gradati Screened inte Total depth o	monument g is 0.68 feet l ter PVC riser on silica sand erval: 4.56 to	pipe I pre-pack 14.35 feet bgs									20
.GPJ 21-20	may hav 2. Groundv conside	ve slid down in the to water level, if indicat red approximate.	ube prior to remited above, was o	be upper part of the run, the soil sample coval from the ground. Estimated during probing and should be							aracteriza		
	cT = co sample;		TR = thermal re sample; AR = al <u>LEGE</u> I	esistivity sample; EN = environmental cheological sample.		.00	G O	F	BOI	RIN	G 21A	KN-SB-(01
OBE W	-	astic Tube with Soi	•	☑ Ground Water Level ATD		ove	mber	20	21			102582-0)11
GEOPROBE_WELL		v ∪.			Sh	HAI otech	NNO nical an	N 8 d En	k WIL	SOI ntal Co	N, INC. nsultants	Figure	1

			LO	G OF BORIN	G						
Date	e Started	8/14/21	Location Fire Training Area B		G	rounc	l Ele	evation	ı: NA		
Date	e Compl	eted 8/14/21			Т	ypical	Ru	n Lenç	th 5 feet		
Tota	al Depth	(ft) 15.0	Drilling Company: GeoTek Alask	ra, Inc.	Н	lole Di	iame		4.5 inche	es	
Depth (ft)	Probe Run	and probing me approximate b	Soil Description In text for a proper understanding of the thods. The stratification lines indicated boundaries between soil types. Actual b if soil shifted inside sample tubes durin	subsurface materials below represent the oundaries may be	Depth, ft.	Symbol	PID, ppm	Well	Sample Desc and F	Number, ription, Results	Depth (ft)
- - -			Sand with Silt (SP-SM); fill with mille	-	1.5		_	**************************************	21AKN-SB-02	2(0'-1')	_
		Red-brown to	brown, Poorly Graded Sand (SP);	moist.			0.1				5—
 _ _ _ _ _ _ _ _		Dark brown to	brown, Poorly Graded Sand (SP);	wet.	7.0			During Drilling I	21AKN-SB-02	P(6'-7')	10—
7yp: VTY			BOTTOM OF BORING		15.0						15—
Log: VTV/JLD Rev:		Construction Flush-mount Top of casing 2-inch diamet 10/20 gradatic		/21							20
PJ 11/12/21											
102582-011.GPJ 21-20	may hav d. Groundv consider d. Refer to d. CT = col	re slid down in the tu vater level, if indicate red approximate. KEY for definitions a rrosion test sample;	NOTES Bry was low in the upper part of the run, the prior to removal from the ground. But above, was estimated during probing and explanation of symbols. TR = thermal resistivity sample; EN = entermal; AR = archeological sample. LEGEND	and should be	LO		ŀ	King S	Characteriza	ка)2
3 AEL	-	stic Tube - No Soi	Recovery Piezometer Scr	een and Sand Filter	Nove	mber	202	21		102582-0	11
GEOPROBE_WELL	— Run I		▼ Ground Water Le	<u> </u>	SHAI Geotech	NNO nnical an	N 8	WIL	SON, INC.	Figure	

				LOG OF BO	RING	3						
Date	Starte	d 8/14/21	Location F	re Training Area C		G	roun	d El	evation:	NA		
	Comp	8/14/21				Т	уріса	I Ru	ın Lengt	h 5 feet		
Tota	I Depth	(ft) 15.0	Drilling Co	mpany: GeoTek Alaska, Inc.		Н	lole D	iam		4.5 inche	es	
Depth (ft)	Probe Run	and probing me approximate	So ort text for a pro ethods. The str boundaries bet	il Description per understanding of the subsurface mate atification lines indicated below represent i ween soil types. Actual boundaries may be nside sample tubes during extraction.	the	Depth, ft.	Symbol	PID, ppm	Well Construction	Desc	Number, ription, Results	Depth (ft)
- - - - - - - - -		Red-brown to	o dark grey, S	ilt to Sandy Silt(ML); moist.				1.6	**************************************	21AKN-SB-03	(0'-1')	-
—5 - - -		Brown, Poorl	y Graded Sar	d (SP); moist.		.5		1.6				5—
		Brown, Poorl	y Graded Sar	d with Silt (SP-SM); wet.		.0			During Drilling	21AKN-SB-03	(7.3'-7.8')	
- 10		Dark brown, Brown to dar		oist. In Graded Sand (SP); wet.		.3 0.0						10-
- - - - -												- - - -
777 : d\(\frac{7}{15} \)	H		ВОТ	TOM OF BORING	1	5.0		<u>.</u>				15-
E				W-03 completed 8/14/21								-
Rev:		Construction Flush-mount										-
— 20 — — — — — — — — — — — — — — — — — — —		Top of casing 2-inch diame 10/20 gradati Screened into Total depth of	ter PVC riser ion silica san erval: 4.75 to	pipe d pre-pack 14.54 feet bgs								20-
11/12/21												 - -
17.GPJ			NOT				•		1			
.GPJ 21-20	may have Grounds consider	ve slid down in the t water level, if indica red approximate.	ube prior to rem ted above, was	ne upper part of the run, the soil sample oval from the ground. estimated during probing and should be						Characteriza		
	CT = co sample;	GE = geotechnical	TR = thermal r sample; AR = a <u>LEGE</u>	esistivity sample; EN = environmental rcheological sample. ND		-0	G C	F	BOR	ING 21A	KN-SB-0)3
3 B B	1	astic Tube - No So astic Tube with So	•	☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐		ove	mbei	r 20	21		102582-0)11
GEOPROBE WELL	– Run i	No.			S	HA	NNO nnical ar	N &	WILS	ON, INC. Consultants	Figure	3

									L	OG (OF BO	ORII	NG											
ı	Date	Started	8/16/21	L	Lo	cation	AC S	Store					(Gro	und	Ele	evatio	on:		NA				
ı	Date	Comple	eted 8/21/20										1	Турі	ical	Ru	n Lei	ngtl	h	5 feet				
ı	Total	Depth	(ft) 45.0	1	Dr	illing C	Comp	any: Geo	oTek A	laska, In	ıc.		ŀ	Hole	e Dia	ame	eter:			4.5 inc	ches			
	Depth (ft)	Probe Run	Refer to the ro and probing approxima	epo mei ate b	ort i ethi	text for a ods. Thundaries	Soil C a prope ne strat s betwe	Descrip per unders tification I reen soil ty	ption standing lines ind types. A	of the sul	bsurface m low represendaries ma	ent the	Depth, ft.	-	Symbol	PID, ppm	Well	Construction		Samp		umber, tion, sults		Depth (ft)
D Rev: Typ: VTY	- - - - - - - - - - - - - - - - - - -		Brown, Poorl Brown, Silt (I Dark brown, Brown, Silt (I Brown, Poorl Dark brown t	Pool (ML) Pool (ML)	Gra-); r	aded Samoist. My Grad moist. My Grad moist.	led Sa 4 ft bg and (Sa ded Sa	SP); moi	ist.	<i>p-SM)</i> ; m	oist; foar	n	- 7.4 - 8.5 - 11.0 - 13.5 - 15.0			<u>a</u>	During During C	× × × 0						5
SEOPROBE_WELL 102582-011.GPJ 21-20447.GPJ 11/12/21 Log: VTY/JLD	1.	may hav	cases where recov e slid down in the t	/ery tube	y wa	as low ir	OTES n the u emoval	ipper part I from the	ground.		•					A 1/2			Oh a					
3PJ 2			vater level, if indica ed approximate.	ted	d ab	ove, wa	as estir	mated dur	ring prob	bing and sl	hould be				/					racter n, Ala		on		
LL 102582-011.G	3. 4.	Refer to CT = cor sample;	KEY for definitions rrosion test sample GE = geotechnical	; TF I san	R =	therma le; AR = <u>LEG</u>	al resist = arche BEND	stivity sam eological s	sample.			- 1	LOG	- C)F							-SB-()4-	45
ËWE	3		stic Tube - No So stic Tube with So				Z			Screen a	and Sand I	Filter	Nove	emb	oer.	202	21					102582	2-01 ⁻	1
EOPROB		- – Run N				,	Ā	₋ Giou	a vvalt	J. LEVELA			SHA Geotec	NN chnica	ION al and	1 8	WI vironm	LS ental	ON Cons	, INC.	. T	Figur Sheet 1	e 5	

												LO	G O)FB	BOR	IN	G											
Ī	Date	Started	8/	/16/21	L	Lo	catio	on A	C Sto	ore							G	irour	nd E	leva	atio	n:	٨	IA				
ı	Date	Comple	eted	/21/20	1												Т	ypic	al R	un l	Len	gth	5	feet				
ı	Total	Depth		45.0	C	Dr	illinç	y Co	mpa	ny:	oo Tok	Alask	ka Inc				Н	lole l	Diar	nete	ər:			.5 inc				
ŀ				45.0									va, IIIC	••							5	5		.5 1110	LIIES	<u> </u>		T
	Depth (ft)	Probe Run	and p	to the rep probing m proximate differe	met e b	eth bou	ods. undari	or a p The s ries be	ropei stratifi etwee	r unde ficatior en soil	n lines i il types.	ing of th	ed belo al bound	w repre daries n	esent the nay be	9	Depth, ft.	Symbol		בולל לבו	Well	כסוופרות	;	De	scri	lumbe ption, esults		Depth (ft)
3,11/12/21 Log: VTY/JLD Rev: Typ: VTY			Gray, I	Well Gra Poorly G	ell De	ll 2	d Sar E 1AKI ails:	nd (S ∂and BOT	(SP)	wet.); wet	t.		3/22/21	1		3	25.0 36.0 37.4											30
EOPROBE_WELL 102582-011.GPJ 21-20447.GPJ 11/12/21	2.	may have Groundw considere	cases wher e slid down rater level, i ed approxin KEY for def	in the tub if indicate mate.	ube ed a	e p	as low rior to pove,	remo was e	ne upp oval f	rom thated d	he grou during p	ınd.							Al					acter				
WELL 102582-	3	sample; (rosion test : GE = geote stic Tube -	echnical sa	sam	amp	ole; AF <u>LE</u>	R = ar <u>=GE</u> 1	cheo	logica	al sampl	EN = en le. ter Scre			d Filter							N	G 2	21A	KN		3-04	
EOPROBE V			stic Tube v						Ā	Gro	ound W	/ater Le	evel AT[D			HA eotech					 _ S(ON,	INC.	.		582-0 jure eet 2 of 3	

ſ					LOG	OF BORIN	IG						
ſ	Date	Started	i 8/16/21	Location	AC Store		G	roun	d Ele	evation:	NA		
ſ	Date	Compl	eted 8/21/20				T	ypica	I Ru	n Length	5 feet		
	Total	Depth	(ft) 45.0	Drilling C	Company: GeoTek Alaska, I	nc.	Н	ole D	iame		4.5 inche	s	
	Depth (ft)	Probe Run	and probing i approximat	sport text for a methods. The boundaries	oil Description a proper understanding of the se stratification lines indicated be between soil types. Actual botted inside sample tubes during	ubsurface materials elow represent the undaries may be	Depth, ff.	Symbol	PID, ppm	Well Construction	Desci	Number, ription, Results	Depth (ft)
7.GPJ11/12/21 Log: VTY/JLD Rev: Typ: VTY	60 - 65 - 70 - 70 - 70 - 70 - 70 - 70 - 70 - 7		2-inch diamet 10/20 gradati Screened inte Total depth of	ter PVC rist on silica sa erval: 39.72 f well: 44.9	nd pre-pack to 44.50 feet bgs 1 feet bgs								55 —
102582-011.GPJ 21-20447.GPJ 11/12/21	2.	may hav Groundv consider Refer to	e slid down in the tu vater level, if indicated ed approximate. KEY for definitions	ube prior to re ed above, wa and explanat		should be					Characteriza Imon, Alask		
		sample; 2" Pla	GE = geotechnical s	sample; AR = <u>LEG</u> il Recovery	I resistivity sample; EN = enviror archeological sample. END Piezometer Screen	and Sand Filter					G 21AK	N-SB-04	
GEOPROBE_WELL		2" Pla – <i>Run N</i>	stic Tube with Soi <i>lo</i> .	I Recovery	☑ Ground Water Level A	- I	Nove				ON INC	102582-0	
GEOF							Geotech	nical ar	nd Env	vironmental	ON, INC. Consultants	Figure Sheet 3 of 3	ე 3

					LOG OF BORI	NG							
ı	Date	Started	8/16/21	Location AC Store		(Ground	l Ele	vatio	n:	NA		
ı	Date	Compl	eted 8/18/21			٦	Гуріса	Ru	n Len	gth	5 feet		
ı	Total	Depth	(ft) 95.0	Drilling Company:	eoTek Alaska, Inc.	ŀ	Hole Di	iame			4.5 inche	es	
	Depth (ft)	Probe Run	and probing met approximate b	Soil Desci t text for a proper unders thods. The stratification li oundaries between soil ty		Depth, ft.	Symbol	PID, ppm	Well	Construction	Descr	Number, ription, Results	Depth (ft)
Rev: Typ: VTY	- - - - - - - - - - - - - - - - - - -		Brown, Poorly Brown, Silt (M Dark brown, F Brown, Silt (M Brown, Poorly Dark brown to	Graded Sand (SP); m L); moist. Poorly Graded Sand (S	SP); moist. Sand (GP); wet. d Sand (SP); wet.	- 7.4 - 8.5 8.9 - 11.0 - 13.5 - 15.0		0 0	During Drilling 内の つって つって こうし	**************************************			10 —
EOPROBE_WELL 102582-011.GPJ 21-20447.GPJ 11/12/21 Log: VTY/JLD	20 	In some	cases where recove	CONTINUED NEXT PAGE NOTES Try was low in the upper page.	art of the run, the soil sample								20 —
21-2				be prior to removal from the above, was estimated of	he ground. during probing and should be			AKI	N Sit	e Ch	naracteriza	 ation	
.GPJ		consider	ed approximate.								non, Alask		
VELL 102582-011.	4.	CT = cor sample;	rrosion test sample;	ample; AR = archeologica <u>LEGEND</u>	ample; EN = environmental	LOG	OF					N-SB-04	-85
BE	Ť	2" Pla	stic Tube with Soil	Danassams	ound Water Level ATD	Nove	ember	202	21			102582-0	11
SEOPRO		– Run I	No.			SHA Geotec	NNO hnical an	N &	will vironme	_SO	N, INC.	Figure 6	4

								LOG OF	BORI	NG							
	Date	Starte	d 8/	/16/21	Location	n AC Sto	ore			(Ground	d Ele	vatio	n:	NA		
	Date	Comp	leted 8/	/18/21						1	Гуріса	l Rur	n Len	igth	5 feet		
	Total	Depth	(ft)	95.0	Drilling	Compar	ny: GeoTek /	Alaska, Inc.		ŀ	Hole D	iame	eter:		4.5 inche		
	Depth (ft)	Probe Run	and prob	the repor	rt text for a thods. The oundaries b	Soil De proper un stratificat between s	escription nderstanding of tion lines indication lines indications. Ac		oresent the s may be	Depth, ft.	Symbol	PID, ppm	Well	CONSTRUCTION	Sample Descr	Number, ription, Results	Depth (ft)
GPJ 11/12/21			Gray, F	Poorly G	aded Sand	and (SP); v	wet.			25.0 — 36.0 — 37.4				,			30
3PJ 21-20447.	2.	may hav	ve slid down	in the tub if indicate	ry was low i be prior to r	in the upp removal fr	rom the ground	run, the soil sar d. obing and shoul	Г						haracteriza non, Alask		
EOPROBE_WELL 102582-011.GPJ 21-20447.GPJ 11/12/2	4.	CT = co sample;	KEY for defi prrosion test s GE = geoted astic Tube -	sample; 1 chnical sa	TR = therma ample; AR <u>LEC</u>	nal resistivi = archeolo <u>GEND</u>	vity sample; EN logical sample.	N = environmen e. er Screen and				В	ORI			N-SB-04	
SEOPROBE_V	<u>†</u> □		astic Tube w				Ground Wa	ater Level ATD			MNO			_SO	N, INC.	102582-0 Figure Sheet 2 of	

							LOG O	F BORI	ING							
ı	Date	Starte	ed 8/16/21	Loc	ation	Store			(Groun	d Ele	vatio	n:	NA		
ı	Date	Comp	eleted 8/18/21							Туріса	l Rur	n Len	gth	5 feet		
ı	Total	Depth	h (ft)	Drill	ling Com	npany: Geo <i>T</i> e	k Alaska, Inc.		1	Hole D	iame	ter:		4.5 inche	 !S	
	Depth (ft)	Probe Run	Refer to the rep and probing m approximate	ort text : ethods. bounda	Soil for a prope The strat aries between	Description of the control of the co		ace materials epresent the es may be	Depth, ft.	Symbol	PID, ppm	Well	COIISITACIIOII	Sample Descr	Number, ription, Results	Depth (ft)
	- - - - - - - - - - - - - - - - - - -		Gray, Well G			,			50.5	ļ			,			55 —
Тур: VТУ	 _ _ _ 65 _ _ _ _ _		Gray, Sandy Gray, Sandy			Gravel (CL);	moist.		64.0		, , , , , , , , , , , , , , , , , , ,					65—
Log: VTY/JLD Rev:	 _ _ _ 70 _ _ _ _ _		Gray, Silty G			<i>I (GM)</i> ; wet.										70-
ı	- - -		Gray, Silty G			, ,,			73.2 74.2		-					- - -
EOPROBE_WELL 102582-011.GPJ 21-20447.GPJ 11/12/21	2.3.4.	may have Ground's consider Refer to CT = co	e cases where recovered side down in the state level, if indicated approximate. The objective of the control o	very was tube prior ted abor s and ex	NOTES s low in the or to remov ove, was es cplanation of thermal res	Se upper part of the val from the grostimated during of symbols.	und. probing and shou EN = environme	uld be			K	King (Salm	naracteriza non, Alask	ка	
E_WELL 103	3	2" Pla	astic Tube - No So	oil Reco	LEGENI overy	<u>D</u> ∷⊟∷ Piezome	eter Screen and	l Sand Filter		OF			NG	3 21AK	N-SB-04	
EOPROB		– Run			,	∑ Ground V	Vater Level ATD	ļ					_SO	N, INC.	Figure Sheet 3 of	

													LOC	G C)F I	BOR	RIN	IG											
Da	ate	Starte	ed	8/16/21		L	ocati	ion <i>A</i>	c s	tore								(Grou	und	Ele	vatio	n:	٨	IA				
Da	ate	Comp	oletec	I 8/18/21														ī	урі	cal	Rur	ı Ler	ngth	5	feet				
To	otal	Dept	h (ft)	95.0		D	rillin	g Co	mp	any:	Geo	Tek /	Alaska	a, Inc	c.			ŀ	lole	Dia	ame	ter:		4	.5 inc	hes			
Donth (#)	Depui (ii)	Probe Run	Re	efer to the repo and probing me approximate b different	ort ethi	te noc	xt for ds. Ti darie	So a pro the st	oil C oper ratific twee	Desi unde cation n soil	crip erstan n lines il type	otion nding o es indic es. Ac	1 of the s cated b ctual bo	subsui below oundai	rface i repres	sent the ay be	S	Depth, ft.		эушрог	PID, ppm	Well	Construction	,	Des	ole Nu script d Res		j	Depth (ft)
-			(Gray, <i>Poorly</i> (Gr	ra	ded :	Sand	l (SF	 ⊃), w	vet.							75.3	1		_								_
-			(Gray, <i>Sandy L</i>	Le	eai	n Cle	ay (C	<i>L)</i> ; r	mois	st.							77.2				*	×						- - -
- - - - -	80		C	Gray, <i>Sandy S</i>	Sil	ilt ı	vith	Grav	rel (l	VIL);	mois	st.						78.5											80-
F			~	Gray, <i>Poorly</i> 0													_	82.0 82.5	1	ж Щ									_
- - -				Gray, <i>Poorly</i> (Gr	ra	ded (Grav	rel w	ith S	Sand	(GP)); wet.						0000	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									
—{ - - - - - -	85		(Gray, <i>Silty Sa</i>	and	d ((SM)	; we	t to !	91.2	t ft bo	gs, m	noist b	pelow	' .			85.0				然然然然然然然							85—
7yp: VTY	90																												90
	95	Н	-					ВОТ	ТОІ	— М О	F BC	ORIN	ıG					95.0				(X)							95— —
Tog: VTY/JLD			N	Monitoring W	/ell	II 2	21Ak	(N-N	1W-(04-8	5 co	mple	ted 8/	/20/2 [,]	1														_ _ _
1/12/21				Construction Stickup monu																									_
GPJ 1					С	CO	NTINU	JED N NOT		PAGE	<u> </u>																		
-20447.0	1.	n som	e case	es where recove	ery ube	y w e p	as lo	w in t	he u	pper I from	part on the	of the	run, th	ne soil	sampl	е	_												
I.GPJ 21	(consid	ered a	level, if indicate								ing pro	obing a	and sh	ould b	е				,			_		acteri ı, Ala		nc		
EL 102582-011.GPJ 21-20447.GPJ 11/12/21	4. (CT = c sample	orrosio e; GE =	for definitions on test sample; geotechnical s	; TF sai	R:	therple; A	rmal i R = a .EGE	resist arche	tivity eologi	samp ical sa	ample	.				ı	.OG	i O	F	В	OR	IN	G 2	21A	KN	-SB	-04	-85
B 3				Tube - No Soi Tube with Soil				•	Z Z				er Scre ater Lev			nd Filter		Nove	emb	er	202	21					10258	32-01	11
GEOPROBE WELL		- Run	No.															SHA Geotec	NN hnica	ION al and	1 & I Envi	WII	LS(ON,	INC.		Figu Sheet	Ire 4 : 4 of 5	4

ſ					LOG OF BO	PRINC	,						
ſ	Date	Started	l 8/16/21	Location AC St	fore		G	roun	d Ele	evation:	NA		
	Date	Compl	eted 8/18/21				Ty	ypica	l Rui	n Length	ו 5 feet		
	Total	Depth	(ft) 95.0	Drilling Compa	nny: GeoTek Alaska, Inc.		Н	ole D	iame		4.5 inche	es	
	Depth (ft)	Probe Run	and probing me approximate b	Soil D rt text for a proper of thods. The stratific oundaries between	escription understanding of the subsurface mate ation lines indicated below represent soil types. Actual boundaries may be a sample tubes during extraction.	rials the e	Depth, ft.	Symbol	PID, ppm	Well Construction	Desci	Number, ription, Results	Depth (ft)
47.GPJ 11/12/21 Log: VTY/JLD Rev: Typ: VTY	- 105 - 105 115 115 120		2-inch diametr 10/20 gradatic Screened inte Total depth of	is 2.77 feet abover PVC riser pipe on silica sand pre rval: 79.16 to 83 well: 84.35 feet	e-pack .94 feet bgs bgs								110 —
102582-011.GPJ 21-20447.GPJ 11/12/21	2. 3. 4.	may hav Groundw consider Refer to CT = cor	e slid down in the tu vater level, if indicate ed approximate. KEY for definitions a rosion test sample;	be prior to removal ed above, was estined above, was estined and explanation of seconds.	nated during probing and should be symbols. Vity sample; EN = environmental				ŀ	King Sa	Characteriza Imon, Alask	a	
	3	2" Pla	GE = geotechnical s stic Tube - No Soil	LEGEND Recovery	_	ilter		OF			G 21AK	N-SB-04	
GEOPROBE_WELL		_ 2" Pla – <i>Run N</i>	stic Tube with Soil <i>lo.</i>	Recovery _∑	Ground Water Level ATD	-					ON, INC.	Figure Sheet 5 of	

			LOG OF I	BORING	3							
Date	Started	8/26/21	Location Charlie's Sport Shop		G	round	l Ele	evatio	n:	NA		
Date	Compl	eted 8/26/21			T	ypical	Ru	n Len	gth	5 feet		
Tota	al Depth	(ft) 15.0	Drilling Company: GeoTek Alaska, Inc.		Н	ole Di	ame			4.5 inche	s	
Depth (ft)	Probe Run	and probing n approximate	Soil Description port text for a proper understanding of the subsurface methods. The stratification lines indicated below repe boundaries between soil types. Actual boundaries ent if soil shifted inside sample tubes during extractions.	e materials resent the may be on.	Depth, ft.	Symbol	PID, ppm	Well		Descr	Number, iption, esults	Depth (ft)
- - - - - - - - - - - - -		wet below. Dark brown, F Dark brown, S	Peat (PT); moist. Silty Sand with Gravel (SM); wet. Silty Sand with Gravel (SW); wet.	3 4	.8			During Drilling IK	***************************************			- - - - - 5-
- - - - - - - 10 - - - - -												10 —
77V : QVT - - - - - - - - -	5	Monitoring We	BOTTOM OF BORING ell 21AKN-MW-05-15 completed 8/26/21	1	5.0							15—
1/12/21 Log: VTY/LLD Rev:		2-inch diamete 10/20 gradatio Screened inte										20
GPJ 21-20	may hav Groundv consider	re slid down in the tul vater level, if indicate red approximate.	NOTES ry was low in the upper part of the run, the soil sampl be prior to removal from the ground. d above, was estimated during probing and should b						_	racteriza n, Alask		I
	. CT = co sample;	rrosion test sample;	and explanation of symbols. TR = thermal resistivity sample; EN = environmental ample; AR = archeological sample. LEGEND Recovery This Piezometer Screen and Sai		oG	OF	В	ORI	NG	21AK	N-SB-05	-15
	-	stic Tube with Soil			ove	mber	202	21			102582-0	11
GEOPROBE WELL	Nunt	vo.		S Ge	HAI	NNOI nical and	N &	vironme	SON ntal Cons	, INC. sultants	Figure	7

			LOG OF B	ORING	i					
Date	Starte	d 8/23/21	Location Charlie's Sport Shop		Gro	ound I	Elevatio	n: <i>NA</i>		
Date	Compl	eted 8/27/21			Тур	oical F	Run Len	gth 5 feet		
Tota	l Depth	(ft) 85.0	Drilling Company: GeoTek Alaska, Inc.		Hol	le Dia	neter:	4.5 inch	es	
Depth (ft)	Probe Run	and probing me approximate b	Soil Description It text for a proper understanding of the subsurface mathods. The stratification lines indicated below represer oundaries between soil types. Actual boundaries may if soil shifted inside sample tubes during extraction.	eterials and the	Deptili, it.	Symbol	Well	Sample Desc and I	Number, ription, Results	Depth (ft)
- - - - - -	5	wet below.	Graded Sand with Silt (SP-SM); moist to 3.6 ft				3		5(3.1'-3.6')	- - - -
 5 		Dark brown, S	Peat (PT); moist. Silty Sand with Gravel (SM); wet. aded Sand with Gravel (SW); wet.	5.3			During Drilling	21AKN-SB-09	5(4.2'-4.7')	5—
- - 10 - - - - - -										10
Rev: 779: VTY		Gray, Silty Sa	nd (SM); wet.	15	0					15—
/12/21 Log: VTY/JLD		Gray, Silt (ML	ay (CL); moist.	22						
PJ 11			CONTINUED NEXT PAGE					⊠ I		
102582-011.GPJ 21-20	may hav Groundv consider Refer to CT = co sample;	ve slid down in the tu water level, if indicat- red approximate. KEY for definitions rrosion test sample; GE = geotechnical s	NOTES ry was low in the upper part of the run, the soil sample be prior to removal from the ground. ed above, was estimated during probing and should be and explanation of symbols. TR = thermal resistivity sample; EN = environmental ample; AR = archeological sample. LEGEND	LO	G		King	e Characteriz Salmon, Alasi NG 21AK	ка	5-83
3 ME	•	astic Tube - No Soi astic Tube with Soi	•		vem	ber 2	021		102582-0)11
GEOPROBE WELL	— Run I		- & Glodia Water Level ATD	SH Geo	IANI technic	NON cal and I	& WIL	SON, INC.	Figure Sheet 1 of	6

						LOG	OF BOR	ING	;							
Date	Date Started 8/23/21 Location Charlie's S				Sport Shop	G	round	d Ele	vatio	NA						
Date	Comp	leted 8/	27/21						Ty	ypica	l Rui	n Len	gth	5 feet		
Total	Depth		85.0	Drilling	Company:	GeoTek Alaska,	Inc		Н	ole D	iame	ter:		4.5 inch	26	
th (ft)	oe Run	and pro	the repor bing met	t text for a hods. The	Soil Desc proper unde stratification	cription rstanding of the sull lines indicated be	ubsurface materials elow represent the		Depth, ft.	log	PID, ppm	Well		Sample Desc	e Number, cription,	Depth (ft)
Depth	Probe					types. Actual bou nple tubes during o		_		Symbol	PID,	KA1 1	§	anu	Results	Dep
- - - -		Gray, S	Silt with	Sand (Mi	L); moist.			2	5.5							30-
-		Gray, F	oorly C	Graded S	and (SP); ผ	vet.			1.1							-
		Gray, S	Silt (ML)	; moist.				- 1	2.8 3.3							-
-35		Gray, F	² oorly G	Graded Sa	and (SP); w	et.										35-
-		Gray, L	ean Cla	a <i>y (CL)</i> ; r	noist.				5.4							
-	ı			nd (SM); v					5.3 7.8							-
-40 -40 -				iilt (ML); r		ft bgs, moist be	elow.	38	3.2			- XXI I				40
- -45 - -				ay (CL); r nd (SM); ı					7.4 3.2							45-
-		, ,		. (-),												-
					<u>D NEXT PAGE</u> IOTES							<u> </u>	X L			
				ry was low	in the upper	part of the run, the	soil sample									
2.	may have slid down in the tube prior to removal from the ground. 2. Groundwater level, if indicated above, was estimated during probing and should be considered approximate. 3. Refer to KEY for definitions and explanation of symbols.							AKN Site Characterization King Salmon, Alaska								
	sample		chnical s	ample; AR <u>LE</u>	= archeologic GEND	·	onmental en and Sand Filter	LC	G	OF	В	ORI	NG	21AK	(N-SB-05	5-83
	2" Pl	astic Tube v		-		Piezometer Scree Ground Water Leve		No	over	mber	202	21			102582-0	011
	Run No.							SHANNON & WILSON, INC. Geotechnical and Environmental Consultants Figure 6 Sheet 2 of 4								

				LC	G OF BORIN	IG										
Da	Date Started 8/23/21 Charlie's Sport Shop					Ground Elevation:										
Da	te Coı	nplet	ed 8/27/21						Typical Run Length 5 feet							
To	al De	pth (f	t) 85.0	Drilling Company: GeoTek Alaska, Inc.				ameter		4.5 inches						
Depth (ft)	ord odord	1000	and probing met approximate b	Soil Description t text for a proper understanding of th hods. The stratification lines indicate oundaries between soil types. Actual if soil shifted inside sample tubes dur	e subsurface materials d below represent the boundaries may be	Depth, ft.	Symbol	PID, ppm	Construction	Desci	Number, iption, lesults	Depth (ft)				
- - - - - - - - - - - - - - - - - - -	5	=		ay with Sand (CL); moist. Graded Sand (SP), wet.		57.8		××××××××××××××××××××××××××××××××××××××	1 KAI			55—				
77 <i>V</i> : <i>VTV</i>	-		Gray, Silty Sai	nd (SM); wet to 64.4 ft bgs, mois	t below.	62.8				21AKN-SB-05	(58'63')	60 —				
Log: VTY/JLD	0 3		Gray, Well Gra	nd with Gravel (SM); moist. Indeed Sand with Silt and Gravel (Second Sand with Silt and Gravel Second Sand with Silt and Gravel Continued Next Page	W); wet.	68.3 70.0 72.0				21AKN-SB-05	(70'-70.5')	70				
011.GPJ 21-20	may 2. Groucons 3. Refe 4. CT = sam 2"	have undward iderection of the correction of the	slid down in the tulter level, if indicated approximate. EY for definitions a sision test sample; E = geotechnical sic Tube - No Soil ic Tube with Soil	•	g and should be environmental creen and Sand Filter evel ATD	Nove	OF	King BOF 2021	Sa RIN	Characteriza	a)11				

LOG OF BORING															
Date	Date Started Location Charlie's Sport Shop						Ground Elevation: NA								
Date	Comp	lete	i 8/27/21			Т	Typical Run Length 5 feet								
Total	Total Depth (ft) 85.0 Drilling				Drilling Company: GeoTek Alaska, Inc.	ing Company: GeoTek Alaska, Inc.			iam	eter:	4.5 inche	4.5 inches			
Depth (ft)	Probe Run	R	and probing me approximate b	ort eth	Soil Description text for a proper understanding of the subsurface materials ods. The stratification lines indicated below represent the undaries between soil types. Actual boundaries may be soil shifted inside sample tubes during extraction.		Depth, ft.	Symbol	PID, ppm	Well Construction	Desc	Number, iption, esults	Depth (ft)		
- - - - - - 80 - -			Gray, <i>Poorly (</i> Gray, <i>Lean Cl</i>	Gr	ded Sand with Silt (SW); wet. raded Sand with Silt (SP); wet. y (CL); moist. raded Sand with Silt (SP); wet.		75.6 77.8 81.3 81.5			21AKN-SB-05(8)		80-			
		()	Monitoring Wo Construction I Flush-mount I Fop of casing 2-inch diamet 10/20 gradatic Screened inte	/ell De me	BOTTOM OF BORING I 21AKN-MW-05-83 completed 8/27/21 etails:		83.3 84.5				21AKN-SB-05	82.8'-83.3')	85 —		
1. 2. 3. 4.	may ha Ground conside Refer to CT = co sample	lwatered as o KEY orrosic; GE:	d down in the tu level, if indicate pproximate. for definitions a on test sample;	an ; Ti sai	Recovery Piezometer Screen and Sand Filter	١	Nove	mber	B 202	Cing Sa	Characteriza	N-SB-05	11		
						9	SHA Geotech	NNO nical ar	N 8	vironmental	ON, INC. Consultants	Figure Sheet 4 of	ნ 4		

Appendix B

Field Notes

CONTENTS

- Field Activities Daily Logs
- Soil Sample Collection Logs
- Surface Water Sample Logs
- Monitoring Well Construction Details
- Well Development Logs
- Monitoring Well Sampling Logs

Date 8/13/21
Sheet _/_ of /
Project No. <u>402582-01</u>
Project Name: AKN PFAS Characterization
Field activity subject: Arrival and preparation
Description of daily activities and events:
0400: VIY head to arrow t in FBX
0045: meet JLD @ amport in ANC
and get rental car
1130: drive to Anter Tim to check in
1230: meet with Floyd (airport manager to go over
plan and drive to drilling Coogtions
1500: Junable to trud drilling the fron @ Charlie's
sports shop, requested a more defailed map from
1800: meet drielers and discuss plan for following
day
1700: unpack and sort equipment and samples
prepare for following blay
1800: end of day
Visitors on site: 1/9
Changes from plans/specifications and other special orders and important decisions:
N(9
Later Market and Argent Court State of the Court St
Weather conditions: evercast dritteng accordionally 500
Important telephone calls: N/9
This portant telephone cans, $VC_{\ell} = V$
Personnel on site: VYY, JLD
Signature: Jai . Date: 8/13/21

	Sheet / of /
AVIL DOOS AL - 1	Project No. <u>102582-0//</u>
Project Name: AKN PFAS Characterization Field activity subject: Kee motalcation onsite	
Field activity subject: Kee motal Cation onsite Description of daily activities and events:	
0615 start of day prepare equipment	with dillers.
plan for day discussed with Dot: 547	ety meeting
0730 arrive @ difeter's staging area and drive	e over willing
to Red River Gate	0
0800 park direct 19 @ Lad fiver Gate directer	5 Cave to get
food and twee	
0845 back on site, drive over to fire Training,	Area B
0,900 dillers lave to pick up more age	ipment;
174 and DLA contrate PID	60/
1100 Balakh-MW-O2 complete	
1300 21AKN-MW-ON complete	Lon for not of do
1500 21 AKN-MW-03 complete, demols and f	can for next day
1013 ena of day	
Visitors on site: NG	
Changes from plans/specifications and other special orders and important decisions: 1.19	
NIG	
Weather conditions: Overcast, 50%	
Important telephone calls: ν/ς	
	477
Personnel on site:	Date: () 1 // 4/ 9 /
Signature:	Date: 8 1/9/21

Date 81.1512.1
Sheet / of /
Project Name: AKN PFAS Characterization Project No. 1033582-0.
Field activity subject: Surface soil and water collection
Description of daily activities and events:
0400: prepare for day calibrate 451
0730: Jack to Floyd Obout escort for the day
0830: meet floyd to Dot office, start driving
around runways to collect suffece wester
and soil samples
1350: back @ Sockeye Cabins to plan rest of
the day tall to Hickard and drietary
1520: go to Clearae's to look for discong Cocation
discuss moving it to widate of post yard
with Mike
1600: look for downstream look from of Red Fox Creat
1620: sample controll outside fence, but unable
to find current for Red Fox Creek I will
consult with Floyd tomorrow)
1400: drive to AC store to secut out drecong
Cochton, tack to store's manager and
1730: collect downstream sample of Estimo Creek
1810: Cotteet upstroum semple of bstrmo creek
sources for surpment
20001 paperwork and prep of ster equipment
Obt for development for Rike
2100: End of day
Q
Visitors on site: V/9
visitors on site.
Changes from plans/specifications and other special orders and important decisions:
V19
a last at a MK
Weather conditions: Overcast, 500r
Important telephone calls: W9
Important telephone calls:
Personnel on site:
Signature: Date: 8/15/21

Date <u>8/16/21</u> Sheet <u>1</u> of <u>1</u>
Project Name: AXN PFAS Characterization Field activity subject: Kw Installation
Field activity subject:
0700: prepare for day's work extiprate ISI, pack up ea
Red Fox Creek Floyd to collect samples form
0345: ship samples to Anchorage and Sacramento
1145: dritters ready with molatization to Ac store
1230: start drocking deep well a Ac store
1800: drill ends for day at 507th depty
1830: back a cabins Junpack and go over paper
Visitors on site: N19
Changes from plans/specifications and other special orders and important decisions:
Weather conditions: overeast + afternoon ram, 50%
Important telephone calls:
Personnel on site: VTY 5LD
Signature: Date: 8/16/21

Date <u>8/14/31</u>
Sheet 1 of 1
Project Name: AXN PFAS characterization Project No. 102582-011
Field activity subject:
0630 prepare for day, colibrate PID
0130 meet with drikers, sately meeting
0800 dretters move over 5 H. Vand dritte
shallow boring to 25 ft.
advance it to 80 ft. bas, Aquator B
ended @. 64.5 ft. Aqueatard & still @ 80 ft.
1800 beet a captus undack and store samples and
1800 beet to captus, unpack and store samples and
1830 end of day
0
Visitors on site: ne
Changes from plans/specifications and other special orders and important decisions:
mg
Weather conditions: Overeast, 500F
Important telephone calls:
Personnel on site: WY SLD
Signature: Date: 8/14/21

	Date <u>8/18/21</u>
	Sheet 1 of 1
Aril Acos Classicalina	oject No. 102582-01
Project Name: AKN PFAS Characterization Field activity subject: New being	
Description of daily activities and events:	
	ud 351
0730 meet drillers and have safety 1	neeting
	8-04 (leep);
A 1	nable to set 80-85# ba
	set 80-8571 by
sand and dry siets between it	70)
1530 JLD stays with drillers UTY ma	tes residentia
colls o	112-19 6 0-
	wells forgo Bla wished for
dow discuss ofan forward	MONEY 400
1730 My samples Eddie's Freplace Inn	
1815 VT9 back to copyrs unpack and	store
samples on cooler	- 3 24 11 - 1 1 1 1
1830 end of day	
<u> </u>	
 	
	
Visitors on site: γ/q	
Changes from plans/specifications and other special orders and important decisions:	
n/a	
Weather conditions: partly cloudy 60 F	
Important talanhana salla.	
Important telephone calls:	
Personnel on site: VYY, JLD	
Signature:	Date: 8/18/21
D	91
	VM

	Date <u>8//9/21</u> Sheet <u>1</u> of <u>1</u>
Project Name: AKN PFAS Characterization Field activity subject: Residential sampling	Project No. 102582-011
Description of daily activities and events: Office prepare coe and samples for ships of the sample of the sockere salvon 1000 sample a the sockere salvon 1000 sample a the futers Inn 1030 store samples; end of day	nert ental saugeong
Visitors on site: n/G	
Changes from plans/specifications and other special orders and important decisions:	
Weather conditions: Overcast, 56°F	
Important telephone calls:	
Personnel on site: Signature:	Date: 8/19/21
	194

Date # 8/2012 Sheet 1 of 1 Project No. 102582-01 AKN PFAS Characterization Project Name: Field activity subject: Description of daily activities and events: prepare for day cocobrate have escor 0900 have 1400 unable 1430 1500 Visitors on site: nia Changes from plans/specifications and other special orders and important decisions: nia Weather conditions: Important telephone calls: 119 VTY JLD Personnel on site: Signature: Date: 8120121

2535 JHG 3235

Date <u>B/24/24</u> Sheet <u>1</u> of <u>1</u>
Project No. 10.2582-011
Project Name: AKN PFAS characterization
Field activity subject: MW development
Description of daily activities and events: θ
0700: prepare for day
0730 meet with differs and give instructions to
0800: pack for development
0830: meet with olaf / DOT escort) a DOT office
1030: 21 AKN - KW-OD development complete
1200: 21 AKN- fw-01 development corruptate
1500: 21 AKN - HW -03 development cosuptete
1515: go by AC store to check on completed HWS
ast directors to fall with more concrete
around HWs due to the potential for water
1530: back to cabins, unpack and Anish
paperwork
1600: end of day
- V
· ·
Visitors on site: MA
Changes from plans/specifications and other special orders and important decisions:
n/a
Westlessed Bitter
Weather conditions: overcast with showers 50%
Important telephone calls: \(\nu/\cappa\)
important telephone cans.
Personnel on site: 1177 JLD
Signature: Date: 8/21/21
Jan Diagram

	Date 8/22/21
	Sheet 1 of 1
Project Name: AKN PFAS Characterization	Project No. 102582-011
Field activity subject: HW development	
Description of daily activities and events:	
0800: prepare for day of sampling	
0830: talk to DOT about escort	
0845; unable to And trop blank telt to	Mike about
	lifterent day
0900: start developing 214KN+HW-04-85	U
1330: start developing 21AKN-HW-04-45	31
1530: development of UAC store wells comp	lete;
1600: end of day	K
1600: end of day	
V	
·	
TWO MANAGEMENT AND THE PARTY OF	
Visitors on site: n/a	
Changes from plans/specifications and other special orders and important decisions:	
10.1 -	
7116	
Weather conditions: gvercast, 50°F	
Important telephone calls: n/G	
Personnel on site: VTY, JLD	
Signature:	Date: 8/22/21

VM

	Date 8/23/21
	Sheet 1 of 1
Pr	roject No. 102582-01
Project Name: ACN PFAS characterization	
Field activity subject: HW drieling	
Description of daily activities and events:	
	les
0800: pack semples for shopping	
0830: fact to Bristol Bay Placine, Kien	confirm
marking unitaties list been completed	
0900: VTY Q Alaska Air Cargo to drop	sque les
off for shorowa to test Amprica	Sacramento
1000: meet drillets @ Charlie's Sport	shop and
determine dolling toegtion doll	reg set up
319(1)	1
1230: 21AKN-SB-05 started	
1700: 21AKN-5B-05 drilled down to	50 fl. 698:
the read are dictors finish for	day
1730: VIY and JLD unpack and Friest	agnerwork!
1800: end of day	Party
most end of deep	
\(\frac{1}{2} \)	
	
	
No. 10	
Visitors on site: n/α	
Changes from plans/specifications and other special orders and important decisions:	
n/a	
Weather conditions: 150%, 50%	
Important telephone calls: n/a	
Personnel on site: VTY, JLD	100 100
Signature:	Date: 8/25/21

Date 8/24/20
Sheet of
Project No. 103582-011
Project Name: AKN PFAS Characterization
Description of daily activities and events:
0730: prepare for drieting:
0800: Ut and SLD arribe on site, dieters have
continued dititue casing to 5074.
1300: sampled continuously down to toft. bgs;
differs change over to hammer to drive
castrig down sto to ft. 698.
1530: tri-come rod gets stuck sustele costrig dillers
start workful on solution
1730: end of day; troubleshooting will continue tomorro
Visitors on site: \(\gamma\) \(\alpha\)
Changes from plans/specifications and other special orders and important decisions:
NIG
Weather conditions: overeast + showers 50°F
Important telephone calls: h/a
Personnel on site: VTY, SLD
Signature: Date: 8/24/21
Bate. Sy 24/21

	Date <u>8/25/21</u>
	Sheetof Project No.
Project Name: AXN PFAS characterization	
Field activity subject:	
Description of daily activities and events:	
0730! discuss plan for day with SLD	and prepare
for day	0 0
0800: VTG and JLD arrive @ DOT (drum storage
location and start foldering 3	full drums
with development water from	wells on
apriport s	
1240: filtering complete fact to	Floyd about
an escent my the afternoon to	or sampery;
(200: back of callus to prepare	for "
Samp Crug:	
1400: meet with Greg (Doi escort)	to start,
samplying the three wells	a amport
Fenced Olivea	
1800: samp Greg complete; equipme	ent beank
collected	1 5/2 =
1815: back gu /cabrus; unpack auc	
samples in coolers on deck with	i dee;
1830! end of day	
}	
	
Visitors on site: n/9	
Visitors on site:	
Changes from plans/specifications and other special orders and important decision	ne:
h 19	15.
n/9	
Weather conditions: Overcast + rain showers	40-50°F
Weather conditions: Overcast + rain showers	(0 00 1
Important telephone calls: 719	
important telephone cans.	
Personnel on site: V99 JLD	
Signature:	Date: 8/25/21
The second secon	0,000
	. ou

Date 8/26/21
Sheet 1 of 1
Project Name: AKN PFAS Characterization Project No. 102582-011
Field activity subject: full drilling and mstallation
Description of daily activities and events:
0645: teck to Dave about plan for day
0700: talk to tike about depth of shallow well
OBOO: JLD with drieters to sustate shallow well @
0830: VT4 prepares water samples for shipment to SGS
0930: VTY @ adrport to ship samples
1090: VTY kell to Tem Hering, who would take
sampling a his property; your was used
1020: JLD Informs VT4 that Witch (driller helper)
has cut his tinger open; drillers head over
to claric in Nakhek
1040: UTY drops JLD off the cabin to contact Handy
(corporate satety officer)
1100: VTY feters ourge water from sampling
19-01 171 1710 11
At store wells; Ist pot probe can't catherate;
1900: VIY requests a new JSI Missipped out:
1430: VTY meet party who forishes the shallow well
@ Clearge's sport Shop; Mitch is flying
home and a new dieler hefper is country in
1500: VTY back @ cabing 1;
1515: VTY dops JLD @ Strport
1530: VTY transfers development water from
AC store wells in drums on truck!
1630: UTY starts fictering water in these drums
a DOT drum stopbyte area
1945: UTY back on calon, and of day
Visitors on site: Tom Hering, resident from Lot 10
Changes from plans/specifications and other special orders and important decisions:
7.79
Weather conditions: Overcost, 50°F
Important telephone calls: multiple with MX5 and CBD
Personnel on site: VT9 and JLD
Signature: Date: 8/26/21
12d

Date 8127121
Sheet 1 of 1
Project No. <u>102582-011</u>
Project Name: AN PFAS Characterization
Field activity subject: Hee borning and anotal anotal and subject of daily activities and events:
0700 - voregare for day
1730 - meet drillers @ site; safety meeting; continue
deep well borring
1130 - pause borning @ 8071.; direters go to yard for
more equipment and take bunch? VTY talks to Mike about desired well depth
and additional residential sumples:
1145 - VTY Jacks to Tom Herry and sets up an
appointment for pomotrow, vie next tacks
to Dave Lax and he requests an appointment
right away; VTY starts preparing for
1230 - VTY meets Dove lax a the old Quinact total
1 2 1 2 1
of the Sockere Saloon - they use the well as water
supplex: VTY Jourges and collects sample
1900 - back @ Chartie's; dillers advance borning to
854t bgs and start setting a well;
1830 - deep well get in plane, UTY Leaves site;
1840 - back In cabon unpack and Finish paperiork
1900 - end of day;
V
Visitors on site: η / α
Visitors on site.
Changes from plans/specifications and other special orders and important decisions:
sampled the old minact thetel property and will
sample to lot 10
Weather conditions: mostly supply and wordy 50%
Weather conditions: mostly sunny and whidy, 500F
Important telephone calls: with MX5, Tom Harring and Dave Lax
Personnel on site:
Signature: Date: 8/27/21
1011

	Date <u>8/28/21</u>
	Sheet 1 of 1
AVAI DEAS Plan tos 3-10	Project No. <u>102582</u>
Project Name: AKN PFAS Characterization	ela o
Field activity subject: MW Development and Samp Description of daily activities and events:	Grig
0800: drillers start cleaning up site a	Charlie's
	opment
1130: 21AKN- UW-05-18 developed	7
1200: 1/94 @ Acaska Ar Cargo to	prek up new
951;	
1230: VTY prepares for sampling	and does a
confidence check on SSI (all po	arameters in range)
1300: VYY sets up for sampling ons	itte,
1415: 21AKN - MW-05-15 samptedd:	2/1/4/= 1111-05-07
1430: VT9 start development of	a144N HW-65-05
1850: finish developing and sampling	@ both weres
a Chartie's pack up:	
1900: back or cability: store samples and	ay; end of day
	31
Violence of the control of the contr	
Visitors on site:	
Changes from plans/specifications and other special orders and important decisio	ins:
h 19	
- 171. X	
Weather conditions: SUNNY 60°F	
J'	
Important telephone calls: <u>n19</u>	
Paragonal an aita:	
Personnel on site: V19 Signature:	Date: 8/28/21
Signature.	Date. (O) a O ON

Sheet of Ath PFAS characterization Project Name: Ath PFAS characterization Field activity subject: MW samplifying Description of daily activities and events: 1160: prepare for day calibrate USI; 1200: In and estert dripe to Fast End of Immunia to collect sample from shaft providing access to a theory of the section. 1400: In and estert dripe to Fast End of Immunia to collect sample from shaft providing access to a theory of the section. 1400: In a wells by AC store, set up for sampled: 1400: DIAL W. HWOOY-45 sampled: 1400: DIAL W. HWOOY-45 sampled: 1400: DIAL W. HWOOY-85 sampled: 1800: back @ Cabin; store samples away; upack; finish gaperwal; 1900: end of day Visitors on site: M/A Changes from plans/specifications and other special orders and important decisions: 1/4		Date 8/29/21
Project Name: AFN PFAS clearacterization Field activity subject: MW sampliffing Description of daily activities and events: 1800: Prepare for day calibrate ISI. 1200: Not and estert drive to East that of Junioral to collect sample from shaft providing access of to a rulvert intersection. 1400: Not a wells by AC store; set up for sampling. 1520: DIAKN-HW-04-45 sampled; 1400: DIAKN-HW-04-85 sampled; 1400: Diete a cabin; store samples away upact; 1400: end of day. Visitors on site: M/A Changes from plans/specifications and other special orders and important decisions:		NO. NO. IN CO. I
Field activity subject: MW samp Crug Description of daily activities and events: 1100: srepare for day caciprate JSI. 1200: VII and estert drive to Fast End of Funward to collect sample from shaft providing access to a rulevest intersection. 1400: VII a wall store from shaft providing access to a rulevest intersection. 1400: VIII a walls by AC store. Set up for sampting access to a walls by AC store. Set up for sampled. 1500: DIAKN-HW-04-45 sampled. 1500: DIAKN-HW-04-85 sampled. 1600: Devet a cabin, store samples away upact. 1900: end of day. Visitors on site: M/A Changes from plans/specifications and other special orders and important decisions:	A F. L. DCD C Ld L L	ject No. 102582-0
Description of daily activities and events: 100: prepare for day calibrate ISI: 1200: VI @ DOT to meet with Execut; 1300: VI and essent drive to Fast End of Funday to collect sample from shaft providing access of 1400. VII a wells by AC store set up for Sampling 1500: 21AKD - HW-04-45 sampled 1400: 21AKD - HW-04-85 sampled 1400: beet @ cabin store samples away upach; 1400: end of day Visitors on site: N/A Visitors on site: N/A Changes from plans/specifications and other special orders and important decisions:	Project Name: HTN PFAS Clicaraeterization	A THE REAL PROPERTY OF THE PARTY OF THE PART
Not to meet with Essert; 1300: NTY a DOT to meet with Essert; 1300: NTY and essert drive to East End of runwar to collect sample from shaft providing access to a superfuse by AC store. Set up for sampling access by AC store. Set up for Sampling. 1500: DIAKN-HW-04-45 sampled; 1400: DIAKN-HW-04-85 sampled; 1800: back a cabin; store samples away upack; 1900: end of day.		
Visitors on site: W/A Changes from plans/specifications and other special orders and important decisions:	Description of daily activities and events:	
Visitors on site: W/A Changes from plans/specifications and other special orders and important decisions:	TIPO: greating for det dollars to 451.	
1300: VI and estart drive to East End of Fundal to collect sample from shaft providing access to a the vert subsection. 1400: VII a wells by AC store; set up for sampling. 1520: 21AKN-HW-04-45 sampled; start pacting up; 1800: back a rabin; store samples away; upsel; 1900: end of day. Visitors on site: N/A Changes from plans/specifications and other special orders and important decisions:		
to collect sample from shaft providing access to a collect sample from the section. 1400. It a well's by AC store set up for sampled. 1520: 21AKN-14W004-45 sampled. 1400: 21AKN-14W-04-85 sampled. 1800: beek & cabin, store samples away upack. 1900: end of day. Visitors on site: M/A Changes from plans/specifications and other special orders and important decisions:		tof Timulay
Hoo. 179 & wells by AC store; set up for samplify. 1520: 21ALLY-HWOOY-45 sampled; stait acting up; 1800: boek & cabin; store samples away; upact; 1900: end of day Visitors on site: M/A Changes from plans/specifications and other special orders and important decisions:		
Visitors on site: \N/\lambda Samplifug 1520: 21AKN-14W-04-85 sampled; start packing up; 1800: back @ rabin; store samples away upack; 1900: end of day Visitors on site: \N/\lambda Changes from plans/specifications and other special orders and important decisions:	10 - 0 - 0 - 0	
Visitors on site: M/A Changes from plans/specifications and other special orders and important decisions:	1400, viy a wells by AC store; ser	t up for
Visitors on site:	1	
Visitors on site:		
Visitors on site: \N/\alpha\ Changes from plans/specifications and other special orders and important decisions:		packing up
Visitors on site: \(\gamma / \Gamma \) Changes from plans/specifications and other special orders and important decisions:	Love to caom, store samples and	ay upacky
Visitors on site: \(\gamma / \Gamma \) Changes from plans/specifications and other special orders and important decisions:	1900 Purch of day	7 /
Changes from plans/specifications and other special orders and important decisions:	()	
Changes from plans/specifications and other special orders and important decisions:		
Changes from plans/specifications and other special orders and important decisions:		
Changes from plans/specifications and other special orders and important decisions:		
Changes from plans/specifications and other special orders and important decisions:		
Changes from plans/specifications and other special orders and important decisions:		
Changes from plans/specifications and other special orders and important decisions:		
Changes from plans/specifications and other special orders and important decisions:	}	
Changes from plans/specifications and other special orders and important decisions:		
Changes from plans/specifications and other special orders and important decisions:		
Changes from plans/specifications and other special orders and important decisions:		
Changes from plans/specifications and other special orders and important decisions:		
Changes from plans/specifications and other special orders and important decisions:		
Changes from plans/specifications and other special orders and important decisions:		
Changes from plans/specifications and other special orders and important decisions:		
Changes from plans/specifications and other special orders and important decisions:		
Changes from plans/specifications and other special orders and important decisions:		
	7/19	
Weather conditions: Sunny 60°F	Weather conditions: Sunny GooF	
Important telephone calls: NG	Important telephone calls:	
Personnel on site: V/ 9		2100171
Signature: Date: 8/89/21	Signature:	Date: 0/80/00

Date <u>8139121</u> Sheet <u>1</u> of <u>1</u>
Project No. 100582-0
Project Name: AKN PFAS Clearacterization
Field activity subject:
Description of daily activities and events:
0730: prepare for day controvate 451;
0830: 1874 arrives (8), Lot #10 to sample Tom
Heory's house well
1000: VTY back in cabin, prepare samples for
1200: VIY (W) Aleista Air Cargo, ships samples:
1230: VT4 aumps development water from lanning
lon Ac store onto drums on car;
1330: VTY @ drum storage area behoud DOT
building to filter Ate store development
water of blogg Honsoon sump does not
sterrt, frombles hoo trug;
1430: delle fictoring restated.
1630: VTY goes to d Alaska Air Cargo to pick
up shipment of extra sample jais and
to be present white courge staff opens up
sample cooler dropped of earlier; mspectro
goes smoothly,
1800: vity goes to wells @ cleartie's; stents
pumping development water from drums on
ground onto druing on truck;
AUG. 11 States Alexander
goes @ ~ 0.75 gat/min; VTY works on
sampling drums, drum log and drum
7000: 4 drung Itnished tittering: pack up
1000: 4 drums Itmished tetering; pack up
100 50! Cha of aco
V
Visitors on site: η/q
visitors on site.
Changes from plans/specifications and other special orders and important decisions:
h19
Weather conditions: Evereas: 1 300F
Important telephone calls: n19
Personnel on site: V14
Signature: , Date: 8/30/21
P1.
VIII

	Date 8/3/12/
	Sheet 1 of 1
Project Name: AKN PFAS characterization Proje	ct No. 102582-011
Field activity subject: Anish - up fasks	
Description of daily activities and events:	
0800: prepare for day	
0830, VTM @ DOT drum storge areg;	start
tilterny dollary and decon water	;
1100: de Oficterred complete: com	ry Dot building
1/30: start packing and preparing some	Plas for
shiroment o	7-03 101
1330: artive @ Acasta Ar Cargo to	send equipment
back to tarbants and Uship tos	of bately
1930: dive to landfill to dispose	127 12 1
1530, back @ airport to check by	of sampling w
15 40: fuel up truck and return it	,
1640: flogget departs kong salmon;)
2030: arrive @. Farbanks Adrport;	
The state of the s	
Visitors on site: n/a	
7770	
Changes from plans/specifications and other special orders and important decisions:	
n/a	
Weather conditions: partly cloudy 550F	
part of sounding.	
Important telephone calls: N/9	
Personnel on site:	W10 110 1
Signature:	Date: 8 3/1 d/
	U94

	Date 10 [28 [Z] Sheet 1 of 1 Project No. 102 58 Z - 01]
Project Na	
Field activi	ty subject: John Management
	n of daily activities and events:
0800	Floyd still out plowing and will return later.
0930	RLW neet w Floyd, 11 drums w/ filtered purge water street outside behind MS.
	RLW, Floyd, + Dot staff move drums onto pallets WI a forklift. Drums moved into trucks + taken ton-site location described in email.
	Source 2"-3" ice on surface of every drain
	Soil drum contains a bag of surface soil, bucket of soil borngs/cuttings from SB-01, -62, =03, bucket w/ nunknown labels (bucket Frozen to drum), 3 Soil jars labeled 21AKN-SB-05 (2-2.2') 3853-39, 21AKN-SB-105 21AKN-SB3-05 (38.5'-39),
	and bucket wil drum precipitation. No sample collected
1200	Drum disposal complete. Drums stored in garage warehouse on-site (where de-ung is stored)
£2100	Acrive @ FAI
Visitors on	site:
Changes fr	om plans/specifications and other special orders and important decisions: NO SOI Sample from drum.
Weather c	onditions: 30°F, slight wind, overcast
Important	telephone calls:
Personnel Signature:	on site: R/W Date: 10/28/21

SOIL SAMPLE COLLECTION LOG

Project Number: 102582-04	Project Name: AKN PFA5 Characterization	011 200						Page	1 of 1
ate: 8/14/21 - 8/2	7/21								
ampler: VYY									
		Sample	Sample	Depth	Sample				
Sample Number QNA KN - 5B - Q(0'-1')	Location	Date	7ime	(ft)	Type をう	Reading	PFAS, GRO, L	Analyses	DOI: 0
21AKN - SB-02161-71	Fire Training Area B	01410	10:00	6-7	ES	0.8	P1113, ORC, [IKU, FFC,	1 FIFT
21AKN-5B-01101-11)	FIRE Training Area A		1150	0-1	ES	0.0			
RAAKN-3B-0116,5-7	5') - 10			6.5-IS		0.1			
31 AKN-38-101(6.54)	5) Dup of 21AKN-5B-0116.5-75)			6,5-7.5		0.1			
21AKN -SB-0317.	in fire Training Area C	N/	1350	7.3-7	E5	1.6		V	
MALK SP DS(+0.	5-1-()	V	150	TO F	, 00	7.0		7	
1AKN-58-04 138	6-39.31) AC Store "deep borng	8116121	1635	38,6-39	38	-	PHAS XX	8	
21AKN-SB-04/12.	11-12-11) AC Store-staclow borning	814121	0945	121-12	7 ES	0.1		ou of An	
21 AKN-5B-04 (18	.G-19.3) AC Store - shallow bonnes		0350	186-19	3 ES	_		of Bagi	
21440-515-04165	+-64.5) AC store-deep borning	V	1440	63.46	15 65	_	PFASI ba	How of	B 994
2196N-815-04 (8	21-82.61) AC store - deep boring	81821	1020	82-82	6 ES	_	PFAS L-top	of Ca	quiter
21AKN-5B-04 1B	7-87.51) At store - deep bostug	819121	0830	87-87	5 ES	-	PFAS 1 bot	tou? of	Co
11111-60-05/2	3 (1) 11 (1)	012201	1201	212	6 ES		PFASIBUTE	of A.	aquiter
21 AKN -SB-05 (3.1 21 AKN - SB-05 (4.2)	1-3.61) Chartie's -deep boring	8/23/21		3.1-30		_	PEAS 1 top		quiter
AMARIAN SAN OS ITA	HADION BUILDING TO THE REAL PROPERTY OF THE PR	To the P	1355	DV	RIVATAR	- net as	RAAGBOA	DUNPS 18	ARRA WH
DUALUH GR-VOSTQUE	HADIUM OUGHTONETS IN HOLEHOM MONTESTALIN		M3451	KON HAKID	N NADALAWAY		A STATE OF THE STA		
	ANNIH BIJA FINI KUAHTUKISH MERA BAGAHA)	MANN THE	MANA			W. K.		WHAT AND THE	级火期
W. Mailti Wasal Dadado	Diggs 63 / Godin Charles a confession / Agus	00-0	(A)BOOK	0000	9 1420	041	ATTHIS FROM	SHOWERT VE	CIQUI NAME
21AKN-5B-05 (58	1-63') Charae's -deep borning	812412	1030	58-6	B B5	-		How at	bagu
214140-58-105(58-	(63) Dup of 21ALN-58-05 (58 G	TV	1020	58-63	Dup	-	-11		V
21AVU-50-0515	1-70.5) - chartie's deep porting	812412	1030	70-Je	5 FS	-	PFASI to	3pot C	agriet
21 AKN-58-05 /82	81-83.31) - Charge's deep portug	A LINE	1440				1 1 1		weed
						1.11			
							*		
ample Type FS = Field screening r	measurement only ES = Environmental sample FD = Field duplicate TB =	rip blank							

VIY

Surface SOIL SAMPLE COLLECTION LOG

roject Number: 102582	Project Name: ACN PFAS Characterization						Page	/ of _
vate: 8-/5-21								
ampler: VTY / SLD								
			Sample		Sample			
ample Number	Location	Date	Time	(ft)	Туре	Reading	Analyses	
21AKN-55-01	PK Brown silt w/ sand	8-15-21	0849			0,0	PFAS x 18	
21 AKN-55-02	DK Brown Silt W/ Sand		0 900		55			
21 AKN-55-03 21 AKN-55-04	OK Brown Sand W/ Silt - Num. Rosts		0908	-	-	0.1		
21 AKN-55-05	Brown Sand W/sitt & growel -aca, roots		0993			0.0		
21 AKN-55-06	Brown Coase Food W/sitt & gravel	-	10:04			0,0		-
7/AKN-55-07	SAME AS ABOVE		10:31			0.0		
21AKN-55-08	Lt, Brown Silt w/ grovel & Trace Sand	1	10:43			00		
21 AKEN-55-09	OK, Brown Silt W End & stavel		10:55			0.0	L I	16
21AKN-55-109	SAME AS ADOVE		10:45		1		Pup of SS-09	71
2/AKN-55-10	Red-brown + LT. grey silt W/ Sand		11:10			0.0		
2/AKN-55-11	Brown Silt M/ Sand & gravel		11:18			0.0		
21 Men - 55-12	SAME AS ABOVE		11:33			0.3		
21AKN-55-13	SAME AS ABOUT		11:52			0.1		
21 AKN-55-14 21 AKN-55-15	DK. Gray Silt W/ Non rasts & organic		12:17			0.2		
21AKN-55-16	Brown sand W silt & Grange		12:37			0.0		
21AKN-55-17	Brown Silt w/ sand		12:52			10.9	1	1
21 AKN-55-117	SAME AS ABOUTE		12:42			-	* Dup of 55-1-	1
71 NKN-55-18	Brown Sand W/ Silt		13:12			0.3		
21 AKN-55-19	DK. brown sand W/sill		13,20			0,3		
21AKN-55-20	Brun silt w/ sand	Y	13:30		V	0.1		
	,							
					-			
	neasurement only ES = Environmental sample FD = Field duplicate TB = T	15715315						

Date: 8-15-21		Project: AKN	102582-011
Field Investigators: 34	O / VTX		
Name of Water Body:	5W-01		
Location of Water Body:	Interset	For of N/5 ru	way & Toxiway
Type of Water Body:	Culvert/s	tording	
Sample Location: Mio	d vater	body	
Sample Number: 21 Ak	N-5W-0		
Method of Collection:	do Cys	\$ 21A	ate @ 09:20 KN-SW-101
Temperature (°C): 10,	5		
pH: 6.91			
Conductivity: 46.9			
DO (mg/l): 52./	10		
Turbidity (NTU): -	cipar		
Appearance.	<i>V</i>		
Analyses requested:	75A5 x 18		
Comments:			
	Yes	No	
Product Observed? Product Collected?	Yes	No	

Sample Number: 2/AWV-5W-02 Sample Time: 10:12 Method of Collection: Gab Temperature (°C): 8.8 pH: 6.75 Conductivity: 1/8.0 DO (mg/l): 74.8 Turbidity (NTU): Appearance: Graw W ryd hue ORP - 1/0.2 Analyses requested: PFA5 x 18 Comments:	
Type of Water Body: Fox Mell S. F 1230 Type of Water Body: Cullust / Creek Sample Location: Wield 6 Sample Number: 2/Akw-sw-02 Sample Time: 10:12 Method of Collection: Gab Temperature (°C): 8,8 pH: 6,75 Conductivity: //8,0 DO (mg/l): 74,8 Turbidity (NTU): Appearance: Chew w/ red hue ORP / 160,2 Analyses requested: PFAS x 18 Comments:	
Type of Water Body: Culturt / Cresk Sample Location: Whole Co Sample Number: 2/Akw-sw-02 Sample Time: 10:12 Method of Collection: Gab Temperature (°C): 8.8 pH: 6.75 Conductivity: 1/8.0 DO (mg/l): 74.8 Turbidity (NTU): Appearance: Gray whole Mark Mark ORP - 1/602 Analyses requested: PFAS x 18	
Sample Location: when to be Sample Location: when to be Sample Number: 2/Akw-sw-02 Sample Time: 10:12 Method of Collection: Grab Temperature (°C): 8.8 pH: 6.75 Conductivity: 1/8.0 DO (mg/l): 74.8 Turbidity (NTU): Appearance: Chew when the ORP - 1/2.2 Analyses requested: PFAS x 18 Comments:	
Sample Number: 2/AWV-5W-02 Sample Time: 10:12 Method of Collection: GAB Temperature (°C): 8.8 pH: 6.75 Conductivity: 1/8.0 DO (mg/l): 74.8 Turbidity (NTU): Appearance: Char w/ rg/ hue ORP - 1/0.2 Analyses requested: PFAS x 18 Comments:	
Sample Number: 2/A/N-5W-02 Sample Time: 10:12 Method of Collection: 6Ab Temperature (°C): 8.8 pH: 6.75 Conductivity: 118.0 DO (mg/l): 74.8 Turbidity (NTU): Appearance: 6AA M AA hae ORP - 160.2 Analyses requested: PFAS x 18 Product Observed? Yes No	
Temperature (°C): 88 pH: 6.75 Conductivity: //8.0 DO (mg/l): 74.8 Turbidity (NTU): — Appearance: Clear w/ rg/ hue ORP — //6.2 Analyses requested: PFAS x 18 Comments:	
pH: 6.75 Conductivity: //8.0 DO (mg/l): 74.8 Turbidity (NTU): — Appearance: Clear w/ red have ORP - //6.2 Analyses requested: PFA5 x 18 Comments:	
pH: 6.75 Conductivity: //8.0 DO (mg/l): 74.8 Turbidity (NTU): — Appearance: Clear w/ red have ORP - //6.2 Analyses requested: PFA5 x 18 Comments:	
DO (mg/l): 74.8 Turbidity (NTU): — Appearance: Clear w/ red have ORC - /LO.2 Analyses requested: PFAS x 18 Comments:	
Turbidity (NTU): Appearance: Clear w/ red have ORP - //O.2 Analyses requested: PFAS x 18 Comments:	
Appearance: Chew w/ rgd hug ORP - 1/00-2 Analyses requested: PFAS x 18 Comments:	
Analyses requested: PFAS × 18 Comments:	
Comments:	
Comments:	
Product Observed? Yes	
Product Observed? Yes No	
Todact Observed: 165 (NO	
Product Collected? Yes No	

Date: 8-15-21		Pro	ject: 102582-	04
Field Investigators:	LO/VTY			
Name of Water Body:	NW IN	tusection	Min Runn	my)
Name of Water Body: Location of Water Body:	Surface	Water	SW-03	
Type of Water Body:	Water (Sta	uding)	in ditch	
Sample Location: Mi	Solle			
Sample Number: 2/A/A	en-sw-	<i>0</i> 3 Sar	nple Time: 12730	2
Method of Collection:	Grab			
Temperature (°C): //O.	7			
pH: 6-67	,			
Conductivity: 1/8	2			
DO (mg/l): 25.0				
Turbidity (NTU):				
Appearance: Clear				
Analyses requested:				
Comments:				
			1	
Product Observed?	Yes	No		
Product Collected?	Yes	No		

Date: 8-(5-21	Project: 102582-011
Field Investigators:	TY
Name of Water Body: Swface	Woto 5W-04
Location of Water Body: Lalve	IT outside Fence SE of long Runs
Type of Water Body: runing	nater inchange
Sample Location: Center of	
Sample Number: 21 Akw-Sw	704 Sample Time: /6:2(
Method of Collection:	
Temperature (°C): 5,6 pH: 6,67 Conductivity: 142,3	
DO (mg/l): 23,0 Furbidity (NTU): Clar W M Appearance:	
Analyses requested: PFA5 × /8	3
Comments:	
Product Observed?	es No Organiz Sheen

Date: 8/15/21		Project: 102582-011
Field Investigators:	1,5LD	
Name of Water Body: 5	W-05	
Location of Water Body:	downstream	n of Ac Store on Eskimo Creek
Type of Water Body: Ofe	ek	
Sample Location: widd	te of co	teek
		5 Sample Time: 1738
Method of Collection: 50	lo cup	
Temperature (°C): 10.4 pH: 4.33 Conductivity: 110.8		
DO (mg/l): らっ, え Turbidity (NTU): らるない	en turbid	4
Appearance: red by	wh hue	
Analyses requested:	-A5x 18	
Comments:		
Product Observed?	Yes	No
r roduct Observed:		

Date: 8(15/21		Projec	t: 102582 - 011
Field Investigators: UTY	JLD		
Name of Water Body: SU	U-06		
Location of Water Body:	upstream	Cocation	of Eskituro Creek
Type of Water Body:	eek		
Sample Location: らんと	of cr.	eek	
Sample Number: QIAKA	V-5W-00	Samp	e Time: 1455
Method of Collection: 500	o cup		
Temperature (°C): 10.3	3		
Conductivity: 109.6			
DO (mg/l): 86.5	10 11		
Turbidity (NTU): s Coch Appearance: brown	tra have	ord	
Appearance. Prosert	01919	nuc	
Analyses requested: PF	As x18		
	111/11		
Comments:			
	133,75	0	
Product Observed?	Yes	No	

Date: 8-16-21		Project	10258	2-011	
Field Investigators:	10/ VT	Y			
Name of Water Body:	to-wi				
Location of Water Body:	downstrea	ries cul	vert of	Red for	craek.
Type of Water Body:	ulvert 10	reek			
Sample Location: 🕶	lde				
Sample Number: 2/Ak/	V-5W-0	7 Sample	7111101	08:30 21AKN-	SW-107
Method of Collection:	de	(/ 1MP	0000	08:20
Temperature (°C):	2				
pH: 6.4 Conductivity: 6.4 DO (mg/l): 33.3					
Turbidity (NTU): clea	(
	orange s	stanny			
Analyses requested:	9				
Allalyses requested.	FASX 18				
Comments:					
	Yes	No	Ora	in shee	1
Product Observed?					

Date: 8/16/21		Project: 102582 - 011
Field Investigators: 5L	0/ 174	
اری Name of Water Body:	iw-08	
Location of Water Body:	upstrea)	m location of Red fox crea
Type of Water Body:	on west	1 creek
Sample Location: mid	ddle	
Sample Number: 21A	KN-SW-	0පි Sample Time: 09ිංට
Method of Collection: 9	rab	
0		
Temperature (°C): //.	5	
pH: 6.40	,	
Conductivity: 174.7		
DO (mg/l): 11,3		
Turbidity (NTU): & Coa	~	100 00
Appearance: red /e	range	3 taming
Analyses requested: Pf	-415 × 18	9
Commonts:		
Comments:		
Comments:		
Comments:		
Comments: Product Observed?	Yes	(MO)

Date: 8/29/21		Project: 102582-011	
Field Investigators: VT	4		
Name of Water Body:	ZIAKN-	SW-09	
		ion of 10-21 and taxingy	M
Type of Water Body: 54	cft tonn	eeting culverts	
Sample Location: mide	the of	water body	
Sample Number: 21A	KN-5W-	Sample Time: 4350	
Method of Collection:	er, pump		
Temperature (°C): 9.4	8		
pH: 6.53			
Conductivity: 198			
DO (mg/l): 3.50 Turbidity (NTU): ¿loac			_
Appearance: clay			
Analyses requested: P	FASX18		
Comments:			
	Yes	No	
Product Observed?	103	1.00	

MONITORING WELL CONSTRUCTION DETAILS

Monitoring Well No. 21 AKN - MW- Project Name AKN - PFAS-CA Project Number 102582-011		Date Installed Logged By Driller	8-14 SAMES GEOTEK	DUTT AK
Initial Pipe Length Cuttoff Length Add-on Length Total Le	2' 3'	Slot Size: 0.01 😡 0.	" Other	
I. MID SECTION (CASING)		. BACKFILL	634.6	Class do
Number of Blank Sections				elow GS
Length of Section(s):		CEM (No Pipe)	Bottom	Тор
	+	CEM_PB	1.5	65 10.0'
		*SLUF_PB/FIL_PB		0-1010
		BCH_PB	3,5	1.5
	900 10	*SLUF_PB/FIL_PB		
		BGR_PB		
Sum of Leng	gtns:	*SLUF_PB/FIL_PB	4.0	3,5
		*SLUF_PS/FIL_PS *SLUF/FIL (No Pipe)	14,0	4.0
. SCREENED SECTION(S)		*SLUF_PB/FIL_PB		
0:18 50		Filter Pack Type or		
Joint Length:		Gradation	20/40 54	no (Pre pao
	+			
	V	I. MONUMENTS		
		Stickup Flushmount	Flush	
Screened 472		TOM to GS	40034	
Length: Tota	al Pipe 10.38	TOM to TOC_	-0.68	
/ +0,05 Len		^TOC to GS_	-0.68	,
10.78		Lock type_	no too	K
1010,40	4	W MOISTURE CONTENT		
9(3,73)		II. MOISTURE CONTENT	6.50)
Joint Length: 0.05	0.41	Depth to Water Below GS	6.50	
End Cap Length: 0.36			Frozen Soi	l Below GS
Deleted 5 d Clat	731.02		Bottom	
TOC to E	sow: 14.08	Seasonal 1	Bottom	Тор
100 to B	SOW.	Seasonal 2		
		Permafrost 1		
		Permafrost 2		
BCH = Bentonite Chips (gINT code)		1 elillallost 2	-	
BGR = Bentonite Grout (gINT code)				
bgs = Below Ground Surface BOS = Bottom of Screen VIII. C	ALCULATIONS BEL	OW GROUND SURFACE		
BOW = Bottom of Well				
CEM = Cement (gINT code) FIL = Sand Pack (gINT code)			TOC to BOW	14.08
GS = Ground Surface		14.08	FTOC to GS	0.68
SLUF = Natural Collapse/ Pea Gravel (gINT code	e) TOC to BC	$\frac{14.08}{0.41}$	BOW bgs	14.76
SS = Stainless Steel TOC = Top of Casing	- BOW to B	OS		0 00
TOM = Top of Monument	= TOC to	A STATE OF THE PARTY OF THE PAR	TOC to TOS	3.88
TOS = Top of Screen PB = Blank Pipe (gINT code)	TOO 45 DO	s 13.67	TOS bgs	0.68
PS = Slotted Pipe (gINT code)	TOC to BC	100000 0 79	los ugs	4.56
* Circle filter-pack type	- Screened = TOC to	3 64	TOO to BOD	13.67
^ Flushmount = Negative Number Stickup = Positive Number	- 100 to		TOC to BOS _ TOC to GS	0.68
ACCOUNTS OF THE COLUMN STATES AND ACCOUNTS A			BOS bgs	14.35
				77.02

4/9/2020

SHANNON & WILSON, INC.

Well No.

Publib:\admin\Forms10/26/2015ocs\EnvForms\S.A.P.\Well Water Sampling Forms MONITORING WELL CONSTRUCTION DETAILS

Monitoring Well No. 2/ AKN-MW-02 Project Name AKN-PEAS-CHARAGE Project Number 102582-011	Date Installed 8-14-21 Logged By SAMES DutT Driller GEOTEK AK Dave
I. TOP SECTION (CASING) Initial Pipe Length Cuttoff Length Add-on Length Total Length	V. WELL DATA
II. MID SECTION (CASING) Number of Blank Sections Length of Section(s):	V. BACKFILL Depth Below GS Bottom Top
	CEM (No Pipe) 0.8 0.0 (No Pipe) + CEM_PB 1.5 (STOP) 0.8
Sum of Lengths:	BCH_PB3,5
III. SCREENED SECTION(S)	*SLUF_PS/FIL_PS /4,0 4,0 *SLUF/FIL (No Pipe) *SLUF_PB/FIL_PB
Joint Length: 0.18	Filter Pack Type or Gradation 20/40 SAND PRE-PACK
Screened 4.18 Length: +0.05	VI. MONUMENTS Stuckup Flushmount MoRRIS MoRRIS TOM to GS Flush 3-Hole 10" Sweet TOM to TOC TOM to TOC TOWN to TOC TOW
+ 0.05 + 0.18 + 4.48 > (9.79)	VII. MOISTURE CONTENT
BOW to BOS: 0.4	2 2/4
Pointed Toc to Bow	: 13.86 Bottom Top Seasonal 1 Seasonal 2
BCH = Bentonite Chips (gINT code)	Permafrost 2
BGR = Bentonite Grout (gINT code) bgs = Below Ground Surface BOS = Bottom of Screen BOW = Bottom of Well	CULATIONS BELOW GROUND SURFACE
CEM = Cement (gINT code) FIL = Sand Pack (gINT code) GS = Ground Surface SLUF = Natural Collapse/ Pea Gravel (gINT code) SS = Stainless Steel	TOC to BOW 13.86 +TOC to GS BOW bgs 14.67
TOC = Top of Casing TOM = Top of Monument TOS = Top of Screen PB = Blank Pipe (gINT code)	- BOW to BOS
PS = Slotted Pipe (gINT code) * Circle filter-pack type ^ Flushmount = Negative Number Stickup = Positive Number	= TOC to TOS 3.66 TOC to BOS 13.45 +TOC to GS 0.81
3/8 Holeplus	SHANNON & WILSON INC

Publib;\Admin\Forms10/26/2015ocs\EnvForms\S.A.P.\Well Water Sampling Forms MONITORING WELL CONSTRUCTION DETAILS

Monitoring Well No. 2/AKN-MW- Project Name AKN-PFAS-CH. Project Number 102582-01		Date Installed _ Logged By _ Driller _	S-14. JAMES GEOTEK	DUTT AK /DAWE
I. TOP SECTION (CASING) Initial Pipe Length Cuttoff Length Add-on Length Total Length		Pipe Type: PVC S S Diameter: 2" S 4 Slot Size: 0.01 S 0.0 Joint Pin End: Up Do	Other	
II. MID SECTION (CASING)	V. BA	CKFILL	B- #- B	1
Number of Blank Sections			Depth Be	
Length of Section(s):		CEM (No Pipe)	Bottom	Тор
	+	CEM_PB	1.5	65 (0,0')
		*SLUF_PB/FIL_PB		
		BCH_PB_	3.5	1.5'
		*SLUF_PB/FIL_PB_		
Sum of Lengtl	ns:	BGR_PB_ *SLUF_PB/FIL_PB)	40	35'
		*SLUF_PS/FIL_PS	14.0	4.0'
		*SLUF/FIL (No Pipe)		
III. SCREENED SECTION(S)		*SLUF_PB/FIL_PB_		
0.18 50 7		Filter Pack Type or	20/40	SAMO PRE-BACK
Joint Length:	4	Gradation_	20,40	JAND IN THICK
	VI. MC	NUMENTS		
	16.16	Stuckup Flushmoun	N	
0		TOM to GS	flust	1
Screened 4/78 Length: Total	Dino	TOM to TOC	-0.69	
lengt		^TOC to GS	-0.69	
/ +0.18		Lock type	no tock	
44.78	0.00			
→ (g.73)		DISTURE CONTENT	6.20	1
Joint Length: 0.0 5 BOS:	0.41	Depth to Water Below GS_	0.00	
End Cap Length: 0.36	0111		Frozen Soil	Below GS
Pointed M Flat			Bottom	Top
TOC to BO	W: 14.26	Seasonal 1	Bottom	ТОР
1001020		Seasonal 2		-
		Permafrost 1		
		Permafrost 2		
BCH = Bentonite Chips (gINT code)				-
BGR = Bentonite Grout (gINT code) bgs = Below Ground Surface VIII. CA	LCULATIONS BELOW	GROUND SURFACE		
BOS = Bottom of Screen BOW = Bottom of Well		24445412 - 244 12 11 EE		
CEM = Cement (gINT code)			OC to BOW	14.26
FIL = Sand Pack (gINT code) GS = Ground Surface			TOC to GS	0.69
SLUF = Natural Collapse/ Pea Gravel (gINT code)		041	BOW bgs	14.95
SS = Stainless Steel TOC = Top of Casing	- BOW to BOS _	13.85	700 to TOC	4.06
TOM = Top of Monument	= TOC to BOS	the first and the second secon	TOC to TOS _	0.69
TOS = Top of Screen PB = Blank Pipe (gINT code)	TOC to BOS		OS bgs	4.75
PS = Slotted Pipe (gINT code)	- Screened Lengti	0 70	_	1.13
Circle filter-pack typeFlushmount = Negative Number	= TOC to TOS		OC to BOS	13.85
Stickup = Positive Number	9.677(77.57)	+	TOC to GS	0.69
			BOS bgs	14.54

Well No.

MONITORING WELL CONSTRUCTION DETAILS

	MW-04-4 FAS Character 2-011		Date Installed Logged By Drille	SAMES	21 Ditt -20	
I. TOP SECTION (CASING) Initial Pipe Length Cuttoff Length Add-on Length	10 7.93 otal Length	IV. 2,07	Diameter: 2" 🖼	SS Other 4" Other 50.02 Other 50.00 Type 50.00		
II. MID SECTION (CASING)	4	V. I	BACKFILL	DII-D	-100	
Number of Blank Sections Length of Section(s):				Depth Be Bottom	Top	
Length of Section(s).			CEM (No Pipe		тор	
4×10F1		#	CEM_PE		0	
			*SLUF_PB/FIL_PE			
			BCH_PE *SLUF_PB/FIL_PE		- 1 P	ea G
		A-=	BGR_PE			Pp1-P
Sum	of Lengths:	40	*SLUF_PB/FIL_PE			67.6
			*SLUF_PS(FIL) P		38 3	town
W CORENED CECTION(C)			*SLUF/FIL (No Pipe		110	1
III. SCREENED SECTION(S)			*SLUF_PB/FIL_PE Filter Pack Type o		90 39	lua
Joint Length:			Gradation		MO PREPACA	-
		+				
		VI.	MONUMENTS			
			Stickup Flushmou	a 1/1		
Screened 4.78			TOM to GS			
Length:	Total Pipe	5,37	^TOC to GS			
	Length: —		Lock type		look and	
					80-1	
		VII.	MOISTURE CONTENT	Γ		
0,05	BOW to 0.41	=	Depth to Water Below GS	14.6	8	
Joint Length:	BOS:			400004.0		
End Cap Length:				Frozen Soil		
	OC to BOW: 4	7.44	Seasonal ²	Bottom	Тор	
	oc to bow.		Seasonal 2			
			Permafrost			
			Permafrost 2	2		
BCH = Bentonite Chips (gINT code)						
BGR = Bentonite Grout (gINT code) bgs = Below Ground Surface	VIII CALCIII A	TIONS BELO	W GROUND SURFACE			
BOS = Bottom of Screen BOW = Bottom of Well	VIII. CALCULA	HONS BELO	W GROUND SURFACE			
CEM = Cement (gINT code)				TOC to BOW	47.44	
FIL = Sand Pack (gINT code) GS = Ground Surface			44 14	- TOC to GS	2.53	
SLUF = Natural Collapse/ Pea Gravel ((gINT code)	TOC to BOW	47.44	BOW bgs	44.31	
SS = Stainless Steel TOC = Top of Casing		- BOW to BO			4225	
TOM = Top of Monument		= TOC to E		TOC to TOS _ - TOC to GS	1000	
TOS = Top of Screen PB = Blank Pipe (gINT code)		TOC to BOS	47.03	TOS bgs	33.77	
PS = Slotted Pipe (gINT code)		- Screened Le	1. 40			
* Circle filter-pack type^ Flushmount = Negative Number		= TOC to 7		TOC to BOS	47.03	
Stickup = Positive Number			7	- TOC to GS	2.53	
				BOS bgs	44.50	
SOW BUE					127 11 21	

Sand 70 38 19' 7'-65 Per gray!

21AKN- MW-04-45

Publib:\Admin\Forms10/28/2015ocs\EnvForms\S.A.P.\Well Water Sampling Forms MONITORING WELL CONSTRUCTION DETAILS

Monitoring Well No. 2/AkN-MW-C Project Name ACN PFAS CU Project Number 102582-011	194-85 varacteriza			21 outt t- Dave
I. TOP SECTION (CASING) Initial Pipe Length Cuttoff Length Add-on Length Total Length	1.75	. WELL DATA Pipe Type: PVC ☑ Diameter: 2" ☑ Slot Size: 0.01 ☑ Joint Pin End: Up ☐	4" Other	
II. MID SECTION (CASING) Number of Blank Sections	V.	BACKFILL	Depth Bel	ow GS
Length of Section(s):		CEM (No Pipe	Bottom e)	Тор
8 × 10FT	+	CEM_P	В /	0
	() W-	*SLUF_PB/FIL_P BCH_P	В —	
	0.0	*SLUF_PB/FIL_P BGR_P		1 peagra
Sum of Lengths:	80	*SLUF_PB/FIL_P	B 79	77 Par par
		*SLUF_PS/FIL_P SLUF/FIL (No Pipe		79
III. SCREENED SECTION(S)		*SLUF_PB/FIL_P		
Joint Length: 0,18 - 7		Filter Pack Type of Gradation	on 20/40 SA	NO PAE-PACK
	+			
	VI	. MONUMENTS Stuckup Flushma		
Control Was 2		TOM to G	0.7	
Screened 478 Length: Total Pipe	e 5, 37	TOM to TO		
Length:	3, 31	^TOC to G Lock typ		LOCK 2001
		LOCK typ	- Plaster	2007
		I. MOISTURE CONTEN	IT 12 03	
Joint Length: 0.05 BOS:	=	Depth to Water Below G	s 13.83	,
End Cap Length:		×	Frozen Soil B	Below GS
Pointed A Flat	27 12	Constant	Bottom	Тор
TOC to BOW:	Clend	Seasonal Seasonal		
		Permafrost		
BCH = Bentonite Chips (gINT code)		Permafrost	2	
BGR = Bentonite Grout (gINT code)				
BOS = Bottom of Screen	ULATIONS BEL	OW GROUND SURFAC	E	
BOW = Bottom of Well CEM = Cement (gINT code)			TOC to BOW	7.12
FIL = Sand Pack (gINT code) GS = Ground Surface	200.00	27 /2	- TOC to GS	2.77
SLUF = Natural Collapse/ Pea Gravel (gINT code) SS = Stainless Steel	- BOW to BO	N 87.12	BOW bgs	84.55
TOC = Top of Casing TOM = Top of Monument	= TOC to	BOS 86,74	TOC to TOS	31.93
TOS = Top of Screen PB = Blank Pipe (gINT code)	TOC to BOS	86.71	- TOC to GS	2.77
PS = Slotted Pipe (gINT code)	- Screened I	5.0	TOS bgs	75.76
Circle filter-pack typeFlushmount = Negative Number	= TOC to		TOC to BOS	36.71
Stickup = Positive Number			- TOC to GS BOS bgs	23.24
- 5-FT Sever	- Screened	911-79		
10/26/2015 at caring was pulled	SHANNON & WILSO	9-77 ON, INC. 16-30	2 Filter San	Well No.
USY as casing was pulled	- Pel-Plug 7	7-60		21AKN-MW-C
VII	60	- 15		Maria de la companya

Publib:\Admin\Forms10/26/2015ocs\EnvForms\S.A.P.\Well Water Sampling Forms MONITORING WELL CONSTRUCTION DETAILS

Monitoring Well No. 214KN - HW - 05-83 Project Name AKN PFA5 Oburaete, Project Number 102582-011		3/27/21 Geotek - David N	ior44
I. TOP SECTION (CASING) Initial Pipe Length Cuttoff Length Add-on Length Total Length	Pipe Type: PVC SSDiameter: 2" 4" Slot Size: 0.01 St. O.00 Joint Pin End: Up Do	Other	
II. MID SECTION (CASING) Number of Blank Sections	V. BACKFILL	Depth Below GS	
Length of Section(s): Sum of Lengths:	CEM (No Pipe) CEM_PB CEM_PB BCH_PBSLUF_PB/FIL_PB BCH_PB *SLUF_PB/FIL_PB BGR_PB *SLUF_PB/FIL_PB	Bottom Top 0.51 0 1.5 0,5 3.9 1.5 0 5.8 39 0 6.2 58 58 15 62	t pen gr chips cellets pellets
III. SCREENED SECTION(S)	*SLUP/FIL (No Pipe) *SLUP/FIL (No Pipe) *SLUF_PB/FIL_PB	96 83	
Joint Length: 0.13	Filter Pack Type or Gradation	20140 sand	
Screened 4.78 Length: Total Pipe 50 Length:	VI. MONUMENTS Stuckup Flushmount TOM to GS TOM to TOC ^TOC to GS Lock type	Alush -0.37 -0.37 no tock	
Joint Length: 0.05	VII. MOISTURE CONTENT Depth to Water Below GS	1.35	
End Cap Length: Pointed Flat 19 TOC to BOW: 82	Seasonal 2 Permafrost 1	Frozen Soil Below GS Bottom Top	
BOS = Bottom of Screen BOW = Bottom of Well CEM = Cement (gINT code) FIL = Sand Pack (gINT code) GS = Ground Surface SLUF = Natural Collapse/ Pea Gravel (gINT code) SS = Stainless Steel TOC = Top of Casing TOM = Top of Monument TOS = Top of Screen PB = Blank Pipe (gINT code) PS = Slotted Pipe (gINT code) * Circle filter-pack type	TOC to BOW 82.74 BOW to BOS 9.44 TOC to BOS 82.33 TOC to BOS 82.33 TOC to TOS 47.55	00C to BOW 82.74 FOC to GS OW bgs 83.11 00C to TOS 77.55 TOC to GS OS bgs 77.92 00C to BOS 82.33 FOC to GS OS bgs 82.37	

10/26/2015

SHANNON & WILSON, INC.

Well No.

21AKN-HW-05-83

MONITORING WELL CONSTRUCTION DETAILS

Monitoring Well No. 21AXN - MW-0: Project Name 102582 - 011 Project Number PKN PFAS Clus	5-15 Tackerization	Date Installed 8/26 Logged By VT7 Driller <u>Gas</u> Te	5/21
I. TOP SECTION (CASING) Initial Pipe Length Cuttoff Length Add-on Length Total Length	4 1 50	VELL DATA Pipe Type: PVC S SS ☐ Othe Diameter: 2" A 4" ☐ Othe Slot Size: 0.01 0.02 ☐ Othe Joint Pin End: Up Down Type	er
II. MID SECTION (CASING) Number of Blank Sections	V. B.	ACKFILL Dep	th Below GS
Length of Section(s):	+	CEM (No Pipe) CEM_PB *SLUF_PB/FIL_PB BCH_PB	0,5 ————————————————————————————————————
Sum of Lengths:		*SLUF_PB/FIL_PB *SLUF_PB/FIL_PB *SLUF_PS/FIL_PS *SLUF/FIL (No Pipe) *SLUF_PB/FIL_PB	10 pelle
Joint Length:	\$	Filter Pack Type or Gradation 201	40 sand
Screened 4.78 Total Pig Length: Length:	00 <u>5,37</u> VII. N	Stickup Flushmount TOM to GS TOM to TOC ATOC to GS Lock type MOISTURE CONTENT	ush 5 ock
Joint Length: 0.05 BOS: BOS:	41 =	Depth to Water Below GS	Soil Below GS
Pointed Flat TOC to BOW:	14.96	Seasonal 1 Seasonal 2 Permafrost 1	Top
BCH = Bentonite Chips (gINT code) BGR = Bentonite Grout (gINT code) bgs = Below Ground Surface BOS = Bottom of Screen BOW = Bottom of Well CEM = Cement (gINT code) FIL = Sand Pack (gINT code) GS = Ground Surface SLUF = Natural Collapse/ Pea Gravel (gINT code) SS = Stainless Steel TOC = Top of Casing TOM = Top of Monument TOS = Top of Screen PB = Blank Pipe (gINT code) PS = Siotted Pipe (gINT code) * Circle filter-pack type ^ Flushmount = Negative Number Stickup = Positive Number	TOC to BOW - BOW to BOS = TOC to BOS _ TOC to BOS _ Screened Leng = TOC to TO	14.55 TOS bgs	14.96 0.50 15.46 9.77 0.50 10.27 14.55 0.50 15.05

4/9/2020

SHANNON & WILSON, INC.

Well No.

WELL DEVELOPMENT LOG

Owner-Client ACN	DOT	75 (558)	Well No.	2/4/	CN-MU	1-01
Location AKN			Project No		582-01	
Weather Overcast	-50°F		Date	8/21		
Development Personnel	1774, JLD			0/04	1001	
Development releasing	1111000					
Diameter and Type of Casi	ng:	2	" PUC			
Total Depth of Well Before	Development (fe	et below top	of casing):	13.8	7	
Depth to Water Before Dev	elopment (feet be	elow top of c	asing):	6.50		
Depth to Screen Top and B	ottom (from Cons	struction Log):	Top: 4.5	6 Bottom	14.35
	De	evelopmen	t Details			
Feet of water in well	4.37		Time pumpir	ng started	1035	
Gallons per foot	0.17		Flow rate (ga		0.95	
Gallons in well	1.25		Flow-rate me		method:	
Surge method Surge	and parage	-	8		HE	
Pump used Head I	101500n		Time pumpir		1130	
Tubing used (ft)	Poly_ 207	11.	Gallons Pum		52.25	
rubing used (it) / u	200		Disposal:	BAC		
			Disposal.	6110	- alun	0
		Observat	ions			
				100	27-17-12	
The state of the s	Clarity (Visual)		Time	0 1	ter Clarity (Vis	
1038 turbic	grey ss	uging	1118	cloudy	-> surgs	reg
1042 staggt	Cy feli bod	> Surgino	11/19	turps	d brow	14
1047 seglit	ed tusterd	Surgia	1125	clou	dy	
1053 lowered 1	19 - svery to	ibid 0	1130	clear	0	
1058 stigletter	1110	rang				
1101	1. brown	20				
1101 turbic	7	m hin				
1106 37394109	turbid -> gu	J' J	-			
1107 Vitar 010	brown					
11/2 stighte	g turbid -> 5	ugma	4			
1113 Jul 690	brown	0				
NOTES:clea	rang up	~ 5 mg	n after	- surgh	19	
	NA/I	ELL CASINO	VOLUMES		V	
Diameter of Well [ID-inches]	11/4	ELL CASING	3	4	6	8
Gallons per lineal foot	0.08	0.17	0.38	0.66	1,5	2.6

Well No. 21AKN-MW-01

24

W	/FI	I D	EVE	10	PIM	FNT	TIC	C
w w		-	-v		I WI			,,,

Owner-Client	AKN DO		JEVELO	Well No.	ZIAKA	1 - BH	w-02
Location	AKN			Project No	1025	82-011	04
Weather	overcas-	+ 45°F		Date	1812/	121	
Development	A PROPERTY OF THE PARTY OF THE	177, JLD			- voja	(
Diameter and	Type of Casing:		211	pvc			
	f Well Before De	- velopment (fee			13.8	4	
	er Before Develo				6.24		
	en Top and Botto				Top: 4.4	7 Bottom	14.20
			/elopmen		100: (11	1 Dottom	77704
Feet of water	in well	7.6		Time pumpir	na started	0905	
Gallons per fo	1000 m	0.17		Flow rate (ga	19. P. B. B. B. B. B.	0.28	
Gallons in we		V I		Flow-rate me			
Surge method		d wren		1 low-rate me	B 07	bottle	
Pump used	1. (onsoon		Time pumpir		1015	
Tubing used (7 100	2011		Gallons Pum		53	
rabing asca (11/4 100	2 20 11		Disposal:		1	
				Disposal.	GAC	and al	um
Time	Water Clari	ty (Visual)		Time	Wat	er Clarity (Vis	ual)
0908	kerbid	brown					4
09 18	GECKADE Grad	Maddold tu	bich				
09 28	turbid	prown					
0938	turbid.	brown					
09 45	1	erowh					
0950	fulbid	brown					
1000	clear						
NOTES:	clears	up for	N 10	um aft	er surgi	ng	
		WEL	L CASING	VOLUMES			TTI
Diameter of Well		11/4	//2	3	4	6	8
Gallons per lineal	foot	0.08	0.17	0.38	0.66	1.5	2.6

Well No. 21 AKN - HW-02

WELL DEVELOPMENT LOG

1335 stightly furbid + surging 1416 stightly furbid 1336 v. furbid 1435 cloudly; brow 1340 clear + surging (lowered) 1445 cloudly; brow 1341 chocotate brown turbid				100 2 10 200 24		
Development Personnel Development Personnel Diameter and Type of Casing: Total Depth of Well Before Development (feet below top of casing): Depth to Water Before Development (feet below top of casing): Depth to Screen Top and Bottom (from Construction Log): Top: 4.75 Bottom: A Development Details Feet of water in well Gallons per foot Gallons in well Surge method Surge method Surge and surge Pump used Head Honston Disposal: Depth to Water After Development (feet below top of casing): Depth to Water After Development (feet below top of casing): Callons Pumped Disposal: Depth to Water After Development (feet below top of casing): Observations Time Water Clarity (Visual)	A 12.1	001	Well No.			
Development Personnel Diameter and Type of Casing: Total Depth of Well Before Development (feet below top of casing): Depth to Water Before Development (feet below top of casing): Depth to Screen Top and Bottom (from Construction Log): Top: 4.75 Bottom: A Development Details Feet of water in well Gallons per foot Gallons in well Surge and purge Pump used Heart Honston Time pumping anded 1.37 Flow-rate measurement method: 8 02 bottles Time pumping ended 1/4/5 Gallons Pumped 52.5 Depth to Water After Development (feet below top of casing): Cobservations Time Water Clarity (Visual) 1332 V. Fur bid dolk brown 1335 Slightly Furbid 1340 Clear - Surging (lowered) 1445 Clear 1446 Clear 1446 Clear 1447 Clear 1448 Cle	in AKN	11-11-11-11	Project No	1020	582-011	
Diameter and Type of Casing: Total Depth of Well Before Development (feet below top of casing): Depth to Water Before Development (feet below top of casing): Depth to Screen Top and Bottom (from Construction Log): Top: 4,75 Bottom: A Development Details Feet of water in well Gallons per foot Gallons in well Surge and purge Pump used Head Monsoon Time pumping ended 1,37 Flow-rate measurement method: 8 02 bottles Time pumping ended 1,445 Gallons Pumped 52,5 Disposal: CAC - drum Depth to Water After Development (feet below top of casing): Total Depth of Well After Development (feet below top of casing): Time Water Clarity (Visual) 1335 V. fur bid dork brown 1335 V. fur bid dork brown 1335 V. fur bid dork brown 1340 Clear - Surging (lowered) 1445 Clear 1445 Clear	er overca:	st,55°F	Date	8/21	121	
Total Depth of Well Before Development (feet below top of casing): Depth to Water Before Development (feet below top of casing): Depth to Screen Top and Bottom (from Construction Log): Development Details Feet of water in well Ballons per foot Gallons in well Surge and purge Pump used Medical Horsbon Time pumping started Boz bottles Time pumping ended Medical Horsbon Time Water Clarity (Visual) Observations Time Water Clarity (Visual) Mater Clarity	pment Personnel .	VTY, JLD				
Depth to Water Before Development (feet below top of casing): Development Details Feet of water in well Gallons per foot Gallons in well Surge and purge Dump used Time pumping sarted Bottom: A Bottom: A Flow rate (gal/min) Flow-rate measurement method: Bottom: A Bottom: A Flow rate (gal/min) Flow-rate measurement method: Bottom: A Flow rate (gal/min) Flow-rate measurement method: Bottom: A Flow-rate measurement method: Bottom: A Flow-rate measurement method: Flow-rate measurement method: Bottom: A Flow-r	ter and Type of Casing	j:	2" PUC			
Depth to Screen Top and Bottom (from Construction Log): Top: 4.75 Bottom: A Development Details Feet of water in well 8.04 Time pumping started 1530 Gallons per foot 0.17 Flow rate (gal/min) 0.7 Flow-rate measurement method: Surge method 8.04 Flow-rate measurement method: Surge method 8.07 bott 6.35 Pump used Mega Monstony Time pumping ended 1445 Tubing used (ft) Triv Poly 2011 Gallons Pumped 52.5 Disposal: 340 Gallons Pumped 52.5 Disposal: 340 Gallons Pumped 52.5 Observations Time Water Clarity (Visual) Time Water Clarity (Visual) 1335 slightly furbid surging furbid 1435 cloudy brow 1340 clear - surging (lowered) 1445 clear brow 1445 c	epth of Well Before D	evelopment (feet below	top of casing):	14.24	/	
Development Details Feet of water in well Gallons per foot Gallons per foot Gallons in well Surge method Surge and purge Pump used Time pumping started 8 0 7 Flow rate (gal/min) 6 7 Flow-rate measurement method: 8 0 7 Both 68 Time pumping ended 1445 Gallons Pumped Disposal: GHC = drum Depth to Water After Development (feet below top of casing): Total Depth of Well After Development (feet below top of casing): Observations Time Water Clarity (Visual) 1333 V. fur bid. dork brown 1335 Slightly furbid > surging 1445 Clear > surging 1445 Clear 1341 Clear > surging 1445 Clear 1445 Clear 1445 Clear	to Water Before Deve	lopment (feet below top	of casing):	6.20		
Feet of water in well Gallons per foot Gallons per foot Gallons in well Surge method Surge and purge Pump used Time pumping started Flow rate (gal/min) Flow-rate measurement method: Boz bottles Time pumping ended Gallons Pumped Gallons Pumped Disposal: Gallons Pumped Disposal	to Screen Top and Bo	ttom (from Construction	Log):	Top: 4.75	Bottom:	14.54
Gallons per foot Gallons per foot Gallons in well Surge method Surge and purge Pump used Tubing used (ft) Trol Poly 20 ft Gallons Pumped Disposal: Depth to Water After Development (feet below top of casing): Total Depth of Well After Development (feet below top of casing): Time Water Clarity (Visual) 1332 V. fur bid dark brown 1335 Scienter furbid 1340 Clear - surging (lowerd) 1445 Clear Flow rate (gal/min) Ob Flow-rate measurement method: 8 oz bottles Time pumping ended 1945 Gallons Pumped 52.5 Disposal: CATC -> drum Observations Time Water Clarity (Visual) 14.24 1400 Surging: furbid 1435 V. furbid 1435 V. furbid 1445 Clear 1341 Clocotate Bookh Furbid		Developm	nent Details			
Gallons in well Surge method Surge and purge Pump used Mega Monston Tubing used (ft) Depth to Water After Development (feet below top of casing): Total Depth of Well After Development (feet below top of casing): Observations Time Water Clarity (Visual)	water in well	8.04	Time pump	ing started	1330	
Surge method Surge and purge Pump used Mega Monsoon Tubing used (ft) Tru Poly 20 ft. Depth to Water After Development (feet below top of casing): Total Depth of Well After Development (feet below top of casing): Time Water Clarity (Visual) 1433 V. fur bid dork moun 1435 Surging (446 Sagisted fubid 1435 Cloudly brow 1340 Clear > surging (lowered) 1445 Clear	s per foot	0.17	Flow rate (g	jal/min)	0.7	
Pump used Mega Honsoon Time pumping ended 1945 Gallons Pumped 52.5 Disposal: GAC -> drym Depth to Water After Development (feet below top of casing): Total Depth of Well After Development (feet below top of casing): Observations Time Water Clarity (Visual) Time Water Clarity (Visual) Time Water Clarity (Visual) 1332 v. fur bid dork brown 1335 stightly furbid -> surging 1416 stightly furbid 1336 v. furbid 1340 clear -> surging (lowered) 1341 clocotate brown 1341 clocotate brown 1341 clocotate brown 1445 clear	s in well	37	Flow-rate m	easurement m	ethod:	
Time Water Clarity (Visual)	Mark the life to the second second second	and purge	ϵ	oz bot	163	
Tubing used (ft) Trw Poly 20 ft. Gallons Pumped Disposal: GAC -> drym Depth to Water After Development (feet below top of casing): G. 31 Total Depth of Well After Development (feet below top of casing): 14.24 Observations Time Water Clarity (Visual) Time Water Clarity (Visual) 1332 v. fur bid, dark brown 14 hb surging turbed 14 hb surging 14 hb say furbid 13 ho clear -> surging (lowered) 14 hb surging harbid 14 hb surging	11 11	lonsbon	Time pump	ing ended	1445	
Disposal: CAC -> drym Depth to Water After Development (feet below top of casing): Total Depth of Well After Development (feet below top of casing): Observations Time Water Clarity (Visual) Time Water Clarity (Visual) Time Water Clarity (Visual) 1332 v. fur bid dark brown 1443 surging furbid 1355 stightly furbid -> surging 146 stightly furbid 1435 cloudy brown 1340 clear -> surging 160wered 1445 cloudy brown 1341 clocotate brown 1445 cloudy	- I P	oly 20\$1.			52.5	
Depth to Water After Development (feet below top of casing): Total Depth of Well After Development (feet below top of casing): Observations		0	Disposal:	GAC	-> dryr	n
Time Water Clarity (Visual) 1332 v. fur bid, dark brown 1443 surging 1446 sagetta furbid 1356 v. furbid 1350 v. furbid 1340 clear -> surging (lowered) 1445 clear 1445 clear			534444		2 /	
Time Water Clarity (Visual) 1332 V. fur bid, dark brown 1335 Stightly furbid > surging 1416 Stightly furbid 1340 Clear > surging (lowered) 1445 Clear 1341 Chocotate brown 1445			200000 Tibel 18.			
Time Water Clarity (Visual) 1332 v. fur bid, dark brown 1335 stightly furbid > surging 1445 surging 1416 stightly furbid 1336 v. furbid 1340 clear > surging 16owerd 1445 cloudly; brown 1341 clocotate brown furbid	epth of Well After De	velopment (feet below to	op of casing):		1-24	
Time Water Clarity (Visual) 1332 V. fur bid, dark brown 1335 Stightly furbid > surging 1415 Surging: furbid 1336 V. furbid 1340 Clear > surging (lowered) 1445 Clear 1341 Chocotate brown Time Water Clarity (Visual) 1445 Surging: furbid 1445 Cloudy: brown 1341 Clocotate brown Time 1445 Surging: furbid 1445 Cloudy: brown 1341		Obso	ryations			
1332 v. turbid, dark brown 1480 surgery: turbid 1335 stightly turbid > surging 1416 stightly turbid 1435 cloudly; brown 1340 clear > surging (lowered) 1445 cloudly; brown 1341 clocotate brown turbid		Obser	I Vacions	1		
1332 v. turbid, dark brown 1480 surgery: turbid 1335 stightly turbid > surging 1416 stightly turbid 1435 cloudly; brown 1340 clear > surging (lowered) 1445 cloudly; brown 1341 clocotate brown turbid						
1335 stightly turbed surging 1416 stightly turbed 1336 v. turbed 1435 cloudly; brow 1340 clear -> surging (lowered) 1445 cloudly; brow 1341 clocotate brown turbed	me Water Cla	arity (Visual)	Time	Wate	r Clarity (Visu	ıal)
1335 stightly turbed surging 1416 stightly turbed 1336 v. turbed 1435 cloudly; brow 1340 clear -> surging (lowered) 1445 cloudly; brow 1341 clocotate brown turbed	2 v. turb?	d dark brown	1423	surana.	turbid	prowr
1340 clear -> surging (lowered) 1445 cloudly; brow 1341 clocotate brown turbid		trobad souran	9 1416	3Bg OHO	heibid	brown
1340 clear -> surging (lowered) 1445 clear	0 0		1435	stouble	1	
1341 chocotate brown turbid	0 10.10	10	11/11/15	0 6	1	on wo
				clean		
1351 Scightly fulled barreing	0	He brown two	l'a'			
	51 stighte	y fulbod > surgi	ng			
1352 tulbre, brown	52 tulbre	, brown	0			
1358 slightly turbsel + surging	58 stiglitte	turbel sour	jug			
B59 lowered to bottom y tusted	19 lowered	to bottom v tus	121			
	000	1				
	turbid.					
NOTES:	08 turbid					
WELL CASING VOLUMES						
		WELL CAS	SING VOLUMES	6		
Diameter of Well [ID-inches] 11/4 2 3 4 6 Gallons per lineal foot 0.08 0.17 0.38 0.66 1.5	S: r of Well [ID-inches]	11/4 /2	3			8 2.6

vy

WELL DEVELOPMENT LOG

Owner-Client DO	TAPF AL	N	Well No.	21AKN-	Mw-r	14-45
Location AC	Store		Project No	10258	1	
	cast		Date	8/22		
Development Personnel	VTY, JLD					
Diameter and Type of Ca	sina:	2	PVC	T		
Total Depth of Well Before			The Control of the Control	47.44		
Depth to Water Before D				14.68		
Depth to Screen Top and	그런데 보고 없는 그런 모이라는 이상이다.			Top: 39,7	a Bottom:	44.50
		velopment				
Feet of water in well	32.76		Time pumpi	ng started	1325	
Gallons per foot	0.17		Flow rate (g		0.65	
	57			easurement me		
Surge method Surge	1			8 07 bot	0	
Pump used Mega	1.4	Je	Time pumpi	901	1550	
Tubing used (ft)	Poly 607	4	Gallons Pun		55	
rubing dood (it)	1000	1.	Disposal:		drum	
			54.22.5.53.5.			
Depth to Water After Dev	velopment (feet belo	w top of cas	ing):	14.7	6	
Total Depth of Well After	Development (feet	below top of	casing):	47.4	4	
ASSESSMENT OF STREET						
		Observat	ions			
Time 10/c4c	- Olavitu () (iaual)		Time	\\/\ata	· Clarity () (ia	····ol\
	r Clarity (Visual)			1 1	Clarity (Vis	
1330 V. tust	4 7	. Guyana	1421	V. turbid	prow	
1340 turbi	d, brown -	surging	1435	turbod	brow	-
1342 V. fur	bid brown	40	1440	stighte	temb?	d
1350 5694	they trybod >.	surging	1450	cloudy		
1351 v. fus	bid brown	00		0		
1405 stight	ly feer bird son	reneg				
1407 freiba	()	00				
1413 -Balt		Ata				
14 11:	Cy turbid, bro	->54 rg	-			
	id, brown					
1420 Scal	it by feedbook	& surging				
NOTES:	V	00				
NOTES.						
	.212					
Diameter of Well [ID-inches]	1½	LL CASING	VOLUMES 3	4	6	8
Gallons per lineal foot	0.08	0.17	0.38	0.66	1.5	2.6
		1				

0 000	OUT SUE	AKN	Well No.		-MW-04	- 25
Owner-Client Location	AC Store	AFR	Project No		32-011	00
Weather	ragn, 50°F		Date	-	2121	
Development	1 1 1	, JLD	Buto	- 0/8	arun	
Diameter and	Type of Casing:	2"	PVC			
	Well Before Develop			87.85		
Depth to Wate	er Before Developmen	nt (feet below to	p of casing):	13.83		
Depth to Scre	en Top and Bottom (fr	om Constructio	n Log):	Top: 79.	16 Bottom:	83.94
		Develop	ment Details			
Feet of water	in well 44.	02	Time pumpi	ng started	0940	
Gallons per fo	oot	17	Flow rate (g	al/min)	0.6	
Gallons in wel	12.5			easurement	method:	
Surge method	surge and	ourge		3 02 0	ир	
Pump used	Hega Monsoo	41	Time pumpi		1310)
Tubing used (ft) Thu Poly	100 ft.	Gallons Pur		110	
	9		Disposal:	GAC	-> drum)
Time	Water Clarity (Vi	isual)	Time	Wa	ter Clarity (Vis	ual)
0940	v. turbid are	4	1140	tur bro	d, grey	
0950	v. turbid gra	24 -> 84cm/200	1310	turbac	1 grey	-
1007	turbid grey	0 0			00	
1010	turbid grey	-> surging				
1012	v. turbid area	VV				
1020	turbad, gre	Jan				
1040	turbed are	0	9.			
1050	v. turbod and		0			
1100	car bettery	died				
1130		d; v.tyrbid, q	rey			
NOTES:		18.4	0			
		WELLC	ASING VOLUMES			
Diameter of Well	[ID-inches]	11/4	2 3	4	6	8
Callena per linea	I foot	0.09	17 0.38	0.66	1.5	26

Well No. 2/AKN-HW-04-85

vyy

WELL D	EVELOPMENT LOG
Owner-Client AKN DOT Location Clarke's Smort Shap Weather Elear 400 F Development Personnel VT7	Well No. 21AKN - HW - 05 - 15 Project No 102582 - 011 Date 8/28/21
Diameter and Type of Casing: Total Depth of Well Before Development (feet Depth to Water Before Development (feet below)	ow top of casing): 3.55
Depth to Screen Top and Bottom (from Constru	uction Log): Top: 10, 27 Bottom: 15,05
Deve	elopment Details
Feet of water in well Gallons per foot Gallons in well 1.87	Flow rate (gal/min) Flow-rate measurement method:

Surge method Pump used Time pumping ended Gallons Pumped Tubing used (ft) Disposal:

3.56 Depth to Water After Development (feet below top of casing):

Total Depth of Well After Development (feet below top of casing):

Observations

Time	Water Clarity (Visual)	Time	Water Clarity (Visual)
1035	turbed > surgering	1110	slaghtly her bad, grey > surger
1036	v turbed arey	1111	furbol grey
1042	cloudy grey-surging	1121	cloudy 0
1048	turbed after	1130	clear
1047	cloudy apply > lower and sure		
1048	v. turbid area and sure		
1057	plear - surang		
1058	turbed grey		
1105	slightly turbed grey and surge		
1106	V. terbid green and surge		

NOTES:

WELL CASING VOLUMES

Diameter of Well [ID-inches]	11/4	(2)	3	4	6	8
Gallons per lineal foot	0.08	0.17	0.38	0.66	1.5	2.6

Gallons in well

Total Depth of Well Before Development (feet below top of casing): Depth to Water Before Development (feet below top of casing): Depth to Screen Top and Bottom (from Construction Log): Top: 77.92 Bottom: 82.70 Development Details Feet of water in well Time pumping started
Total Depth of Well Before Development (feet below top of casing): Depth to Water Before Development (feet below top of casing): Depth to Screen Top and Bottom (from Construction Log): Top: 77. 92 Bottom: 82.76 Development Details Feet of water in well Time pumping started
Depth to Water Before Development (feet below top of casing): Depth to Screen Top and Bottom (from Construction Log): Top: 77, 92 Bottom: 82, 76 Development Details Feet of water in well Time pumping started
Depth to Screen Top and Bottom (from Construction Log): Top: 77, 92 Bottom: 82, 76 Development Details Feet of water in well Time pumping started
Feet of water in well Development Details Time pumping started 1950
Feet of water in well Saloo Time pumping started (450)
Gallons per foot Flow rate (gal/min) 0.65
Gallons in well
Surge method surge 8 07 bottle
Pump used Mega Monsbon Time pumping ended 1718
Tubing used (ft) 1 the Poty 100 Ff. Gallons Pumped 96
O Disposal: GAC -> drum
Total Depth of Well After Development (feet below top of casing): Observations
Time Water Clarity (Visual) Time Water Clarity (Visual)
1450 Weturbod gray 1545 turbod & surge
1500 V-tubod after - sures 1547 V. terbiel arey
1505 W. tuibrel 1620 turbrel scarge
1515 Viturbood 1623 Viturbood, grey
1520 turbed -> suge (+ lower) 1653 turbed
1521 V.V. turbord 1703 Lurbord
1525 turbed > surge 1716 turbed
1526 V. turbid
1531 techood - lower-surge
1532 V.V. tulbod
NOTES: 0.37 TOE to TOM

MY

2

0.17

11/4

80.0

WELL CASING VOLUMES

3

0.38

4

0.66

6

1,5

8

2.6

Diameter of Well [ID-inches]

Gallons per lineal foot

Owner/Client Location Sampling Personnel	AKN DO	T				Project No. Date Well	102582-01, 8/25/21
Weather Conditions	rafu	А	ir Temp. (°F)	50	Ti	Time started me completed	1535
		1-01 (w-101 -03	Time	1508 1458 1800			
Purging Method Pumping Start Purge Rate (gal./min.) Pumping End Pump Set Depth Bel	1440 0.3 1508	<u>600</u> n		ate Total D red Total D Dej Depth to Id	epth of Well epth of Well oth to Water ce (if frozen) Feet of G	ype of Casing Below MP (ft.) Below MP (ft.) Below MP (ft.) Below MP (ft.) Water in Well allons per foot	2" PVC 15 14.05 4.55 7.6 0.14 1.245
Monument Condition	aood		Purge Wate		GAC	Volume (gal.) _ -> drum	8
Casing Condition	good						
	Top of Casing (TO sing to monument (to ground surface ((ft.) 0.6	Monument	type:	Stickup	Flushmount	
<u>→</u> Well name	nt and operational legible on outside c frost-jacking	n/a of well <u>hon</u>	e				
Notes	3.8 gal +	or 3	well v	olumes			
		WELL C	ASING VOL	JMES			
Diameter of Well [ID-inches]		11/4	// 2	3	4	6	8
Gallons per lineal foot		0.08	0.17	0.38	0.66	1.5	2.6

vyy

M

Well No. 21AKN-MW-01

Field Parameter Instrument_	YSI pro plus D	Circle:	Parameters stabilized	>3 Well volume purged
Sample Observations				
Notes				

FIELD PARAMETERS [stabilization criteria]

Time	Temp. (°C) [± 0.2 °C]	Dissolved Oxygen (mg/L) [± 10%]	Conductivity (µS/cm) [± 3%]	pH [± 0.1]	ORP (mV) [± 10mV]	Turbidity (±10%)
1447	7.9	11.1	138.8	6.30	219.3	clas
1450	8.7	11.7	144.8	6.28	215.4	
1453	8.5	10.7	148.0	6.30	212.1	
1456	7.9	13.0	145.0	6.30	211.5	
1459	4.9	14.1	141.8	6.32	210.9	
1502	7.8	15.0	140.9	6.33	209.4	V
1505	0.0	15.4	140.5	6.35	209.1	V
1508	Sample					
	-					
	h I				/	

Laboratory SGS; Test America

Analysis	Sample Containers	Preservatives
PFCs WS-LC-0025	2×250 ml	none
PFOS / PFOA WS-LC-0025	2x250 mL	none
DRO AK 102 / RRO	2x250mL amber	HCI
GRO	3×40 me 100	Hee
BTEX	2×40 mc vog	HEC
PAH,	2 x 250 me ausbor	none

M

24

/Clicat	AKN	noT					Project No.	102582-01
Owner/Client _ Location	ALN	10.			A COUNT		Date	1.00
Sampling Personnel		0	UE GALLEY	52000000	N. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		Well	21AKN-HW
Weather Conditions	ram		Air T	emp. (°F)	50		Time started	1545
vveather conditions_	TOIN	He divide	1,477			Tin	ne completed	1645
Sample No Duplicate _ Equipment Blank _	21AKN-	MW-06	2	Time				
Duplicate_				Time_			and the second of	
Equipment Blank	an AKN-	EB-0	7	Time	1000			
Pump	Mega H	lonsoon						
Purging Method	The second secon	dedicated p	oump		Dia	ameter and Ty	ype of Casing	2"PUC
Pumping Start		dodrodiog p		Approximat	te Total D	epth of Well E	Below MP (ft.)	15
이 사람들이 되었다. 그 사람이 되었다면 되었다면 그렇게 하는데 하나 아니는 데데 되었다. 특				Measure	ed Total D	epth of Well E	Below MP (ft.)	13.83
Purge Rate (gal./min.)				Modean			Below MP (ft.)	6.27
Pumping End	1610						Below MP (ft.)	17-1-1
	OW MD (ft.)	10		3 1	Jopan to K		Water in Well	7.56
Pump Set Depth Bel							allons per foot	0.17
	Tubing (ft.)						allons in Well	13
TruPoly	Tubing (ft.)	20					Volume (gal.)	
			-	Duras Motor			-> drum	
Monument Condition	and			ruige vvalei	г <i>Б</i> ізроза	Offic		
Worldment Condition	0						CANAL LAND	The last to
Cooling Condition	annel		5 - 5 - V		- A			
Casing Condition	1000	aya da da	Action 10		that go	778.3-111	TARK BETTARE	
			117		to desir is	Carta es Virginia		
Wiring Condition						4. 31. 37.		
(dedicated pumps)			- 1			7 0 70 1111		
					The State of the S	Otial	/ Flushmaus	
Measuring Point (MP)	Top of Casing	g (TOC)			ent type:	Stickup	/ Flushmount	
			Me	easurement	method:	Rod & level	/ Tape measu	ire
Top-of-casing to mor	nument (ft.)	0.81				italogger type		
Monument to ground	surface (ft.)	flush				ogger serial #		All the sold from
				Mea	asured cal	ole length (ft.)	n/a	
□ Lock prese	ent and operati	onal h/a						
	legible on out							
	of frost-jacking	side of wen						
Evidence o	or most-jacking							
Notes	And the state of					W. 19 19 19 19		
THE RESERVE OF STREET		The State of the S	3.4				T V	1.
	29(8) 6(6) 14 (1) 2			146 (1)	0.130			
		CYNES A	9 4 1	4-3-55	1		and which the	
		10	/ELL CA	SING VOLU	IMES			
Diameter of Well (ID Inches		CMT	11/4	2	3	4	6	8
Diameter of Well [ID-inches			0.08	0.17	0.38	0.66	1.5	2.6
Gallons per lineal foot		0.000253	0.08	0.17	0.00	3.00		

VM

Well No. 21AKN-MW-02

Field Parameter Instrument	YS1	Pro D	Circle one	: Parameters stabilized	or >3	well vo	lumes purgea	
Sample Observations					1			3 5 2
Notes	e A The T				2:	1 (F , M. 27)	super the set	

FIELD PARAMETERS [stabilization criterial

Time	Temp. (°C) [± 3%]	Dissolved Oxygen (mg/L) [±10%]	Conductivity (µS/cm) [± 3%]	pH [± 0.1]	ORP (mV) [± 10 mV]	Water Clarity (visual)
1603	7.6	29.9	77.5	6.35	230-9	clear
1606	7.8	28.7	78.1	6.33	227-6	clear
1609	4.9	27.7	78.3	6.32	225.3	clear
1612	7.9	27.9	78.0	6.32	224.0	clear
1615	8.0	28.3	78.2	6.32	222,3	clar
1618	sampt	2			Mark Services	
		N. A.			25.77	CARLIN THE STATE OF
	and the second		ACCEPTAGE OF THE		10 A TO 10 A	
		Thes. In white		Variable 1		
4					187	
		*				to the peaking to
						TATES A CANADA SA TOP SA
				62		
	7					
						The World of the last

Laboratory	SGS	
------------	-----	--

Analysis	Sample Containers	Preservatives	Du
PFASX13	2x 250me	none	П
DROIRRO	2x 250ml amber	HCC	_
GRO	3x 40 ml voa	Hee	_
BTEX	3x 40 me voa	the	_
PAH	dx 250 we auter	none	

544

Owner/Client	AKN	DOT		mat 1				102582-0
Location	AKN		190				Date	
Sampling Personnel		ILD	777					21AKW-M
Weather Conditions	overc	98-	Α	ir Temp. (°F)	50	Tin	Time started ne completed	
Sample No	21AKN	1-MW-0	3	_ Time _ Time	1720			
Duplicate _ Equipment Blank _				_ Time_	1800			
Pump	Hega Ho	กรอง n						
Purging Method			ump		Di	ameter and Ty	pe of Casing	2" puc
Pumping Start				Approxima	te Total D	epth of Well E	Below MP (ft.)	15
Purge Rate (gal./min.)							Below MP (ft.)	14.25
Pumping End							Below MP (ft.)	
Pumping End_	1700						Below MP (ft.)	-
D. Cat Darth Bale	MD /ft \	125		in the state of	Jopan to .		Water in Well	8.03
Pump Set Depth Belo KuriTec 3	Tubing (ft.)	10.					allons per foot	
Kurri ec	Tubing (It.)	30					allons in Well	
TruPoly	Γubing (ft.)	20					Volume (gal.)	
				Purge Wate				
				Fulge Wate	Disposa	0110		
Monument Condition	9000					A STATE OF THE STA		
		20.001 (20.00)		<u> </u>				
Casing Condition	9000						A CONTRACTOR	
	0					8 3 4 2 4 4 1 4 1 4 1		
Wiring Condition							Character State	
(dedicated pumps)			1111		- STILL		439 MEA	
Measuring Point (MP)	Top of Ca.	sing (TOC)		Monum	ent type:	Stickup	/Flushmount	
Modouring , our (iii)	ay day and the			Measurement	method:	Rod & level	/ Tape measu	ure
Top-of-casing to mon	ument (ft)	0.69			Da	talogger type	n/a	
Monument to ground s	union (it.)	1Pul	A	7		ogger serial #		The Later Street
Monument to ground s	sunace (it.)	+0450	_	- Mar		ole length (ft.)		
				IVIE	asureu ca	ole length (it.)	11/4	
	THE RESERVE THE PARTY OF THE PA	ational h/q						
		utside of well						
Evidence of	f frost-jacki	ng						
Notes		Side of the fact of	100	the state of	1	1 1 1 1 1 1 1 1 1 1 1 1		
		A						
		and the st				CAN THE REAL PROPERTY.		
	I Long to	Part III and				J. W. Share	- T. B. D.	W. Carlot
	NY WAR	No Mark 18		70.000				State of the state
		WI	ELL	CASING VOLU	JMES			Allega III
Diameter of Well [ID-inches]	1.6	СМТ	11/4	//2	3	4	6	8
			0.08	(0.17)	0.38	0.66	1.5	2.6
Gallons per lineal foot	W. C. Co. A.	0.000255	0.00	0.17	0.00		Maria a rak hara	

VPY

Well No. 21AKN-MW-03

Field Parameter Instrument	451 D	Circle one: Parameters stabilized or >3 well volumes purged	
Sample Observations			_
Notes	0		

FIELD PARAMETERS [stabilization criteria]

Time	Temp. (°C) [± 3%]	Dissolved Oxygen (mg/L) [±10%]	Conductivity (µS/cm) [± 3%]	pH [± 0.1]	ORP (mV) [± 10 mV]	Water Clarity (visual)
1705	4.3	2.7	193.2	6.05	131.0	rear brown stam
1708	7.7	2.4	193.0	6.09	122.0	
1711	7.8	2.2	192.7	6.11	116.2	
1714	7.9	2.1	193-1	6.13	110.8	Company of the second
1717	7.9	2.1	193.2	6.13	109.1	V
1720	sample				1 - W - 1	
					7 . 6	
1 - 0 - Fe		Name and a second				
	1				1	
					File and the	
			V ! ! ! ! ! !	1 15	(
		and the line				
		Act Established			K In the	
		The state of the s			1 2 2	The Artest School are
				'(This is the factor
						70.

Laboratory	SGS	

	Analysis	Sample Containers	Preservatives	Dup
M	PFASX18	2×250ml	none	0
1	GRO	3x 40me vog	HCC	
0	DRO/RRO	2x 250me amber	HCE	0
1	BTEX	3×40ml voa	HCE	_
de	PAH	2x 250mc amber	none	_

VTY

Owner/Client	AKN DOT			Pro	ject No. 21AKN-1
Location	closeres 5x	port shop	- Constitution		Date 8128121
Sampling Personnel	199			,	->Well 102582-
Weather Conditions	sunny	Air Temp. (°F)	50°F		e started 1300 mpleted 1430
Duplicate	21AKN-HW-10 21AKN-HW-10 21AKN-MM FB	25-15 Time	1411 1401 1800 on	8/25/21	
Purging Method Pumping Start Purge Rate (gal./min.) Pumping End Pump Set Depth Belo	1335 -> 1338 11 -> 0.1 1412	<i>pump</i> Approxima Measur	ate Total Dep ed Total Dep Depth Depth to Ice	Gallons	MP (ft.) 15 MP (ft.) 14.57 MP (ft.) 3.56 MP (ft.) 44.64 r in Well 1.04 per foot 0.17 s in Well 1.87
				rge Water Volur	
Monument Condition Casing Condition	0 1	Purge Wate			
Wiring Condition (dedicated pumps)					
Measuring Point (MP)	Top of Casing (TOC)	Monum Measurement		tickup / Fl& Pod & level / Tag	shmoun) 66 measùre
Top-of-casing to mor Monument to ground s	nument (ft.) - 0.5 surface (ft.) + Cost	<u>\</u>		ogger type ger serial # length (ft.)	n/a n/a n/a
	ent and operational legible on outside of well				
	of frost-jacking	no			
	of frost-jacking		all mo	n to ct	6ar
<u> </u>	d for 3 mi	in @ 19		n to ct	6ar
Notes purge	d for 3 mi	vell casing vol	UMES		
<u> </u>	d for 3 mi	in @ 19		4 0.66	6 8 1.5 2.6

MY

Well No. 21AKN -MW-05-15

Field Parameter Instrument	451	(rental)	Circle one: Parameters stabilized or >3 well volumes purged
Sample Observations		,	
Notes			

FIELD PARAMETERS [stabilization criteria]

		1112	LD PARAMETERS (St	abilization ci	iteriaj	
Time	Temp. (°C) [± 3%]	Dissolved Oxygen (mg/L) [±10%]	Conductivity (µS/cm) [± 3%]	pH [± 0.1]	ORP (mV) [± 10 mV]	Water Clarity (visual)
1338	7.22	300 (.10	643	6.35	-6.8	clear
1341	8.34	0.99	658	6.42	-19-3	
1344	8.45	0.87	656	6.46	-30.7	
1347	8.59	0,83	661	6.47	-32.6	The second second
1350	8.62	0.43	669	6.47	- 36.8	
1353	8.81	0.66	671	6.47	-34.2	
1356	8.67	0.61	676	6.47	-26.7	
1359	8.69	0.57	678	6.47	-26.7	
1402	8.71	0.47	677	6.47	-28.1	
1405	8.61	0.48	6.49	6.48	-28.8	
1408	8.61	0.47	648	6.48	-29.4	1
1411	30mp6					
	Carlotte St.		- V		1	The Section of Manager 1985
						a first skeda
						The State of the S
				200	145 145 1	The second secon
			7.11			
-						13 72
		* * * * * * * * * * * * * * * * * * * *				

Analysis	Samula Cantainana		119
Analysis	Sample Containers	Preservatives	Du
P1775 X18	2×250me	-	2
			_
			_

1974

	FEN DOT 8	SPF				Project No.	102582-
Location	TCN					Date	8/28/21
Sampling Personnel	V79			2.70		Well	21AKN-HU
Weather Conditions	Sunny	Aiı	r Temp. (°F)	600	Tin	Time started ne completed	1400
Sample No. 2 Duplicate Equipment Blank 2.		3	_ Time Time	1800 on	8125121 0 175	o	
				0316			
Pump Purging Method Pumping Start Purge Rate (gal./min.) Pumping End	ortable / dedicate 1 + 18 0 . 1	ed pump		ate Total D red Total D Dep	epth of Well E epth of Well E oth to Water E	ype of Casing Below MP (ft.) Below MP (ft.) Below MP (ft.) Below MP (ft.)	83.55 0.51
Burner Cat Daniel Balance	MD (G) Q1			Depth to it	And the second s	Water in Well	40.70
Pump Set Depth Below KuriTec Tul		- 1				allons per foot	
	oing (ft.) 100	-0				allons in Well	
Truroly rul	mig (it.) 700	-				Volume (gal.)	
			Purge Wat		GAL		3. 7
Monument Condition	apod		r dige vva	Ci Dioposai	- 0/10		
Casing Condition —	1000						
Casing Condition	100						
Wiring Condition (dedicated pumps)	/				0.000		
Measuring Point (MP)7	op of Casing (TOC)	- 1	Monur /leasuremen	nent type: t method:		/ Flushmount / Tape measu	
Top-of-casing to monum	nent (ft) -0.5	37		Da	talogger type	n/a	
Monument to ground surf	10111 (11.)		-		gger serial #	771.70	
Worldment to ground sun	ace (it.)	51	– Me		le length (ft.)		
	ible on outside of w	(1					
Notes		1					
12							
1		Jane L	A Property of				
	1. 7. 2.3	1	ASING VOL	1			
Diameter of Well [ID-inches]	CMT	11/4	/ 2	3	4	6	8

my

Well No. 21AKN-MW-05-

Field Parameter Instrument	451	rental	Circle one: Parameters stabilized or >3 well volumes purged
Sample Observations		- 11-11-11	
Notes			

FIELD PARAMETERS [stabilization criteria]

Time	Temp. (°C) [± 3%]	Dissolved Oxygen (mg/L) [±10%]	Conductivity (µS/cm) [± 3%]	pH [± 0.1]	ORP (mV) [± 10 mV]	Water Clarity (visual)
1718	5.69	9.31	113	8.35	-89.0	turbid
1721	6.82	1.84	1/3	8.32	-123.3	
1724	6.86	1-11	113	8.31	-131.5	
1727	6.88	0.80	111	8.30	-134.5	
1730	6,73	0.65	1/1	8.33	-135.0	
1733	6.92	0.53	112	8.35	-169.8	
1736	6.95	0.51	112	8.37	-166.4	
1732	F0.F	0.39	113	8.36	-161.7	
1742	6.85	0.38	114	8.37	-166.3	
1748	Sample	0.36	114	8,37	-163.6	- V
1750	Ticheren	1 sample				

Sample Containers	Preservatives	Dup
2×250me		旦
		旦
		旦
		旦
	Sample Containers	Sample Containers Preservatives

Laboratory SGS

VTY

Sample No.	Owner/Client	11.70	SPF	4 -			Project No. Date	102582-01
Weather Conditions Sunny Air Temp. (°F) 60 Time started 4400 Time completed 1530		- 6 -	FN		-	-	2012/10/10	
Sample No. Duplicate Equipment Blank Al ALV EB-03 Time 1518 Time Bay on 8/35/31 Pump Pumping Method particle / dedicated pump Pumping Start / 4540 Approximate Total Depth of Well Below MP (ft.) 45 Depth to Well Below MP (ft.) 47.55 Depth to Well Below MP (ft.)			Λ:	Tomp (°E)	60			
Duplicate Equipment Blank A/AVV - EB-O3 Pump Mess Horson Purging Method potable / dedicated pump Pumping Start /440 Purge Rate (ag.1/min.) 0.4 Pumping End 4540 Pump Set Depth Below MP (ft.) 42 KuriTec Tubing (ft.) 55 Pump Set Depth Below MP (ft.) 43 KuriTec Tubing (ft.) 55 Monument Condition Casing Condition Wiring Condition (dedicated pumps) Measurement method: Wiring Condition (dedicated pumps) Measurement method: Wiring Condition (dedicated pumps) Measurement method: Wiring Condition Wiring Condition Casing Condition Wiring Condition Well Lock present and operational Well name legible on outside of well Evidence of frost-jacking Notes Fan For A4 min A gall min to clear WELL CASING VOLUMES Diameter of Well [ID-inches] CMT 1½ 2 3 4 6 8	vveatner Conditions	anny	All	remp. (F)	60		I M. TO MAN AND DELEVATION	
Purging Method partials / dedicated pump Pumping Start / 1410 Approximate Total Depth of Well Below MP (ft.) 47. 43 Approximate Total Depth of Well Below MP (ft.) 47. 43 Approximate Total Depth of Well Below MP (ft.) 47. 43 Depth to lee (if frozen) Below MP (ft.) 47. 45 Depth to lee (if frozen) Below MP (ft.) 47. 55 Depth to lee (if frozen	Duplicate			Time		en 8/25	5/21	
Purge Rate (gal/min.) O.1 Pumping End 4520 Pumping End 4520 Pump Set Depth to Water Below MP (ft.) 43 Kurī er Tubing (ft.) Gallons in Well TruPoly Tubing (ft.) 55 Purge Water Disposal GAC -> Jrum Monument Condition Casing Condition (dedicated pumps) Measuring Point (MP) Top of Casing (TOC) Monument to ground surface (ft.) 3.18 Lock present and operational Well name legible on outside of well Evidence of frost-jacking Notes Well casing Volumes Well Casing Volumes Well Casing Volumes Well Casing Volumes Well (ID-inches) CMT 11/4 2 3 4 6 8	Purging Method po	rtable / dedicate				And the second of the second o		
Depth to Water Below MP (ft.) 4.55 Pump Set Depth Below MP (ft.) 4.55 Pump Set Depth Below MP (ft.) 4.55 RuriTec Tubing (ft.) 55 RuriTec Tubing (ft.) 66 RuriTec Tubing (ft.) 75 Purge Water Disposal 66 Purge Water Disposal 66 Purge Water Disposal 76 RuriTec Tubing (ft.) 75 Purge Water Disposal 76 Purge Water D	그리는 그들을 하는 기본을 보다면 얼마를 만든 하는 것이 되었습니다.	440				because of the second of the second of		
Depth to Ice (if frozen) Below MP (ft.) 43 RuriTec Tubing (ft.) 55 RuriTec Tubing (ft.) 56 RuriTec Tubing (ft.) 56 Purge Water Disposal 6AC -> Jann Monument Condition (dedicated pumps) Measuring Point (MP) 10 of Casing (TOC) Monument type: 10 of Casing (Toc) / Flushmount Measurement method: Rod & level / Tape measure Top-of-casing to monument (ft.) 0.65 Monument to ground surface (ft.) 3. / 8 Datalogger type n/a Measured cable length (ft.) n/a Measured cable length (ft.) n/a Notes 10 of Casing 10 outside of well Evidence of frost-jacking 10 outside of well Evidence of frost-jacking 10 outside of well RuriTechnology (ft.) 10 outside of well RuriTechnology				Measu				
Pump Set Depth Below MP (ft.) 43 KuriTec Tubing (ft.) — Gallons per foot O.77 TruPoly Tubing (ft.) — Gallons per foot O.77 Gallons per foot O.77 Gallons in Well 5.6 Purge Water Volume (gal.) 6.6 Purge Water Disposal 6.6 Purge Water Disposal 6.6 Purge Water Disposal 7.7 Wiring Condition (dedicated pumps) Measuring Point (MP) Top of Casing (TOC) Monument type: Stickup / Flushmount Measurement method: Rod & level / Tape measure Top-of-casing to monument (ft.) 0.65 Datalogger serial # n/a Monument to ground surface (ft.) 3.18 Datalogger serial # n/a Measured cable length (ft.) n/a Lock present and operational Well name legible on outside of well Evidence of frost-jacking n/a Well name legible on outside of well Evidence of frost-jacking n/a Notes 6.6 Datalogger serial # n/a Measured cable length (ft.) n/a Well name legible on outside of well Evidence of frost-jacking n/a Well casing Volumes Well casing Volumes	Pumping End 15	540						19.55
RuriTec Tubing (ft.) Gallons per foot Gallons in Well 5.6	To Take Land Co. Act. I.	1.2			Depth to I			2000
TruPoly Tubing (ft.) 55 Gallons in Well 5.6 Purge Water Volume (gal.) 6.6 Purge Water Disposal 6.6 -> drum Monument Condition (dedicated pumps) Measuring Point (MP) Top of Casing (TOC) Monument type: Stickup / Flushmount Measurement method: Rod & level / Tape measure Top-of-casing to monument (ft.) 0.65 Monument to ground surface (ft.) 3.18 Datalogger serial # n/a Measured cable length (ft.) n/a Lock present and operational Well name legible on outside of well Evidence of frost-jacking Notes Well casing Volumes Well Casing Volumes Diameter of Well (ID-inches) CMT 1½ 2 3 4 6 8						10.8.8.1.7.1.		
Purge Water Volume (gal.) 6.6 Purge Water Disposal 6.6 -> drum Casing Condition Wiring Condition (dedicated pumps) Measuring Point (MP) Top of Casing (TOC) Monument type: Stickup / Flushmount Measurement method: Rod & level / Tape measure Top-of-casing to monument (ft.) 0.65 Datalogger type n/a Monument to ground surface (ft.) 3. /8 Lock present and operational Well name legible on outside of well Evidence of frost-jacking n)a Notes Fan For Mymm Q, I gall min to clear Well CASING VOLUMES Diameter of Well [ID-inches] CMT 11/4 2 3 4 6 8								
Monument Condition Casing Condition Wiring Condition (dedicated pumps) Measuring Point (MP) Top of Casing (TOC) Monument type: Stickup / Flushmount Measurement method: Rod & level / Tape measure Top-of-casing to monument (ft.) 0.65 Monument to ground surface (ft.) 3. /8 Datalogger type n/a Measured cable length (ft.) n/a Lock present and operational Well name legible on outside of well Evidence of frost-jacking Notes WELL CASING VOLUMES Diameter of Well [ID-inches] CMT 1½ 2 3 4 6 8	TruPoly Tub	ing (π.) <u>55</u>						
Monument Condition Casing Condition Wiring Condition (dedicated pumps) Measuring Point (MP) Top of Casing (TOC) Monument type: Stickup / Flushmount Measurement method: Rod & level / Tape measure Top-of-casing to monument (ft.) 0.65 Datalogger type n/a Monument to ground surface (ft.) 3.18 Datalogger serial # n/a Measured cable length (ft.) n/a Well name legible on outside of well Evidence of frost-jacking N)a WELL CASING VOLUMES Diameter of Well [ID-inches] CMT 1½ 2 3 4 6 8				Purge Wat		THE R. P. LEWIS CO., LANSING, MICH.		
Wiring Condition (dedicated pumps) Measuring Point (MP) Top of Casing (TOC) Monument type: Stickup / Flushmount Measurement method: Rod & level / Tape measure Top-of-casing to monument (ft.) Top-of-casing to monument (ft.) Monument to ground surface (ft.) Measured cable length (ft.) Measured cable length (ft.) Well name legible on outside of well Evidence of frost-jacking Notes Well casing Volumes Well casing Volumes Diameter of Well [ID-inches] CMT 11/4 2 3 4 6 8	Monument Condition	good		r digo rrut	o, Diopoda	0110		
Wiring Condition (dedicated pumps) Measuring Point (MP) Top of Casing (TOC) Monument type: Stickup / Flushmount Measurement method: Rod & level / Tape measure Top-of-casing to monument (ft.) Top-of-casing to monument (ft.) Monument to ground surface (ft.) Measured cable length (ft.) Measured cable length (ft.) Well name legible on outside of well Evidence of frost-jacking Notes Well casing Volumes Well casing Volumes Diameter of Well [ID-inches] CMT 11/4 2 3 4 6 8		0						
Measuring Point (MP) Top of Casing (TOC) Monument type: Stickup / Flushmount Measurement method: Rod & level / Tape measure Top-of-casing to monument (ft.) 0.65 Monument to ground surface (ft.) 3.18 Datalogger type n/a Datalogger serial # n/a Measured cable length (ft.) n/a Lock present and operational Well name legible on outside of well Evidence of frost-jacking n/a Notes ran for rymin all gall min to clear WELL CASING VOLUMES Diameter of Well [ID-inches] CMT 1½ 2 3 4 6 8	Casing Condition	2000						
Measuring Point (MP) Top of Casing (TOC) Monument type: Stickup / Flushmount Measurement method: Rod & level / Tape measure Top-of-casing to monument (ft.) 0.65 Monument to ground surface (ft.) 3.18 Datalogger type n/a Datalogger serial # n/a Measured cable length (ft.) n/a Lock present and operational Well name legible on outside of well Evidence of frost-jacking n/a Notes ran for rymin all gall min to clear WELL CASING VOLUMES Diameter of Well [ID-inches] CMT 1½ 2 3 4 6 8		0						
Measurement method: Rod & level / Tape measure Top-of-casing to monument (ft.) 0.65 Datalogger type n/a Monument to ground surface (ft.) 3.18 Datalogger serial # n/a Measured cable length (ft.) n/a Lock present and operational Well name legible on outside of well Evidence of frost-jacking n/a Notes ran for rymin a, l gall min to clear Well casing volumes Well casing volumes Diameter of Well [ID-inches] CMT 11/4 2 3 4 6 8								
Monument to ground surface (ft.) 3. 18 Datalogger serial # n/a Measured cable length (ft.) n/a Lock present and operational Well name legible on outside of well Evidence of frost-jacking n/a Notes ran for ry min a, l gal / min to clear WELL CASING VOLUMES Diameter of Well [ID-inches] CMT 11/4 2 3 4 6 8	Measuring Point (MP)	op of Casing (TOC)	V			The state of the s		
Monument to ground surface (ft.) 3. 18 Datalogger serial # n/a Measured cable length (ft.) n/a Lock present and operational Well name legible on outside of well Evidence of frost-jacking n/a Notes ran for ry min a, l gal / min to clear WELL CASING VOLUMES Diameter of Well [ID-inches] CMT 11/4 2 3 4 6 8	Top-of-casing to monume	ent (ft.) 0.65	5		Da	talogger type	n/a	
Measured cable length (ft.)			-	7	Datalo	ogger serial #	n/a	
Well name legible on outside of well Evidence of frost-jacking Notes Fan for Nymin (a), I gall min to clear WELL CASING VOLUMES Diameter of Well [ID-inches] CMT 11/4 (2) 3 4 6 8	Surface Filter All Villa dian			_ Me	asured cal	ole length (ft.)	n/a	
WELL CASING VOLUMES Diameter of Well [ID-inches] CMT 11/4 2 3 4 6 8	Well name legi	ble on outside of we						
Diameter of Well [ID-inches] CMT 11/4 2 3 4 6 8	Notes ran fe	or nymi	n @	, I ga	e/r	nin to	clear	
Diameter of Well [ID-inches] CMT 11/4 2 3 4 6 8								
Diameter of Well [ID-inches] CMT 11/4 2 3 4 6 8			WELLC	ASING VOI	UMES			
Dialifetei of vveii [ID-Intoles]	Diameter of Well IID-inches	CMT		10		4	6	8
	Gallons per lineal foot							2.6

44

Field Parameter Instrument	451	rental	Circle one: Parameters stabilized or >3 well volumes purged
Sample Observations		4.41.119.91	
Notes			

FIELD PARAMETERS [stabilization criteria]

Time	Temp. (°C) [± 3%]	Dissolved Oxygen (mg/L) [±10%]	Conductivity (µS/cm) [± 3%]	pH [± 0.1]	ORP (mV) [± 10 mV]	Water Clarity (visual)
1446	5.26	4.06	235	6.73	49:3	clear
1449	5.42	1,28	236	6.96	37.7	
1452	5.41	0.38	236	7.25	24.6	
1458	5.49	0.56	240	7.54	-9.4	
1504	5.97	0.44	236	7.64	-35.8	
1507	6.17	0.40	241	7.68	-47.8	
1510	6.15	0.40	241	7.68	-52.0	
1513	6.22	0.39	242	7.70	-54.2	
1516	6.19	0.37	242	7.73	-53.5	V
15/9	sample					
	_ `					

Analysis	Sample Containers	Preservatives	Dup
PFASX18	2×250me		□
			ㅁ
			<u></u>

1991

Laboratory SGS

D X

미미미

Owner/Client Al	KN DOT &	DE				Project No.	102582-011
	11 0 5	store					8/29/21
Sampling Personnel V	EN AC	STORE				Well	21AKN-HW-04-8
	. >= >= 1 -	Air	Temp. (°F)	60°		Time started	
Weather Conditions	inny	All	remp. (r)	20	Tir	me completed	
Purging Method Popularity Pumping Start Purge Rate (gal./min.) Pumping End Pump Set Depth Below MuriTec Tubic	AKN-EB- MP (e 21) MP (ft.) 85 Ing (ft.)	03 HLN-MU	Time Time U - 04-&	Diamete Total Dep	ameter and Tepth of Well oth to Water se (if frozen) Feet of G	Type of Casing Below MP (ft.) Below MP (ft.) Below MP (ft.) Water in Well allons per foot	2" PVC 85. 87. 75 13.51 (74.24)
TruPoly Tubi	ng (ft.) 100	<u> </u>				Sallons in Well Volume (gal.)	
Monument Condition Casing Condition Wiring Condition (dedicated pumps)	good		Purge Wat	ter Disposal	GAC	-> drum	
Measuring Point (MP)	p of Casing (TOC)		Monur leasuremen		Stickup Rod & level	/Flushmount /Tape meas	
	ce (ft.)	5,24	- - Ме	Datalo	alogger type gger serial # le length (ft.)	n/a	
Evidence of fros	r ~ 5 mg	ma a	1 gge	/ nim	to c	Car In	ot la fuprove ment
		WELL CA	ASING VOL	UMES			
Diameter of Well [ID-inches]	СМТ	11/4	/(2)	3	4	6	8
Callana per lineal foot	0.000253	0.08	0.17	0.38	0.66	1.5	2.6

m

Well No. 21AKN-MW-04-85

Field Parameter Instrument	951 rental Circle one: Parameters stabilized or >3 well volumes purged
Sample Observations	
Notes	

FIELD PARAMETERS [stabilization criteria]

Time	Temp. (°C) [± 3%]	Dissolved Oxygen (mg/L) [±10%]	Conductivity (µS/cm) [± 3%]	pH [± 0.1]	ORP (mV) [± 10 mV]	Water Clarity (visual)
1626	5.80	3.29	232	8.85	-62.4	Juibid
1629	5.71	2.03	231	8.90	-64.9	
1632	5.91	1.31	232	2.93	-70.1	
1635	5.85	1.06	232	8.95	-73.6	
1638	5.89	1.34	233	8.36	-75.5	
1641	5.76	1.10	232	8.97	-77.4	
1644	5.87	0.90	233	8.98	-81.5	
1647	5.73	1.00	232	8.98	-82.5	
1650	5.88	0.92	232	8.99	-84.5	V
1653	sample			12225		
1655	tilter	ed sample				

Laboratory	SGS		

	Analysis	Sample Containers	Preservatives	Dup
×	PFA5x18	2x 250me		
旦				旦
				<u>D</u>

Appendix C

Analytical Results

CONTENTS

- TestAmerica Laboratories, Sacramento and SGS North America, Inc. laboratory reports
- DEC laboratory data review checklists (LDRCs)

Case Narrative

SGS Client: Shannon & Wilson-Fairbanks

SGS Project: 1215191

Project Name/Site: 102582-011 AKN PFAS
Project Contact: Michael Jaramillo

Refer to sample receipt form for information on sample condition.

21AKN-SB-01(0'-1') (1215191001) PS

8270D - The LOQs are elevated due to sample dilution. The sample was diluted due to the dark color of the extract.

21AKN-SB-03(0'-1') (1215191006) PS

8270D SIM - The PAH LOQs are elevated due to sample dilution. The sample was diluted due to the dark color of the extract

MB for HBN 1824204 [XXX/45393] (1630486) MB

8270D SIM - PAH MB surrogate recovery for 2-methylnphthalene-d10 does not meet QC criteria. Surrogate recovery criteria is met in all associated batch QC and samples.

1215191003(1632506MS) (1632507) MS

8260D - MS recovery for Trichlorofluoromethane does not meet QC criteria. See LCS for accuracy requirements.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 09/01/2021 4:39:55PM

Report of Manual Integrations

<u>Laboratory ID</u>	Client Sample ID	Analytical Batch	<u>Analyte</u>	Reason
8270D SIM (PAH)				
1215191004	21AKN-SB-02(0'-1')	XMS12850	Benzo[b]Fluoranthene	RP
1633244	CCV for HBN 1824852 [XMS/12859	XMS12859	Benzo[b]Fluoranthene	RP

Manual Integration Reason Code Descriptions

Code Description Original Chromatogram 0 Μ Modified Chromatogram SS Skimmed surrogate Closed baseline gap BLG RP Reassign peak name PIR Pattern integration required ΙT Included tail SP Split peak **RSP** Removed split peak **FPS** Forced peak start/stop

Baseline correction **PNF** Peak not found by software

All DRO/RRO analysis are integrated per SOP.

Print Date: 09/01/2021 4:39:56PM

BLC

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICV Initial Calibration Verification
J The quantitation is an estimation.
LCS(D) Laboratory Control Spike (Duplicate)
LLQC/LLIQC Low Level Quantitation Check

LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference
TNTC Too Numerous To Count

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 09/01/2021 4:39:58PM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
21AKN-SB-01(0'-1')	1215191001	08/14/2021	08/16/2021	Soil/Solid (dry weight)
21AKN-SB-01(6.5'-7.5')	1215191002	08/14/2021	08/16/2021	Soil/Solid (dry weight)
21AKN-SB-101(6.5'-7.5')	1215191003	08/14/2021	08/16/2021	Soil/Solid (dry weight)
21AKN-SB-02(0'-1')	1215191004	08/14/2021	08/16/2021	Soil/Solid (dry weight)
21AKN-SB-02(6'-7')	1215191005	08/14/2021	08/16/2021	Soil/Solid (dry weight)
21AKN-SB-03(0'-1')	1215191006	08/14/2021	08/16/2021	Soil/Solid (dry weight)
21AKN-SB-03(7.3'-7.8')	1215191007	08/14/2021	08/16/2021	Soil/Solid (dry weight)
Trip Blank	1215191008	08/14/2021	08/16/2021	Soil/Solid (dry weight)

Method Description

8270 PAH SIM Semi-Volatiles GC/MS
AK102 Diesel/Residual Range Organics
AK103 Diesel/Residual Range Organics
AK101 Gasoline Range Organics (S)
SM21 2540G Percent Solids SM2540G

SW8260D Volatile Organic Compounds (S) FIELD EXT

Detectable	Results	Summary
------------	---------	---------

Client Sample ID: 21AKN-SB-01(0'-1')			
Lab Sample ID: 1215191001	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	38.0	mg/kg
	Residual Range Organics	334	mg/kg
Volatile Fuels	Gasoline Range Organics	1.79J	mg/kg
Client Sample ID: 21AKN-SB-01(6.5'-7.5')			
Lab Sample ID: 1215191002	Parameter	Result	Units
Volatile Fuels	Gasoline Range Organics	1.65J	mg/kg
Client Sample ID: 21AKN-SB-101(6.5'-7.5')			
Lab Sample ID: 1215191003	Parameter	Result	Units
Volatile Fuels	Gasoline Range Organics	1.48J	mg/kg
	Caseline Harige Organios	1.400	mg/kg
Client Sample ID: 21AKN-SB-02(0'-1')	_		
Lab Sample ID: 1215191004	<u>Parameter</u>	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	Anthracene	0.159J	mg/kg
	Benzo(a)Anthracene	0.323	mg/kg
	Benzo[a]pyrene	0.359	mg/kg
	Benzo[b]Fluoranthene	0.493	mg/kg
	Benzo[g,h,i]perylene	0.317	mg/kg
	Benzo[k]fluoranthene	0.130J	mg/kg
	Chrysene	0.499	mg/kg
	Fluoranthene	0.898	mg/kg
	Indeno[1,2,3-c,d] pyrene	0.215J	mg/kg
	Phenanthrene	0.600	mg/kg
	Pyrene	0.709	mg/kg
Semivolatile Organic Fuels	Diesel Range Organics	302	mg/kg
	Residual Range Organics	3250	mg/kg
Volatile Fuels	Gasoline Range Organics	1.41J	mg/kg
Client Sample ID: 21AKN-SB-02(6'-7')			
Lab Sample ID: 1215191005	<u>Parameter</u>	Result	<u>Units</u>
Volatile Fuels	Gasoline Range Organics	2.03J	mg/kg
Client Sample ID: 21AKN-SB-03(0'-1')			
Lab Sample ID: 1215191006	Parameter	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	210	mg/kg
3	Residual Range Organics	1900	mg/kg
Volatile Fuels	Gasoline Range Organics	1.71J	mg/kg
Client Sample ID: 21AKN-SB-03(7.3'-7.8')			
Lab Sample ID: 1215191007	Parameter	<u>Result</u>	Units
Semivolatile Organic Fuels	Diesel Range Organics	9.05J	mg/kg
Jenny Olaule Organic Fuels	Residual Range Organics	118J	mg/kg
Volatile Fuels	Gasoline Range Organics	1.50J	mg/kg
Client Sample ID: Trip Blank	-		
Lab Sample ID: 1215191008	Parameter	Popult	Units
Volatile Fuels	<u>Parameter</u> Gasoline Range Organics	<u>Result</u> 1.00J	mg/kg
Voiatile Fuels	Casonilo Mange Organics	1.000	mg/ng

Print Date: 09/01/2021 4:40:01PM

SGS North America Inc. 200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: 21AKN-SB-01(0'-1')
Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215191001 Lab Project ID: 1215191 Collection Date: 08/14/21 11:50 Received Date: 08/16/21 16:32 Matrix: Soil/Solid (dry weight)

Solids (%):85.6 Location:

Results by Polynuclear Aromatics GC/MS

1-Methylnaphthalene 0.0730 U 0.146 0.0364 mg/kg 5 08/18/21 07:03 2-Methylnaphthalene 0.0730 U 0.146 0.0364 mg/kg 5 08/18/21 07:03		Result Qual	1.00/01	D.			
2-Methylnaphthalene 0.0730 U 0.146 0.0364 mg/kg 5 08/18/21 07:03			LUQ/UL	<u>DL</u>	<u>Units</u>	<u>DF</u> <u>Limits</u>	Date Analyzed
3.3	phthalene (0.0730 U	0.146	0.0364	mg/kg	5	08/18/21 07:03
Acenaphthene 0.0730 U 0.146 0.0364 mg/kg 5 08/18/21 07:03	phthalene C	0.0730 U	0.146	0.0364	mg/kg	5	08/18/21 07:03
	ene C	0.0730 U	0.146	0.0364	mg/kg	5	08/18/21 07:03
Acenaphthylene 0.0730 U 0.146 0.0364 mg/kg 5 08/18/21 07:03	ylene C	0.0730 U	0.146	0.0364	mg/kg	5	08/18/21 07:03
Anthracene 0.0730 U 0.146 0.0364 mg/kg 5 08/18/21 07:03	; C	0.0730 U	0.146	0.0364	mg/kg	5	08/18/21 07:03
Benzo(a)Anthracene 0.0730 U 0.146 0.0364 mg/kg 5 08/18/21 07:03	nthracene C	0.0730 U	0.146	0.0364	mg/kg	5	08/18/21 07:03
Benzo[a]pyrene 0.0730 U 0.146 0.0364 mg/kg 5 08/18/21 07:03	rene C	0.0730 U	0.146	0.0364	mg/kg	5	08/18/21 07:03
Benzo[b]Fluoranthene 0.0730 U 0.146 0.0364 mg/kg 5 08/18/21 07:03	uoranthene C	0.0730 U	0.146	0.0364	mg/kg	5	08/18/21 07:03
Benzo[g,h,i]perylene 0.0730 U 0.146 0.0364 mg/kg 5 08/18/21 07:03]perylene 0	0.0730 U	0.146	0.0364	mg/kg	5	08/18/21 07:03
Benzo[k]fluoranthene 0.0730 U 0.146 0.0364 mg/kg 5 08/18/21 07:03	oranthene C	0.0730 U	0.146	0.0364	mg/kg	5	08/18/21 07:03
Chrysene 0.0730 U 0.146 0.0364 mg/kg 5 08/18/21 07:03	C	0.0730 U	0.146	0.0364	mg/kg	5	08/18/21 07:03
Dibenzo[a,h]anthracene 0.0730 U 0.146 0.0364 mg/kg 5 08/18/21 07:03	n]anthracene C	0.0730 U	0.146	0.0364	mg/kg	5	08/18/21 07:03
Fluoranthene 0.0730 U 0.146 0.0364 mg/kg 5 08/18/21 07:03	ne C	0.0730 U	0.146	0.0364	mg/kg	5	08/18/21 07:03
Fluorene 0.0730 U 0.146 0.0364 mg/kg 5 08/18/21 07:03	C	0.0730 U	0.146	0.0364	mg/kg	5	08/18/21 07:03
Indeno[1,2,3-c,d] pyrene 0.0730 U 0.146 0.0364 mg/kg 5 08/18/21 07:03	3-c,d] pyrene	0.0730 U	0.146	0.0364	mg/kg	5	08/18/21 07:03
Naphthalene 0.0585 U 0.117 0.0291 mg/kg 5 08/18/21 07:03	ie C	0.0585 U	0.117	0.0291	mg/kg	5	08/18/21 07:03
Phenanthrene 0.0730 U 0.146 0.0364 mg/kg 5 08/18/21 07:03	ene C	0.0730 U	0.146	0.0364	mg/kg	5	08/18/21 07:03
Pyrene 0.0730 U 0.146 0.0364 mg/kg 5 08/18/21 07:03	C	0.0730 U	0.146	0.0364	mg/kg	5	08/18/21 07:03
Surrogates							
2-Methylnaphthalene-d10 (surr) 88.1 58-103 % 5 08/18/21 07:03	phthalene-d10 (surr)	88.1	58-103		%	5	08/18/21 07:03
Fluoranthene-d10 (surr) 94.4 54-113 % 5 08/18/21 07:03	ne-d10 (surr)	94.4	54-113		%	5	08/18/21 07:03

Batch Information

Analytical Batch: XMS12833 Analytical Method: 8270D SIM (PAH)

Analyst: LAW

Analytical Date/Time: 08/18/21 07:03 Container ID: 1215191001-A Prep Batch: XXX45393 Prep Method: SW3550C Prep Date/Time: 08/17/21 07:34 Prep Initial Wt./Vol.: 22.555 g Prep Extract Vol: 5 mL

Print Date: 09/01/2021 4:40:03PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: 21AKN-SB-01(0'-1')
Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215191001 Lab Project ID: 1215191 Collection Date: 08/14/21 11:50 Received Date: 08/16/21 16:32 Matrix: Soil/Solid (dry weight)

Solids (%):85.6 Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual 38.0	<u>LOQ/CL</u> 23.3	<u>DL</u> 7.23	<u>Units</u> mg/kg	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 08/19/21 21:07
Surrogates 5a Androstane (surr)	88.1	50-150		%	1		08/19/21 21:07

Batch Information

Analytical Batch: XFC16052 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 08/19/21 21:07 Container ID: 1215191001-A Prep Batch: XXX45404 Prep Method: SW3550C Prep Date/Time: 08/19/21 07:25 Prep Initial Wt./Vol.: 30.037 g Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	334	117	50.2	mg/kg	1		08/19/21 21:07
Surrogates							
n-Triacontane-d62 (surr)	86.5	50-150		%	1		08/19/21 21:07

Batch Information

Analytical Batch: XFC16052 Analytical Method: AK103

Analyst: IVM

Analytical Date/Time: 08/19/21 21:07 Container ID: 1215191001-A Prep Batch: XXX45404 Prep Method: SW3550C Prep Date/Time: 08/19/21 07:25 Prep Initial Wt./Vol.: 30.037 g Prep Extract Vol: 5 mL

Print Date: 09/01/2021 4:40:03PM

Client Sample ID: 21AKN-SB-01(0'-1') Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215191001 Lab Project ID: 1215191

Collection Date: 08/14/21 11:50 Received Date: 08/16/21 16:32 Matrix: Soil/Solid (dry weight)

Solids (%):85.6 Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual 1.79 J	<u>LOQ/CL</u> 4.84	<u>DL</u> 1.45	<u>Units</u> mg/kg	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 08/19/21 16:26
Surrogates	120	E0 1E0		0/	1		09/40/24 46:26
4-Bromofluorobenzene (surr)	120	50-150		%	1		08/19/21 16:26

Batch Information

Analytical Batch: VFC15774 Analytical Method: AK101 Analyst: MDT

Analytical Date/Time: 08/19/21 16:26 Container ID: 1215191001-B

Prep Batch: VXX37679 Prep Method: SW5035A Prep Date/Time: 08/14/21 11:50 Prep Initial Wt./Vol.: 36.538 g Prep Extract Vol: 30.256 mL

Print Date: 09/01/2021 4:40:03PM

Client Sample ID: 21AKN-SB-01(0'-1')
Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215191001 Lab Project ID: 1215191 Collection Date: 08/14/21 11:50 Received Date: 08/16/21 16:32 Matrix: Soil/Solid (dry weight)

Solids (%):85.6 Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.0121 U	0.0242	0.00754	mg/kg	1		08/24/21 15:31
Ethylbenzene	0.0242 U	0.0484	0.0151	mg/kg	1		08/24/21 15:31
o-Xylene	0.0242 U	0.0484	0.0151	mg/kg	1		08/24/21 15:31
P & M -Xylene	0.0484 U	0.0967	0.0290	mg/kg	1		08/24/21 15:31
Toluene	0.0242 U	0.0484	0.0151	mg/kg	1		08/24/21 15:31
Xylenes (total)	0.0725 U	0.145	0.0441	mg/kg	1		08/24/21 15:31
Surrogates							
1,2-Dichloroethane-D4 (surr)	96.2	71-136		%	1		08/24/21 15:31
4-Bromofluorobenzene (surr)	103	55-151		%	1		08/24/21 15:31
Toluene-d8 (surr)	103	85-116		%	1		08/24/21 15:31

Batch Information

Analytical Batch: VMS21095 Analytical Method: SW8260D

Analyst: S.S

Analytical Date/Time: 08/24/21 15:31 Container ID: 1215191001-B Prep Batch: VXX37700
Prep Method: SW5035A
Prep Date/Time: 08/14/21 11:50
Prep Initial Wt./Vol.: 36.538 g
Prep Extract Vol: 30.256 mL

Print Date: 09/01/2021 4:40:03PM

Results of 21AKN-SB-01(6.5'-7.5')

Client Sample ID: 21AKN-SB-01(6.5'-7.5')
Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215191002 Lab Project ID: 1215191 Collection Date: 08/14/21 12:05 Received Date: 08/16/21 16:32 Matrix: Soil/Solid (dry weight)

Solids (%):85.0 Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0144 U	0.0289	0.00722	mg/kg	1		08/18/21 07:24
2-Methylnaphthalene	0.0144 U	0.0289	0.00722	mg/kg	1		08/18/21 07:24
Acenaphthene	0.0144 U	0.0289	0.00722	mg/kg	1		08/18/21 07:24
Acenaphthylene	0.0144 U	0.0289	0.00722	mg/kg	1		08/18/21 07:24
Anthracene	0.0144 U	0.0289	0.00722	mg/kg	1		08/18/21 07:24
Benzo(a)Anthracene	0.0144 U	0.0289	0.00722	mg/kg	1		08/18/21 07:24
Benzo[a]pyrene	0.0144 U	0.0289	0.00722	mg/kg	1		08/18/21 07:24
Benzo[b]Fluoranthene	0.0144 U	0.0289	0.00722	mg/kg	1		08/18/21 07:24
Benzo[g,h,i]perylene	0.0144 U	0.0289	0.00722	mg/kg	1		08/18/21 07:24
Benzo[k]fluoranthene	0.0144 U	0.0289	0.00722	mg/kg	1		08/18/21 07:24
Chrysene	0.0144 U	0.0289	0.00722	mg/kg	1		08/18/21 07:24
Dibenzo[a,h]anthracene	0.0144 U	0.0289	0.00722	mg/kg	1		08/18/21 07:24
Fluoranthene	0.0144 U	0.0289	0.00722	mg/kg	1		08/18/21 07:24
Fluorene	0.0144 U	0.0289	0.00722	mg/kg	1		08/18/21 07:24
Indeno[1,2,3-c,d] pyrene	0.0144 U	0.0289	0.00722	mg/kg	1		08/18/21 07:24
Naphthalene	0.0116 U	0.0231	0.00577	mg/kg	1		08/18/21 07:24
Phenanthrene	0.0144 U	0.0289	0.00722	mg/kg	1		08/18/21 07:24
Pyrene	0.0144 U	0.0289	0.00722	mg/kg	1		08/18/21 07:24
Surrogates							
2-Methylnaphthalene-d10 (surr)	90.9	58-103		%	1		08/18/21 07:24
Fluoranthene-d10 (surr)	92.2	54-113		%	1		08/18/21 07:24

Batch Information

Analytical Batch: XMS12833 Analytical Method: 8270D SIM (PAH)

Analyst: LAW

Analytical Date/Time: 08/18/21 07:24 Container ID: 1215191002-A Prep Batch: XXX45393 Prep Method: SW3550C Prep Date/Time: 08/17/21 07:34 Prep Initial Wt./Vol.: 22.921 g Prep Extract Vol: 5 mL

Print Date: 09/01/2021 4:40:03PM

Results of 21AKN-SB-01(6.5'-7.5')

Client Sample ID: 21AKN-SB-01(6.5'-7.5') Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215191002 Lab Project ID: 1215191

Collection Date: 08/14/21 12:05 Received Date: 08/16/21 16:32 Matrix: Soil/Solid (dry weight)

Solids (%):85.0 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	11.7 U	23.4	7.24	mg/kg	1		08/19/21 18:01
Surrogates							
5a Androstane (surr)	87.7	50-150		%	1		08/19/21 18:01

Batch Information

Analytical Batch: XFC16052 Analytical Method: AK102 Analyst: IVM

Analytical Date/Time: 08/19/21 18:01 Container ID: 1215191002-A

Prep Batch: XXX45404 Prep Method: SW3550C Prep Date/Time: 08/19/21 07:25 Prep Initial Wt./Vol.: 30.206 g Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	58.5 U	117	50.2	mg/kg	1		08/19/21 18:01
Surrogates							
n-Triacontane-d62 (surr)	90	50-150		%	1		08/19/21 18:01

Batch Information

Analytical Batch: XFC16052 Analytical Method: AK103

Analyst: IVM

Analytical Date/Time: 08/19/21 18:01 Container ID: 1215191002-A

Prep Batch: XXX45404 Prep Method: SW3550C Prep Date/Time: 08/19/21 07:25 Prep Initial Wt./Vol.: 30.206 g Prep Extract Vol: 5 mL

Print Date: 09/01/2021 4:40:03PM

Results of 21AKN-SB-01(6.5'-7.5')

Client Sample ID: **21AKN-SB-01(6.5'-7.5')**Client Project ID: **102582-011 AKN PFAS**

Lab Sample ID: 1215191002 Lab Project ID: 1215191 Collection Date: 08/14/21 12:05 Received Date: 08/16/21 16:32 Matrix: Soil/Solid (dry weight)

Solids (%):85.0 Location:

Results by Volatile Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable <u>Limits</u>	Date Analyzed
Gasoline Range Organics	1.65 J	4.55	1.36	mg/kg	1		08/19/21 16:44
Surrogates							
4-Bromofluorobenzene (surr)	116	50-150		%	1		08/19/21 16:44

Batch Information

Analytical Batch: VFC15774 Analytical Method: AK101 Analyst: MDT

Analytical Date/Time: 08/19/21 16:44 Container ID: 1215191002-B Prep Batch: VXX37679
Prep Method: SW5035A
Prep Date/Time: 08/14/21 12:05
Prep Initial Wt./Vol.: 40.07 g
Prep Extract Vol: 31.0013 mL

Print Date: 09/01/2021 4:40:03PM

Client Sample ID: 21AKN-SB-01(6.5'-7.5')
Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215191002 Lab Project ID: 1215191 Collection Date: 08/14/21 12:05 Received Date: 08/16/21 16:32 Matrix: Soil/Solid (dry weight)

Solids (%):85.0 Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.0114 U	0.0227	0.00710	mg/kg	1		08/24/21 15:47
Ethylbenzene	0.0227 U	0.0455	0.0142	mg/kg	1		08/24/21 15:47
o-Xylene	0.0227 U	0.0455	0.0142	mg/kg	1		08/24/21 15:47
P & M -Xylene	0.0455 U	0.0910	0.0273	mg/kg	1		08/24/21 15:47
Toluene	0.0227 U	0.0455	0.0142	mg/kg	1		08/24/21 15:47
Xylenes (total)	0.0680 U	0.136	0.0415	mg/kg	1		08/24/21 15:47
Surrogates							
1,2-Dichloroethane-D4 (surr)	97.8	71-136		%	1		08/24/21 15:47
4-Bromofluorobenzene (surr)	102	55-151		%	1		08/24/21 15:47
Toluene-d8 (surr)	103	85-116		%	1		08/24/21 15:47

Batch Information

Analytical Batch: VMS21095 Analytical Method: SW8260D

Analyst: S.S

Analytical Date/Time: 08/24/21 15:47 Container ID: 1215191002-B Prep Batch: VXX37700
Prep Method: SW5035A
Prep Date/Time: 08/14/21 12:05
Prep Initial Wt./Vol.: 40.07 g
Prep Extract Vol: 31.0013 mL

Print Date: 09/01/2021 4:40:03PM

Client Sample ID: **21AKN-SB-101(6.5'-7.5')**Client Project ID: **102582-011 AKN PFAS**

Lab Sample ID: 1215191003 Lab Project ID: 1215191 Collection Date: 08/14/21 11:55 Received Date: 08/16/21 16:32 Matrix: Soil/Solid (dry weight)

Solids (%):85.6 Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0145 U	0.0290	0.00724	mg/kg	1		08/18/21 07:44
2-Methylnaphthalene	0.0145 U	0.0290	0.00724	mg/kg	1		08/18/21 07:44
Acenaphthene	0.0145 U	0.0290	0.00724	mg/kg	1		08/18/21 07:44
Acenaphthylene	0.0145 U	0.0290	0.00724	mg/kg	1		08/18/21 07:44
Anthracene	0.0145 U	0.0290	0.00724	mg/kg	1		08/18/21 07:44
Benzo(a)Anthracene	0.0145 U	0.0290	0.00724	mg/kg	1		08/18/21 07:44
Benzo[a]pyrene	0.0145 U	0.0290	0.00724	mg/kg	1		08/18/21 07:44
Benzo[b]Fluoranthene	0.0145 U	0.0290	0.00724	mg/kg	1		08/18/21 07:44
Benzo[g,h,i]perylene	0.0145 U	0.0290	0.00724	mg/kg	1		08/18/21 07:44
Benzo[k]fluoranthene	0.0145 U	0.0290	0.00724	mg/kg	1		08/18/21 07:44
Chrysene	0.0145 U	0.0290	0.00724	mg/kg	1		08/18/21 07:44
Dibenzo[a,h]anthracene	0.0145 U	0.0290	0.00724	mg/kg	1		08/18/21 07:44
Fluoranthene	0.0145 U	0.0290	0.00724	mg/kg	1		08/18/21 07:44
Fluorene	0.0145 U	0.0290	0.00724	mg/kg	1		08/18/21 07:44
Indeno[1,2,3-c,d] pyrene	0.0145 U	0.0290	0.00724	mg/kg	1		08/18/21 07:44
Naphthalene	0.0116 U	0.0232	0.00580	mg/kg	1		08/18/21 07:44
Phenanthrene	0.0145 U	0.0290	0.00724	mg/kg	1		08/18/21 07:44
Pyrene	0.0145 U	0.0290	0.00724	mg/kg	1		08/18/21 07:44
Surrogates							
2-Methylnaphthalene-d10 (surr)	89.7	58-103		%	1		08/18/21 07:44
Fluoranthene-d10 (surr)	91.8	54-113		%	1		08/18/21 07:44

Batch Information

Analytical Batch: XMS12833 Analytical Method: 8270D SIM (PAH)

Analyst: LAW

Analytical Date/Time: 08/18/21 07:44 Container ID: 1215191003-A Prep Batch: XXX45393 Prep Method: SW3550C Prep Date/Time: 08/17/21 07:34 Prep Initial Wt./Vol.: 22.67 g Prep Extract Vol: 5 mL

Print Date: 09/01/2021 4:40:03PM J flagging is activated

Client Sample ID: **21AKN-SB-101(6.5'-7.5')**Client Project ID: **102582-011 AKN PFAS**

Lab Sample ID: 1215191003 Lab Project ID: 1215191 Collection Date: 08/14/21 11:55 Received Date: 08/16/21 16:32 Matrix: Soil/Solid (dry weight)

Solids (%):85.6 Location:

Results by Semivolatile Organic Fuels

Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Diesel Range Organics Surrogates	11.6 U	23.2	7.18	mg/kg	1		08/19/21 18:11
5a Androstane (surr)	104	50-150		%	1		08/19/21 18:11

Batch Information

Analytical Batch: XFC16052 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 08/19/21 18:11 Container ID: 1215191003-A Prep Batch: XXX45404 Prep Method: SW3550C Prep Date/Time: 08/19/21 07:25 Prep Initial Wt./Vol.: 30.249 g Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	58.0 U	116	49.8	mg/kg	1		08/19/21 18:11
Surrogates							
n-Triacontane-d62 (surr)	99.8	50-150		%	1		08/19/21 18:11

Batch Information

Analytical Batch: XFC16052 Analytical Method: AK103

Analyst: IVM

Analytical Date/Time: 08/19/21 18:11 Container ID: 1215191003-A Prep Batch: XXX45404 Prep Method: SW3550C Prep Date/Time: 08/19/21 07:25 Prep Initial Wt./Vol.: 30.249 g Prep Extract Vol: 5 mL

Print Date: 09/01/2021 4:40:03PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: **21AKN-SB-101(6.5'-7.5')**Client Project ID: **102582-011 AKN PFAS**

Lab Sample ID: 1215191003 Lab Project ID: 1215191 Collection Date: 08/14/21 11:55 Received Date: 08/16/21 16:32 Matrix: Soil/Solid (dry weight)

Solids (%):85.6 Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	1.48 J	4.44	1.33	mg/kg	1	Limits	08/19/21 17:02
Surrogates 4-Bromofluorobenzene (surr)	114	50-150		%	1		08/19/21 17:02

Batch Information

Analytical Batch: VFC15774 Analytical Method: AK101 Analyst: MDT

Analytical Date/Time: 08/19/21 17:02 Container ID: 1215191003-B Prep Batch: VXX37679
Prep Method: SW5035A
Prep Date/Time: 08/14/21 11:55
Prep Initial Wt./Vol.: 40.559 g
Prep Extract Vol: 30.8269 mL

Print Date: 09/01/2021 4:40:03PM

Client Sample ID: **21AKN-SB-101(6.5'-7.5')**Client Project ID: **102582-011 AKN PFAS**

Lab Sample ID: 1215191003 Lab Project ID: 1215191 Collection Date: 08/14/21 11:55 Received Date: 08/16/21 16:32 Matrix: Soil/Solid (dry weight)

Solids (%):85.6 Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.0111 U	0.0222	0.00692	mg/kg	1		08/25/21 14:47
Ethylbenzene	0.0222 U	0.0444	0.0138	mg/kg	1		08/25/21 14:47
o-Xylene	0.0222 U	0.0444	0.0138	mg/kg	1		08/25/21 14:47
P & M -Xylene	0.0444 U	0.0888	0.0266	mg/kg	1		08/25/21 14:47
Toluene	0.0222 U	0.0444	0.0138	mg/kg	1		08/25/21 14:47
Xylenes (total)	0.0665 U	0.133	0.0405	mg/kg	1		08/25/21 14:47
Surrogates							
1,2-Dichloroethane-D4 (surr)	107	71-136		%	1		08/25/21 14:47
4-Bromofluorobenzene (surr)	99.6	55-151		%	1		08/25/21 14:47
Toluene-d8 (surr)	101	85-116		%	1		08/25/21 14:47

Batch Information

Analytical Batch: VMS21100 Analytical Method: SW8260D

Analyst: S.S

Analytical Date/Time: 08/25/21 14:47 Container ID: 1215191003-B Prep Batch: VXX37709
Prep Method: SW5035A
Prep Date/Time: 08/14/21 11:55
Prep Initial Wt./Vol.: 40.559 g
Prep Extract Vol: 30.8269 mL

Print Date: 09/01/2021 4:40:03PM J flagging is activated

Client Sample ID: 21AKN-SB-02(0'-1')
Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215191004 Lab Project ID: 1215191 Collection Date: 08/14/21 09:40 Received Date: 08/16/21 16:32 Matrix: Soil/Solid (dry weight)

Solids (%):93.3 Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.134 U	0.267	0.0668	mg/kg	10		08/24/21 19:34
2-Methylnaphthalene	0.134 U	0.267	0.0668	mg/kg	10		08/24/21 19:34
Acenaphthene	0.134 U	0.267	0.0668	mg/kg	10		08/24/21 19:34
Acenaphthylene	0.134 U	0.267	0.0668	mg/kg	10		08/24/21 19:34
Anthracene	0.159 J	0.267	0.0668	mg/kg	10		08/24/21 19:34
Benzo(a)Anthracene	0.323	0.267	0.0668	mg/kg	10		08/24/21 19:34
Benzo[a]pyrene	0.359	0.267	0.0668	mg/kg	10		08/24/21 19:34
Benzo[b]Fluoranthene	0.493	0.267	0.0668	mg/kg	10		08/24/21 19:34
Benzo[g,h,i]perylene	0.317	0.267	0.0668	mg/kg	10		08/24/21 19:34
Benzo[k]fluoranthene	0.130 J	0.267	0.0668	mg/kg	10		08/24/21 19:34
Chrysene	0.499	0.267	0.0668	mg/kg	10		08/24/21 19:34
Dibenzo[a,h]anthracene	0.134 U	0.267	0.0668	mg/kg	10		08/24/21 19:34
Fluoranthene	0.898	0.267	0.0668	mg/kg	10		08/24/21 19:34
Fluorene	0.134 U	0.267	0.0668	mg/kg	10		08/24/21 19:34
Indeno[1,2,3-c,d] pyrene	0.215 J	0.267	0.0668	mg/kg	10		08/24/21 19:34
Naphthalene	0.107 U	0.214	0.0535	mg/kg	10		08/24/21 19:34
Phenanthrene	0.600	0.267	0.0668	mg/kg	10		08/24/21 19:34
Pyrene	0.709	0.267	0.0668	mg/kg	10		08/24/21 19:34
Surrogates							
2-Methylnaphthalene-d10 (surr)	101	58-103		%	10		08/24/21 19:34
Fluoranthene-d10 (surr)	112	54-113		%	10		08/24/21 19:34

Batch Information

Analytical Batch: XMS12850 Analytical Method: 8270D SIM (PAH)

Analyst: CDM

Analytical Date/Time: 08/24/21 19:34 Container ID: 1215191004-A Prep Batch: XXX45426 Prep Method: SW3550C Prep Date/Time: 08/23/21 07:45 Prep Initial Wt./Vol.: 22.548 g Prep Extract Vol: 5 mL

Print Date: 09/01/2021 4:40:03PM

Client Sample ID: 21AKN-SB-02(0'-1')
Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215191004 Lab Project ID: 1215191 Collection Date: 08/14/21 09:40 Received Date: 08/16/21 16:32 Matrix: Soil/Solid (dry weight)

Solids (%):93.3 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	302	213	65.9	mg/kg	10		08/19/21 21:47
Surrogates							
5a Androstane (surr)	84.9	50-150		%	10		08/19/21 21:47

Batch Information

Analytical Batch: XFC16052 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 08/19/21 21:47 Container ID: 1215191004-A Prep Batch: XXX45404 Prep Method: SW3550C Prep Date/Time: 08/19/21 07:25 Prep Initial Wt./Vol.: 30.227 g Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	3250	1060	457	mg/kg	10		08/19/21 21:47
Surrogates							
n-Triacontane-d62 (surr)	91.9	50-150		%	10		08/19/21 21:47

Batch Information

Analytical Batch: XFC16052 Analytical Method: AK103

Analyst: IVM

Analytical Date/Time: 08/19/21 21:47 Container ID: 1215191004-A Prep Batch: XXX45404 Prep Method: SW3550C Prep Date/Time: 08/19/21 07:25 Prep Initial Wt./Vol.: 30.227 g Prep Extract Vol: 5 mL

Print Date: 09/01/2021 4:40:03PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: 21AKN-SB-02(0'-1') Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215191004 Lab Project ID: 1215191

Collection Date: 08/14/21 09:40 Received Date: 08/16/21 16:32 Matrix: Soil/Solid (dry weight)

Solids (%):93.3 Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	1.41 J	3.58	1.07	mg/kg	1		08/19/21 17:20
Surrogates							
4-Bromofluorobenzene (surr)	98	50-150		%	1		08/19/21 17:20

Batch Information

Analytical Batch: VFC15774 Analytical Method: AK101 Analyst: MDT

Analytical Date/Time: 08/19/21 17:20 Container ID: 1215191004-B

Prep Batch: VXX37679 Prep Method: SW5035A Prep Date/Time: 08/14/21 09:40 Prep Initial Wt./Vol.: 41.633 g Prep Extract Vol: 27.7865 mL

Print Date: 09/01/2021 4:40:03PM J flagging is activated

Client Sample ID: 21AKN-SB-02(0'-1')
Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215191004 Lab Project ID: 1215191 Collection Date: 08/14/21 09:40 Received Date: 08/16/21 16:32 Matrix: Soil/Solid (dry weight)

Solids (%):93.3 Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.00895 U	0.0179	0.00558	mg/kg	1		08/25/21 16:09
Ethylbenzene	0.0179 U	0.0358	0.0112	mg/kg	1		08/25/21 16:09
o-Xylene	0.0179 U	0.0358	0.0112	mg/kg	1		08/25/21 16:09
P & M -Xylene	0.0358 U	0.0715	0.0215	mg/kg	1		08/25/21 16:09
Toluene	0.0179 U	0.0358	0.0112	mg/kg	1		08/25/21 16:09
Xylenes (total)	0.0535 U	0.107	0.0326	mg/kg	1		08/25/21 16:09
Surrogates							
1,2-Dichloroethane-D4 (surr)	108	71-136		%	1		08/25/21 16:09
4-Bromofluorobenzene (surr)	91.9	55-151		%	1		08/25/21 16:09
Toluene-d8 (surr)	101	85-116		%	1		08/25/21 16:09

Batch Information

Analytical Batch: VMS21100 Analytical Method: SW8260D

Analyst: S.S

Analytical Date/Time: 08/25/21 16:09 Container ID: 1215191004-B Prep Batch: VXX37709
Prep Method: SW5035A
Prep Date/Time: 08/14/21 09:40
Prep Initial Wt./Vol.: 41.633 g
Prep Extract Vol: 27.7865 mL

Print Date: 09/01/2021 4:40:03PM

Client Sample ID: 21AKN-SB-02(6'-7')
Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215191005 Lab Project ID: 1215191 Collection Date: 08/14/21 10:00 Received Date: 08/16/21 16:32 Matrix: Soil/Solid (dry weight)

Solids (%):82.2 Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0151 U	0.0301	0.00752	mg/kg	1		08/28/21 20:31
2-Methylnaphthalene	0.0151 U	0.0301	0.00752	mg/kg	1		08/28/21 20:31
Acenaphthene	0.0151 U	0.0301	0.00752	mg/kg	1		08/28/21 20:31
Acenaphthylene	0.0151 U	0.0301	0.00752	mg/kg	1		08/28/21 20:31
Anthracene	0.0151 U	0.0301	0.00752	mg/kg	1		08/28/21 20:31
Benzo(a)Anthracene	0.0151 U	0.0301	0.00752	mg/kg	1		08/28/21 20:31
Benzo[a]pyrene	0.0151 U	0.0301	0.00752	mg/kg	1		08/28/21 20:31
Benzo[b]Fluoranthene	0.0151 U	0.0301	0.00752	mg/kg	1		08/28/21 20:31
Benzo[g,h,i]perylene	0.0151 U	0.0301	0.00752	mg/kg	1		08/28/21 20:31
Benzo[k]fluoranthene	0.0151 U	0.0301	0.00752	mg/kg	1		08/28/21 20:31
Chrysene	0.0151 U	0.0301	0.00752	mg/kg	1		08/28/21 20:31
Dibenzo[a,h]anthracene	0.0151 U	0.0301	0.00752	mg/kg	1		08/28/21 20:31
Fluoranthene	0.0151 U	0.0301	0.00752	mg/kg	1		08/28/21 20:31
Fluorene	0.0151 U	0.0301	0.00752	mg/kg	1		08/28/21 20:31
Indeno[1,2,3-c,d] pyrene	0.0151 U	0.0301	0.00752	mg/kg	1		08/28/21 20:31
Naphthalene	0.0121 U	0.0241	0.00601	mg/kg	1		08/28/21 20:31
Phenanthrene	0.0151 U	0.0301	0.00752	mg/kg	1		08/28/21 20:31
Pyrene	0.0151 U	0.0301	0.00752	mg/kg	1		08/28/21 20:31
Surrogates							
2-Methylnaphthalene-d10 (surr)	79.3	58-103		%	1		08/28/21 20:31
Fluoranthene-d10 (surr)	80	54-113		%	1		08/28/21 20:31

Batch Information

Analytical Batch: XMS12859 Analytical Method: 8270D SIM (PAH)

Analyst: LAW

Analytical Date/Time: 08/28/21 20:31 Container ID: 1215191005-A

Prep Batch: XXX45415 Prep Method: SW3550C Prep Date/Time: 08/20/21 11:11 Prep Initial Wt./Vol.: 22.752 g Prep Extract Vol: 5 mL

Print Date: 09/01/2021 4:40:03PM

Client Sample ID: 21AKN-SB-02(6'-7')
Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215191005 Lab Project ID: 1215191 Collection Date: 08/14/21 10:00 Received Date: 08/16/21 16:32 Matrix: Soil/Solid (dry weight)

Solids (%):82.2 Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u> 08/19/21 18:21
Diesel Range Organics	11.9 U	23.9	7.42	mg/kg	1	Limits	
Surrogates 5a Androstane (surr)	86.2	50-150		%	1		08/19/21 18:21

Batch Information

Analytical Batch: XFC16052 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 08/19/21 18:21 Container ID: 1215191005-A

Prep Batch: XXX45404 Prep Method: SW3550C Prep Date/Time: 08/19/21 07:25 Prep Initial Wt./Vol.: 30.471 g Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	60.0 U	120	51.5	mg/kg	1		08/19/21 18:21
Surrogates							
n-Triacontane-d62 (surr)	89.2	50-150		%	1		08/19/21 18:21

Batch Information

Analytical Batch: XFC16052 Analytical Method: AK103

Analyst: IVM

Analytical Date/Time: 08/19/21 18:21 Container ID: 1215191005-A Prep Batch: XXX45404 Prep Method: SW3550C Prep Date/Time: 08/19/21 07:25 Prep Initial Wt./Vol.: 30.471 g Prep Extract Vol: 5 mL

Print Date: 09/01/2021 4:40:03PM J flagging is activated

Client Sample ID: 21AKN-SB-02(6'-7') Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215191005 Lab Project ID: 1215191

Collection Date: 08/14/21 10:00 Received Date: 08/16/21 16:32 Matrix: Soil/Solid (dry weight)

Solids (%):82.2 Location:

Results by Volatile Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Gasoline Range Organics	2.03 J	5.75	1.73	mg/kg	1		08/19/21 17:38
Surrogates	116	E0 1E0		%	1		08/19/21 17:38
4-Bromofluorobenzene (surr)	116	50-150		%	1		08/19/21 17:38

Batch Information

Analytical Batch: VFC15774 Analytical Method: AK101 Analyst: MDT

Analytical Date/Time: 08/19/21 17:38 Container ID: 1215191005-B

Prep Batch: VXX37679 Prep Method: SW5035A Prep Date/Time: 08/14/21 10:00 Prep Initial Wt./Vol.: 32.52 g Prep Extract Vol: 30.7785 mL

Print Date: 09/01/2021 4:40:03PM J flagging is activated

Client Sample ID: 21AKN-SB-02(6'-7')
Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215191005 Lab Project ID: 1215191 Collection Date: 08/14/21 10:00 Received Date: 08/16/21 16:32 Matrix: Soil/Solid (dry weight)

Solids (%):82.2 Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.0144 U	0.0288	0.00898	mg/kg	1		08/25/21 15:20
Ethylbenzene	0.0288 U	0.0575	0.0180	mg/kg	1		08/25/21 15:20
o-Xylene	0.0288 U	0.0575	0.0180	mg/kg	1		08/25/21 15:20
P & M -Xylene	0.0575 U	0.115	0.0345	mg/kg	1		08/25/21 15:20
Toluene	0.0288 U	0.0575	0.0180	mg/kg	1		08/25/21 15:20
Xylenes (total)	0.0865 U	0.173	0.0525	mg/kg	1		08/25/21 15:20
Surrogates							
1,2-Dichloroethane-D4 (surr)	105	71-136		%	1		08/25/21 15:20
4-Bromofluorobenzene (surr)	98.9	55-151		%	1		08/25/21 15:20
Toluene-d8 (surr)	99.8	85-116		%	1		08/25/21 15:20

Batch Information

Analytical Batch: VMS21100 Analytical Method: SW8260D

Analyst: S.S

Analytical Date/Time: 08/25/21 15:20 Container ID: 1215191005-B

Prep Batch: VXX37709
Prep Method: SW5035A
Prep Date/Time: 08/14/21 10:00
Prep Initial Wt./Vol.: 32.52 g
Prep Extract Vol: 30.7785 mL

Print Date: 09/01/2021 4:40:03PM

Client Sample ID: 21AKN-SB-03(0'-1')
Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215191006 Lab Project ID: 1215191 Collection Date: 08/14/21 13:40 Received Date: 08/16/21 16:32 Matrix: Soil/Solid (dry weight)

Solids (%):90.7 Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u> <u>Date Analyzed</u>
1-Methylnaphthalene	0.137 U	0.274	0.0685	mg/kg	10	08/28/21 21:12
2-Methylnaphthalene	0.137 U	0.274	0.0685	mg/kg	10	08/28/21 21:12
Acenaphthene	0.137 U	0.274	0.0685	mg/kg	10	08/28/21 21:12
Acenaphthylene	0.137 U	0.274	0.0685	mg/kg	10	08/28/21 21:12
Anthracene	0.137 U	0.274	0.0685	mg/kg	10	08/28/21 21:12
Benzo(a)Anthracene	0.137 U	0.274	0.0685	mg/kg	10	08/28/21 21:12
Benzo[a]pyrene	0.137 U	0.274	0.0685	mg/kg	10	08/28/21 21:12
Benzo[b]Fluoranthene	0.137 U	0.274	0.0685	mg/kg	10	08/28/21 21:12
Benzo[g,h,i]perylene	0.137 U	0.274	0.0685	mg/kg	10	08/28/21 21:12
Benzo[k]fluoranthene	0.137 U	0.274	0.0685	mg/kg	10	08/28/21 21:12
Chrysene	0.137 U	0.274	0.0685	mg/kg	10	08/28/21 21:12
Dibenzo[a,h]anthracene	0.137 U	0.274	0.0685	mg/kg	10	08/28/21 21:12
Fluoranthene	0.137 U	0.274	0.0685	mg/kg	10	08/28/21 21:12
Fluorene	0.137 U	0.274	0.0685	mg/kg	10	08/28/21 21:12
Indeno[1,2,3-c,d] pyrene	0.137 U	0.274	0.0685	mg/kg	10	08/28/21 21:12
Naphthalene	0.110 U	0.219	0.0548	mg/kg	10	08/28/21 21:12
Phenanthrene	0.137 U	0.274	0.0685	mg/kg	10	08/28/21 21:12
Pyrene	0.137 U	0.274	0.0685	mg/kg	10	08/28/21 21:12
Surrogates						
2-Methylnaphthalene-d10 (surr)	91.7	58-103		%	10	08/28/21 21:12
Fluoranthene-d10 (surr)	96.3	54-113		%	10	08/28/21 21:12

Batch Information

Analytical Batch: XMS12859 Analytical Method: 8270D SIM (PAH)

Analyst: LAW

Analytical Date/Time: 08/28/21 21:12 Container ID: 1215191006-A Prep Batch: XXX45415 Prep Method: SW3550C Prep Date/Time: 08/20/21 11:11 Prep Initial Wt./Vol.: 22.646 g Prep Extract Vol: 5 mL

Print Date: 09/01/2021 4:40:03PM

Client Sample ID: 21AKN-SB-03(0'-1')
Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215191006 Lab Project ID: 1215191 Collection Date: 08/14/21 13:40 Received Date: 08/16/21 16:32 Matrix: Soil/Solid (dry weight)

Solids (%):90.7 Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
Diesel Range Organics	210	87.3	27.1	mg/kg	4	Limits	08/19/21 21:37
Surrogates 5a Androstane (surr)	84.2	50-150		%	4		08/19/21 21:37

Batch Information

Analytical Batch: XFC16052 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 08/19/21 21:37 Container ID: 1215191006-A Prep Batch: XXX45404 Prep Method: SW3550C Prep Date/Time: 08/19/21 07:25 Prep Initial Wt./Vol.: 30.306 g Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	1900	437	188	mg/kg	4		08/19/21 21:37
Surrogates							
n-Triacontane-d62 (surr)	88.2	50-150		%	4		08/19/21 21:37

Batch Information

Analytical Batch: XFC16052 Analytical Method: AK103

Analyst: IVM

Analytical Date/Time: 08/19/21 21:37 Container ID: 1215191006-A

Prep Batch: XXX45404 Prep Method: SW3550C Prep Date/Time: 08/19/21 07:25 Prep Initial Wt./Vol.: 30.306 g Prep Extract Vol: 5 mL

Print Date: 09/01/2021 4:40:03PM

Client Sample ID: 21AKN-SB-03(0'-1') Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215191006 Lab Project ID: 1215191

Collection Date: 08/14/21 13:40 Received Date: 08/16/21 16:32 Matrix: Soil/Solid (dry weight)

Solids (%):90.7 Location:

Results by Volatile Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable <u>Limits</u>	Date Analyzed
Gasoline Range Organics	1.71 J	4.44	1.33	mg/kg	1		08/19/21 17:56
Surrogates							
4-Bromofluorobenzene (surr)	112	50-150		%	1		08/19/21 17:56

Batch Information

Analytical Batch: VFC15774 Analytical Method: AK101 Analyst: MDT

Analytical Date/Time: 08/19/21 17:56 Container ID: 1215191006-B

Prep Batch: VXX37679 Prep Method: SW5035A Prep Date/Time: 08/14/21 13:40 Prep Initial Wt./Vol.: 35.093 g Prep Extract Vol: 28.2744 mL

Print Date: 09/01/2021 4:40:03PM

Client Sample ID: 21AKN-SB-03(0'-1')
Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215191006 Lab Project ID: 1215191 Collection Date: 08/14/21 13:40 Received Date: 08/16/21 16:32 Matrix: Soil/Solid (dry weight)

Solids (%):90.7 Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.0111 U	0.0222	0.00693	mg/kg	1		08/25/21 15:36
Ethylbenzene	0.0222 U	0.0444	0.0139	mg/kg	1		08/25/21 15:36
o-Xylene	0.0222 U	0.0444	0.0139	mg/kg	1		08/25/21 15:36
P & M -Xylene	0.0445 U	0.0889	0.0267	mg/kg	1		08/25/21 15:36
Toluene	0.0222 U	0.0444	0.0139	mg/kg	1		08/25/21 15:36
Xylenes (total)	0.0665 U	0.133	0.0405	mg/kg	1		08/25/21 15:36
Surrogates							
1,2-Dichloroethane-D4 (surr)	107	71-136		%	1		08/25/21 15:36
4-Bromofluorobenzene (surr)	91.2	55-151		%	1		08/25/21 15:36
Toluene-d8 (surr)	99.6	85-116		%	1		08/25/21 15:36

Batch Information

Analytical Batch: VMS21100 Analytical Method: SW8260D

Analyst: S.S

Analytical Date/Time: 08/25/21 15:36 Container ID: 1215191006-B Prep Batch: VXX37709
Prep Method: SW5035A
Prep Date/Time: 08/14/21 13:40
Prep Initial Wt./Vol.: 35.093 g
Prep Extract Vol: 28.2744 mL

Print Date: 09/01/2021 4:40:03PM

Client Sample ID: 21AKN-SB-03(7.3'-7.8')
Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215191007 Lab Project ID: 1215191 Collection Date: 08/14/21 13:55 Received Date: 08/16/21 16:32 Matrix: Soil/Solid (dry weight)

Solids (%):83.9 Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0147 U	0.0293	0.00733	mg/kg	1		08/28/21 20:51
2-Methylnaphthalene	0.0147 U	0.0293	0.00733	mg/kg	1		08/28/21 20:51
Acenaphthene	0.0147 U	0.0293	0.00733	mg/kg	1		08/28/21 20:51
Acenaphthylene	0.0147 U	0.0293	0.00733	mg/kg	1		08/28/21 20:51
Anthracene	0.0147 U	0.0293	0.00733	mg/kg	1		08/28/21 20:51
Benzo(a)Anthracene	0.0147 U	0.0293	0.00733	mg/kg	1		08/28/21 20:51
Benzo[a]pyrene	0.0147 U	0.0293	0.00733	mg/kg	1		08/28/21 20:51
Benzo[b]Fluoranthene	0.0147 U	0.0293	0.00733	mg/kg	1		08/28/21 20:51
Benzo[g,h,i]perylene	0.0147 U	0.0293	0.00733	mg/kg	1		08/28/21 20:51
Benzo[k]fluoranthene	0.0147 U	0.0293	0.00733	mg/kg	1		08/28/21 20:51
Chrysene	0.0147 U	0.0293	0.00733	mg/kg	1		08/28/21 20:51
Dibenzo[a,h]anthracene	0.0147 U	0.0293	0.00733	mg/kg	1		08/28/21 20:51
Fluoranthene	0.0147 U	0.0293	0.00733	mg/kg	1		08/28/21 20:51
Fluorene	0.0147 U	0.0293	0.00733	mg/kg	1		08/28/21 20:51
Indeno[1,2,3-c,d] pyrene	0.0147 U	0.0293	0.00733	mg/kg	1		08/28/21 20:51
Naphthalene	0.0117 U	0.0234	0.00586	mg/kg	1		08/28/21 20:51
Phenanthrene	0.0147 U	0.0293	0.00733	mg/kg	1		08/28/21 20:51
Pyrene	0.0147 U	0.0293	0.00733	mg/kg	1		08/28/21 20:51
Surrogates							
2-Methylnaphthalene-d10 (surr)	88.2	58-103		%	1		08/28/21 20:51
Fluoranthene-d10 (surr)	90.3	54-113		%	1		08/28/21 20:51

Batch Information

Analytical Batch: XMS12859 Analytical Method: 8270D SIM (PAH)

Analyst: LAW

Analytical Date/Time: 08/28/21 20:51 Container ID: 1215191007-A

Prep Batch: XXX45415 Prep Method: SW3550C Prep Date/Time: 08/20/21 11:11 Prep Initial Wt./Vol.: 22.886 g Prep Extract Vol: 5 mL

Print Date: 09/01/2021 4:40:03PM

Client Sample ID: 21AKN-SB-03(7.3'-7.8')
Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215191007 Lab Project ID: 1215191 Collection Date: 08/14/21 13:55 Received Date: 08/16/21 16:32 Matrix: Soil/Solid (dry weight)

Solids (%):83.9 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	9.05 J	23.7	7.35	mg/kg	1		08/19/21 19:59
Surrogates							
5a Androstane (surr)	89.2	50-150		%	1		08/19/21 19:59

Batch Information

Analytical Batch: XFC16052 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 08/19/21 19:59 Container ID: 1215191007-A Prep Batch: XXX45404 Prep Method: SW3550C Prep Date/Time: 08/19/21 07:25 Prep Initial Wt./Vol.: 30.179 g Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	118 J	119	51.0	mg/kg	1		08/19/21 19:59
Surrogates							
n-Triacontane-d62 (surr)	89.2	50-150		%	1		08/19/21 19:59

Batch Information

Analytical Batch: XFC16052 Analytical Method: AK103

Analyst: IVM

Analytical Date/Time: 08/19/21 19:59 Container ID: 1215191007-A Prep Batch: XXX45404 Prep Method: SW3550C Prep Date/Time: 08/19/21 07:25 Prep Initial Wt./Vol.: 30.179 g Prep Extract Vol: 5 mL

Print Date: 09/01/2021 4:40:03PM J flagging is activated

Client Sample ID: 21AKN-SB-03(7.3'-7.8') Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215191007 Lab Project ID: 1215191

Collection Date: 08/14/21 13:55 Received Date: 08/16/21 16:32 Matrix: Soil/Solid (dry weight)

Solids (%):83.9 Location:

Results by Volatile Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Gasoline Range Organics	1.50 J	4.34	1.30	mg/kg	1		08/19/21 18:14
Surrogates							
4-Bromofluorobenzene (surr)	117	50-150		%	1		08/19/21 18:14

Batch Information

Analytical Batch: VFC15774 Analytical Method: AK101 Analyst: MDT

Analytical Date/Time: 08/19/21 18:14 Container ID: 1215191007-B

Prep Batch: VXX37679 Prep Method: SW5035A Prep Date/Time: 08/14/21 13:55 Prep Initial Wt./Vol.: 44.084 g Prep Extract Vol: 32.1043 mL

Print Date: 09/01/2021 4:40:03PM

Client Sample ID: 21AKN-SB-03(7.3'-7.8')
Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215191007 Lab Project ID: 1215191 Collection Date: 08/14/21 13:55 Received Date: 08/16/21 16:32 Matrix: Soil/Solid (dry weight)

Solids (%):83.9 Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.0109 U	0.0217	0.00677	mg/kg	1		08/25/21 15:53
Ethylbenzene	0.0217 U	0.0434	0.0135	mg/kg	1		08/25/21 15:53
o-Xylene	0.0217 U	0.0434	0.0135	mg/kg	1		08/25/21 15:53
P & M -Xylene	0.0434 U	0.0868	0.0260	mg/kg	1		08/25/21 15:53
Toluene	0.0217 U	0.0434	0.0135	mg/kg	1		08/25/21 15:53
Xylenes (total)	0.0650 U	0.130	0.0396	mg/kg	1		08/25/21 15:53
Surrogates							
1,2-Dichloroethane-D4 (surr)	104	71-136		%	1		08/25/21 15:53
4-Bromofluorobenzene (surr)	99.4	55-151		%	1		08/25/21 15:53
Toluene-d8 (surr)	102	85-116		%	1		08/25/21 15:53

Batch Information

Analytical Batch: VMS21100 Analytical Method: SW8260D

Analyst: S.S

Analytical Date/Time: 08/25/21 15:53 Container ID: 1215191007-B Prep Batch: VXX37709
Prep Method: SW5035A
Prep Date/Time: 08/14/21 13:55
Prep Initial Wt./Vol.: 44.084 g
Prep Extract Vol: 32.1043 mL

Print Date: 09/01/2021 4:40:03PM

Results of Trip Blank

Client Sample ID: Trip Blank

Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215191008 Lab Project ID: 1215191 Collection Date: 08/14/21 09:40 Received Date: 08/16/21 16:32 Matrix: Soil/Solid (dry weight)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	1.00 J	2.53	0.759	mg/kg	1	Limits	08/19/21 14:39
Surrogates 4-Bromofluorobenzene (surr)	105	50-150		%	1		08/19/21 14:39

Batch Information

Analytical Batch: VFC15774 Analytical Method: AK101

Analyst: MDT

Analytical Date/Time: 08/19/21 14:39 Container ID: 1215191008-A Prep Batch: VXX37679
Prep Method: SW5035A
Prep Date/Time: 08/14/21 09:40
Prep Initial Wt./Vol.: 49.433 g
Prep Extract Vol: 25 mL

Print Date: 09/01/2021 4:40:03PM J flagging is activated

Results of Trip Blank

Client Sample ID: Trip Blank

Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215191008 Lab Project ID: 1215191 Collection Date: 08/14/21 09:40 Received Date: 08/16/21 16:32 Matrix: Soil/Solid (dry weight)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.00630 U	0.0126	0.00394	mg/kg	1		08/25/21 14:30
Ethylbenzene	0.0127 U	0.0253	0.00789	mg/kg	1		08/25/21 14:30
o-Xylene	0.0127 U	0.0253	0.00789	mg/kg	1		08/25/21 14:30
P & M -Xylene	0.0253 U	0.0506	0.0152	mg/kg	1		08/25/21 14:30
Toluene	0.0127 U	0.0253	0.00789	mg/kg	1		08/25/21 14:30
Xylenes (total)	0.0380 U	0.0759	0.0231	mg/kg	1		08/25/21 14:30
Surrogates							
1,2-Dichloroethane-D4 (surr)	108	71-136		%	1		08/25/21 14:30
4-Bromofluorobenzene (surr)	96.3	55-151		%	1		08/25/21 14:30
Toluene-d8 (surr)	99.6	85-116		%	1		08/25/21 14:30

Batch Information

Analytical Batch: VMS21100 Analytical Method: SW8260D

Analyst: S.S

Analytical Date/Time: 08/25/21 14:30 Container ID: 1215191008-A

Prep Batch: VXX37709
Prep Method: SW5035A
Prep Date/Time: 08/14/21 09:40
Prep Initial Wt./Vol.: 49.433 g
Prep Extract Vol: 25 mL

Print Date: 09/01/2021 4:40:03PM

Method Blank

Blank ID: MB for HBN 1824278 [SPT/11351]

Blank Lab ID: 1630799

QC for Samples:

1215191001, 1215191002, 1215191003, 1215191004, 1215191005, 1215191006, 1215191007

Results by SM21 2540G

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Total Solids
 100
 %

Matrix: Soil/Solid (dry weight)

Batch Information

Analytical Batch: SPT11351 Analytical Method: SM21 2540G

Instrument: Analyst: TMM

Analytical Date/Time: 8/17/2021 5:00:00PM

Print Date: 09/01/2021 4:40:06PM

Duplicate Sample Summary

Original Sample ID: 1215191004 Duplicate Sample ID: 1630800

QC for Samples:

1215191001, 1215191002, 1215191003, 1215191004, 1215191005

Analysis Date: 08/17/2021 17:00 Matrix: Soil/Solid (dry weight)

Results by SM21 2540G

<u>NAME</u>	<u>Original</u>	<u>Duplicate</u>	<u>Units</u>	RPD (%)	RPD CL
Total Solids	93.3	94.2	%	0.93	(< 15)

Batch Information

Analytical Batch: SPT11351 Analytical Method: SM21 2540G

Instrument: Analyst: TMM

Print Date: 09/01/2021 4:40:07PM

Duplicate Sample Summary

Original Sample ID: 1215191005 Duplicate Sample ID: 1630801

QC for Samples:

1215191005, 1215191006, 1215191007

Analysis Date: 08/17/2021 17:00 Matrix: Soil/Solid (dry weight)

Results by SM21 2540G

<u>NAME</u>	<u>Original</u>	<u>Duplicate</u>	<u>Units</u>	RPD (%)	RPD CL
Total Solids	82.2	82.5	%	0.34	(< 15)

Batch Information

Analytical Batch: SPT11351 Analytical Method: SM21 2540G

Instrument: Analyst: TMM

Print Date: 09/01/2021 4:40:07PM

Method Blank

Blank ID: MB for HBN 1824417 [VXX/37679]

Blank Lab ID: 1631424

QC for Samples:

1215191001, 1215191002, 1215191003, 1215191004, 1215191005, 1215191006, 1215191007, 1215191008

Matrix: Soil/Solid (dry weight)

Results by AK101

ParameterResultsLOQ/CLDLUnitsGasoline Range Organics1.03J2.500.750mg/kg

Surrogates

4-Bromofluorobenzene (surr) 93 50-150 %

Batch Information

Analytical Batch: VFC15774 Prep Batch: VXX37679
Analytical Method: AK101 Prep Method: SW5035A

Instrument: Agilent 7890A PID/FID Prep Date/Time: 8/19/2021 6:00:00AM

Analyst: MDT Prep Initial Wt./Vol.: 50 g
Analytical Date/Time: 8/19/2021 12:48:00PM Prep Extract Vol: 25 mL

Print Date: 09/01/2021 4:40:10PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1215191 [VXX37679]

Blank Spike Lab ID: 1631425 Date Analyzed: 08/19/2021 12:12 Spike Duplicate ID: LCSD for HBN 1215191

[VXX37679]

Spike Duplicate Lab ID: 1631426 Matrix: Soil/Solid (dry weight)

1215191001, 1215191002, 1215191003, 1215191004, 1215191005, 1215191006, 1215191007,

1215191008

Results by AK101

QC for Samples:

	E	Blank Spike	(mg/kg)	S	pike Duplic	ate (mg/kg)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	12.5	14.8	119	12.5	14.9	119	(60-120)	0.38	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	1.25		86	1.25		102	(50-150)	17.40	

Batch Information

Analytical Batch: VFC15774
Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: MDT

Prep Batch: VXX37679
Prep Method: SW5035A

Prep Date/Time: 08/19/2021 06:00

Spike Init Wt./Vol.: 12.5 mg/Kg Extract Vol: 25 mL Dupe Init Wt./Vol.: 12.5 mg/Kg Extract Vol: 25 mL

Print Date: 09/01/2021 4:40:13PM

Method Blank

Blank ID: MB for HBN 1824641 [VXX/37700]

Blank Lab ID: 1632289

QC for Samples:

1215191001, 1215191002

Matrix: Soil/Solid (dry weight)

Results by SW8260D

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Benzene	0.00625U	0.0125	0.00390	mg/kg
Ethylbenzene	0.0125U	0.0250	0.00780	mg/kg
o-Xylene	0.0125U	0.0250	0.00780	mg/kg
P & M -Xylene	0.0250U	0.0500	0.0150	mg/kg
Toluene	0.0125U	0.0250	0.00780	mg/kg
Xylenes (total)	0.0375U	0.0750	0.0228	mg/kg
Surrogates				
1,2-Dichloroethane-D4 (surr)	102	71-136		%
4-Bromofluorobenzene (surr)	95.3	55-151		%
Toluene-d8 (surr)	102	85-116		%

Batch Information

Analytical Batch: VMS21095 Analytical Method: SW8260D

Instrument: VRA Agilent GC/MS 7890B/5977A

Analyst: S.S

Analytical Date/Time: 8/24/2021 11:25:00AM

Prep Batch: VXX37700 Prep Method: SW5035A

Prep Date/Time: 8/24/2021 6:00:00AM

Prep Initial Wt./Vol.: 50 g Prep Extract Vol: 25 mL

Print Date: 09/01/2021 4:40:15PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1215191 [VXX37700]

Blank Spike Lab ID: 1632290 Date Analyzed: 08/24/2021 12:44

Matrix: Soil/Solid (dry weight)

QC for Samples: 1215191001, 1215191002

Results by SW8260D

Blank Spike (mg/kg)						
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)			
Benzene	0.750	0.752	100			
Ethylbenzene	0.750	0.743	99			
o-Xylene	0.750	0.758	101			
P & M -Xylene	1.50	1.49	100			
Toluene	0.750	0.760	101			
Xylenes (total)	2.25	2.25	100			
Surrogates						
1,2-Dichloroethane-D4 (surr)	0.750		100			
4-Bromofluorobenzene (surr)	0.750		90			
Toluene-d8 (surr)	0.750		102			

Batch Information

Analytical Batch: VMS21095
Analytical Method: SW8260D

Instrument: VRA Agilent GC/MS 7890B/5977A

Analyst: S.S

Prep Batch: VXX37700
Prep Method: SW5035A

Prep Date/Time: 08/24/2021 06:00

Spike Init Wt./Vol.: 0.750 mg/Kg Extract Vol: 25 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 09/01/2021 4:40:17PM

Matrix Spike Summary

Original Sample ID: 1632291 MS Sample ID: 1632292 MS MSD Sample ID: 1632293 MSD

QC for Samples: 1215191001, 1215191002

Analysis Date: 08/24/2021 15:16 Analysis Date: 08/24/2021 13:43 Analysis Date: 08/24/2021 13:59 Matrix: Solid/Soil (Wet Weight)

Results by SW8260D

		Mat	rix Spike (r	mg/kg)	Spike	Duplicate	(mg/kg)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Benzene	0.00595U	0.712	0.711	100	0.712	0.724	102	77-121	1.80	(< 20)
Ethylbenzene	0.0118U	0.712	0.715	101	0.712	0.722	101	76-122	0.89	(< 20)
o-Xylene	0.0118U	0.712	0.718	101	0.712	0.726	102	77-123	1.00	(< 20)
P & M -Xylene	0.0237U	1.42	1.43	100	1.42	1.44	101	77-124	1.20	(< 20)
Toluene	0.0118U	0.712	0.732	103	0.712	0.746	105	77-121	1.90	(< 20)
Xylenes (total)	0.0356U	2.14	2.14	100	2.14	2.17	102	78-124	1.20	(< 20)
Surrogates										
1,2-Dichloroethane-D4 (surr)		0.712	0.716	101	0.712	0.706	99	71-136	1.40	
4-Bromofluorobenzene (surr)		1.19	0.988	83	1.19	0.999	84	55-151	1.10	
Toluene-d8 (surr)		0.712	0.733	103	0.712	0.733	103	85-116	0.03	

Batch Information

Analytical Batch: VMS21095 Analytical Method: SW8260D

Instrument: VRA Agilent GC/MS 7890B/5977A

Analyst: S.S

Analytical Date/Time: 8/24/2021 1:43:00PM

Prep Batch: VXX37700

Prep Method: Vol. Extraction SW8260 Field Extracted L

Prep Date/Time: 8/24/2021 6:00:00AM

Prep Initial Wt./Vol.: 52.69g Prep Extract Vol: 25.00mL

Print Date: 09/01/2021 4:40:19PM

Method Blank

Blank ID: MB for HBN 1824688 [VXX/37709]

Blank Lab ID: 1632504

QC for Samples:

1215191003, 1215191004, 1215191005, 1215191006, 1215191007, 1215191008

Results by SW8260D

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Benzene	0.00625U	0.0125	0.00390	mg/kg
Ethylbenzene	0.0125U	0.0250	0.00780	mg/kg
o-Xylene	0.0125U	0.0250	0.00780	mg/kg
P & M -Xylene	0.0250U	0.0500	0.0150	mg/kg
Toluene	0.0125U	0.0250	0.00780	mg/kg
Xylenes (total)	0.0375U	0.0750	0.0228	mg/kg
Surrogates				
1,2-Dichloroethane-D4 (surr)	107	71-136		%
4-Bromofluorobenzene (surr)	98	55-151		%
Toluene-d8 (surr)	100	85-116		%

Batch Information

Analytical Batch: VMS21100 Analytical Method: SW8260D

Instrument: VQA 7890/5975 GC/MS

Analyst: S.S

Analytical Date/Time: 8/25/2021 11:34:00AM

Prep Batch: VXX37709 Prep Method: SW5035A

Prep Date/Time: 8/25/2021 6:00:00AM

Matrix: Soil/Solid (dry weight)

Prep Initial Wt./Vol.: 50 g Prep Extract Vol: 25 mL

Print Date: 09/01/2021 4:40:20PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1215191 [VXX37709]

Blank Spike Lab ID: 1632505 Date Analyzed: 08/25/2021 11:50

Matrix: Soil/Solid (dry weight)

QC for Samples: 1215191003, 1215191004, 1215191005, 1215191006, 1215191007, 1215191008

Results by SW8260D

•									
Blank Spike (mg/kg)									
<u>Parameter</u>	Spike	Result	Rec (%)	<u>CL</u>					
Benzene	0.750	0.781	104	(77-121)					
Ethylbenzene	0.750	0.727	97	(76-122)					
o-Xylene	0.750	0.751	100	(77-123)					
P & M -Xylene	1.50	1.43	95	(77-124)					
Toluene	0.750	0.757	101	(77-121)					
Xylenes (total)	2.25	2.18	97	(78-124)					
Surrogates									
1,2-Dichloroethane-D4 (surr)	0.750		93	(71-136)					
4-Bromofluorobenzene (surr)	0.750		94	(55-151)					
Toluene-d8 (surr)	0.750		100	(85-116)					

Batch Information

Analytical Batch: VMS21100
Analytical Method: SW8260D

Instrument: VQA 7890/5975 GC/MS

Analyst: S.S

Prep Batch: VXX37709
Prep Method: SW5035A

Prep Date/Time: 08/25/2021 06:00

Spike Init Wt./Vol.: 0.750 mg/Kg Extract Vol: 25 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 09/01/2021 4:40:23PM

Matrix Spike Summary

Original Sample ID: 1632506 MS Sample ID: 1632507 MS MSD Sample ID: 1632508 MSD Analysis Date: 08/25/2021 14:47 Analysis Date: 08/25/2021 13:08 Analysis Date: 08/25/2021 13:24 Matrix: Solid/Soil (Wet Weight)

QC for Samples: 1215191003, 1215191004, 1215191005, 1215191006, 1215191007, 1215191008

Results by SW8260D

		Mat	rix Spike (r	ng/kg)	Spike	Duplicate	(mg/kg)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Benzene	0.00770U	0.925	0.966	104	0.925	0.950	103	77-121	1.70	(< 20)
Ethylbenzene	0.0154U	0.925	0.901	98	0.925	0.883	96	76-122	2.00	(< 20)
o-Xylene	0.0154U	0.925	0.929	100	0.925	0.915	99	77-123	1.40	(< 20)
P & M -Xylene	0.0308U	1.85	1.76	95	1.85	1.74	94	77-124	1.60	(< 20)
Toluene	0.0154U	0.925	0.931	101	0.925	0.914	99	77-121	1.80	(< 20)
Xylenes (total)	0.0462U	2.77	2.69	97	2.77	2.65	96	78-124	1.50	(< 20)
Surrogates										
1,2-Dichloroethane-D4 (surr)		0.925	0.862	93	0.925	0.864	93	71-136	0.18	
4-Bromofluorobenzene (surr)		1.54	1.24	80	1.54	1.22	79	55-151	1.30	
Toluene-d8 (surr)		0.925	0.922	100	0.925	0.927	100	85-116	0.47	

Batch Information

Analytical Batch: VMS21100 Analytical Method: SW8260D Instrument: VQA 7890/5975 GC/MS

Analyst: S.S

Analytical Date/Time: 8/25/2021 1:08:00PM

Prep Batch: VXX37709

Prep Method: Vol. Extraction SW8260 Field Extracted L

Prep Date/Time: 8/25/2021 6:00:00AM

Prep Initial Wt./Vol.: 40.56g Prep Extract Vol: 25.00mL

Print Date: 09/01/2021 4:40:24PM

Method Blank

Blank ID: MB for HBN 1824204 [XXX/45393]

Blank Lab ID: 1630486

QC for Samples:

1215191001, 1215191002, 1215191003

Matrix: Soil/Solid (dry weight)

Results by 8270D SIM (PAH)

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1-Methylnaphthalene	0.0125U	0.0250	0.00625	mg/kg
2-Methylnaphthalene	0.0125U	0.0250	0.00625	mg/kg
Acenaphthene	0.0125U	0.0250	0.00625	mg/kg
Acenaphthylene	0.0125U	0.0250	0.00625	mg/kg
Anthracene	0.0125U	0.0250	0.00625	mg/kg
Benzo(a)Anthracene	0.0125U	0.0250	0.00625	mg/kg
Benzo[a]pyrene	0.0125U	0.0250	0.00625	mg/kg
Benzo[b]Fluoranthene	0.0125U	0.0250	0.00625	mg/kg
Benzo[g,h,i]perylene	0.0125U	0.0250	0.00625	mg/kg
Benzo[k]fluoranthene	0.0125U	0.0250	0.00625	mg/kg
Chrysene	0.0125U	0.0250	0.00625	mg/kg
Dibenzo[a,h]anthracene	0.0125U	0.0250	0.00625	mg/kg
Fluoranthene	0.0125U	0.0250	0.00625	mg/kg
Fluorene	0.0125U	0.0250	0.00625	mg/kg
Indeno[1,2,3-c,d] pyrene	0.0125U	0.0250	0.00625	mg/kg
Naphthalene	0.0100U	0.0200	0.00500	mg/kg
Phenanthrene	0.0125U	0.0250	0.00625	mg/kg
Pyrene	0.0125U	0.0250	0.00625	mg/kg
Surrogates				
2-Methylnaphthalene-d10 (surr)	104*	58-103		%
Fluoranthene-d10 (surr)	104	54-113		%

Batch Information

Analytical Batch: XMS12833

Analytical Method: 8270D SIM (PAH)

Instrument: SVA Agilent 780/5975 GC/MS

Analyst: LAW

Analytical Date/Time: 8/18/2021 1:56:00AM

Prep Batch: XXX45393 Prep Method: SW3550C

Prep Date/Time: 8/17/2021 7:34:15AM

Prep Initial Wt./Vol.: 22.5 g Prep Extract Vol: 5 mL

Print Date: 09/01/2021 4:40:25PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1215191 [XXX45393]

Blank Spike Lab ID: 1630487 Date Analyzed: 08/18/2021 02:16

Matrix: Soil/Solid (dry weight)

QC for Samples: 1215191001, 1215191002, 1215191003

Results by 8270D SIM (PAH)

, ,				
	E	Blank Spike	(mg/kg)	
<u>Parameter</u>	Spike	Result	Rec (%)	<u>CL</u>
1-Methylnaphthalene	0.111	0.108	98	(43-111
2-Methylnaphthalene	0.111	0.106	96	(39-114
Acenaphthene	0.111	0.108	97	(44-111
Acenaphthylene	0.111	0.106	95	(39-116
Anthracene	0.111	0.104	94	(50-114
Benzo(a)Anthracene	0.111	0.103	93	(54-122
Benzo[a]pyrene	0.111	0.102	92	(50-125
Benzo[b]Fluoranthene	0.111	0.107	96	(53-128
Benzo[g,h,i]perylene	0.111	0.101	91	(49-127
Benzo[k]fluoranthene	0.111	0.104	93	(56-123
Chrysene	0.111	0.106	95	(57-118
Dibenzo[a,h]anthracene	0.111	0.103	93	(50-129
Fluoranthene	0.111	0.107	96	(55-119
Fluorene	0.111	0.105	95	(47-114
Indeno[1,2,3-c,d] pyrene	0.111	0.101	91	(49-130
Naphthalene	0.111	0.107	96	(38-111
Phenanthrene	0.111	0.107	97	(49-113
Pyrene	0.111	0.106	95	(55-117
Surrogates				
2-Methylnaphthalene-d10 (surr)	0.111		98	(58-103
Fluoranthene-d10 (surr)	0.111		97	(54-113

Batch Information

Analytical Batch: XMS12833 Analytical Method: 8270D SIM (PAH)

Instrument: SVA Agilent 780/5975 GC/MS

Analyst: LAW

Prep Batch: XXX45393 Prep Method: SW3550C

Prep Date/Time: 08/17/2021 07:34

Spike Init Wt./Vol.: 0.111 mg/Kg Extract Vol: 5 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 09/01/2021 4:40:27PM

QC for Samples:

Matrix Spike Summary

Original Sample ID: 1215171005 MS Sample ID: 1630488 MS MSD Sample ID: 1630489 MSD

1215191001, 1215191002, 1215191003

Analysis Date: 08/18/2021 2:57 Analysis Date: 08/18/2021 3:18 Analysis Date: 08/18/2021 3:38 Matrix: Soil/Solid (dry weight)

Results by 8270D SIM (PAH)

		Mat	rix Spike (n	ng/kg)	Spike	Duplicate	(mg/kg)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
1-Methylnaphthalene	0.0187U	0.168	0.154	92	0.167	0.154	93	43-111	0.52	(< 20)
2-Methylnaphthalene	0.0187U	0.168	0.153	91	0.167	0.153	92	39-114	0.31	(< 20)
Acenaphthene	0.0187U	0.168	0.156	93	0.167	0.153	92	44-111	2.30	(< 20)
Acenaphthylene	0.0187U	0.168	0.159	95	0.167	0.154	93	39-116	3.60	(< 20)
Anthracene	0.0187U	0.168	0.154	92	0.167	0.151	91	50-114	2.40	(< 20)
Benzo(a)Anthracene	0.0187U	0.168	0.154	92	0.167	0.156	94	54-122	1.70	(< 20)
Benzo[a]pyrene	0.0187U	0.168	0.150	90	0.167	0.151	91	50-125	0.07	(< 20)
Benzo[b]Fluoranthene	0.0187U	0.168	0.154	92	0.167	0.154	93	53-128	0.25	(< 20)
Benzo[g,h,i]perylene	0.0187U	0.168	0.145	87	0.167	0.143	86	49-127	1.90	(< 20)
Benzo[k]fluoranthene	0.0187U	0.168	0.151	90	0.167	0.152	92	56-123	1.20	(< 20)
Chrysene	0.0187U	0.168	0.154	92	0.167	0.159	95	57-118	2.30	(< 20)
Dibenzo[a,h]anthracene	0.0187U	0.168	0.147	88	0.167	0.144	87	50-129	2.20	(< 20)
Fluoranthene	0.0187U	0.168	0.167	100	0.167	0.174	104	55-119	4.00	(< 20)
Fluorene	0.0187U	0.168	0.153	91	0.167	0.149	90	47-114	2.50	(< 20)
Indeno[1,2,3-c,d] pyrene	0.0187U	0.168	0.145	87	0.167	0.142	85	49-130	2.30	(< 20)
Naphthalene	0.0150U	0.168	0.154	92	0.167	0.151	91	38-111	1.70	(< 20)
Phenanthrene	0.0187U	0.168	0.161	96	0.167	0.162	98	49-113	0.62	(< 20)
Pyrene	0.0187U	0.168	0.168	100	0.167	0.177	106	55-117	4.80	(< 20)
Surrogates										
2-Methylnaphthalene-d10 (surr)		0.168	0.156	93	0.167	0.153	92	58-103	1.60	
Fluoranthene-d10 (surr)		0.168	0.154	92	0.167	0.156	94	54-113	0.88	

Batch Information

Analytical Batch: XMS12833

Analytical Method: 8270D SIM (PAH) Instrument: SVA Agilent 780/5975 GC/MS

Analyst: LAW

Analytical Date/Time: 8/18/2021 3:18:00AM

Prep Batch: XXX45393

Prep Method: Sonication Extr Soil 8270 PAH SIM 5ml

Prep Date/Time: 8/17/2021 7:34:15AM

Prep Initial Wt./Vol.: 22.81g Prep Extract Vol: 5.00mL

Print Date: 09/01/2021 4:40:29PM

Method Blank

Blank ID: MB for HBN 1824321 [XXX/45404]

Blank Lab ID: 1630963

QC for Samples:

1215191001, 1215191002, 1215191003, 1215191004, 1215191005, 1215191006, 1215191007

Results by AK102

ParameterResultsLOQ/CLDLUnitsDiesel Range Organics10.0U20.06.20mg/kg

Matrix: Soil/Solid (dry weight)

Surrogates

5a Androstane (surr) 92.4 60-120 %

Batch Information

Analytical Batch: XFC16052 Prep Batch: XXX45404
Analytical Method: AK102 Prep Method: SW3550C

Instrument: Agilent 7890B F Prep Date/Time: 8/19/2021 7:25:56AM

Analyst: IVM Prep Initial Wt./Vol.: 30 g
Analytical Date/Time: 8/19/2021 4:52:00PM Prep Extract Vol: 5 mL

Print Date: 09/01/2021 4:40:30PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1215191 [XXX45404]

Blank Spike Lab ID: 1630964 Date Analyzed: 08/19/2021 17:02 Spike Duplicate ID: LCSD for HBN 1215191

[XXX45404]

Spike Duplicate Lab ID: 1630965

Matrix: Soil/Solid (dry weight)

QC for Samples:

1215191001, 1215191002, 1215191003, 1215191004, 1215191005, 1215191006, 1215191007

Results by AK102

	E	Blank Spike	(mg/kg)	S	pike Duplic	ate (mg/kg)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Diesel Range Organics	667	678	102	667	682	102	(75-125)	0.61	(< 20)
Surrogates									
5a Androstane (surr)	16.7		99	16.7		100	(60-120)	1.60	

Batch Information

Analytical Batch: XFC16052 Analytical Method: AK102 Instrument: Agilent 7890B F

Analyst: IVM

Prep Batch: XXX45404
Prep Method: SW3550C

Prep Date/Time: 08/19/2021 07:25

Spike Init Wt./Vol.: 667 mg/kg Extract Vol: 5 mL Dupe Init Wt./Vol.: 667 mg/kg Extract Vol: 5 mL

Print Date: 09/01/2021 4:40:33PM

Method Blank

Blank ID: MB for HBN 1824321 [XXX/45404]

Blank Lab ID: 1630963

QC for Samples:

1215191001, 1215191002, 1215191003, 1215191004, 1215191005, 1215191006, 1215191007

Results by AK103

ParameterResultsLOQ/CLDLUnitsResidual Range Organics50.0U10043.0mg/kg

Matrix: Soil/Solid (dry weight)

Surrogates

n-Triacontane-d62 (surr) 94.9 60-120 %

Batch Information

Analytical Batch: XFC16052 Prep Batch: XXX45404
Analytical Method: AK103 Prep Method: SW3550C

Instrument: Agilent 7890B F Prep Date/Time: 8/19/2021 7:25:56AM

Analyst: IVM Prep Initial Wt./Vol.: 30 g
Analytical Date/Time: 8/19/2021 4:52:00PM Prep Extract Vol: 5 mL

Print Date: 09/01/2021 4:40:35PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1215191 [XXX45404]

Blank Spike Lab ID: 1630964 Date Analyzed: 08/19/2021 17:02 Spike Duplicate ID: LCSD for HBN 1215191

[XXX45404]

Spike Duplicate Lab ID: 1630965

Matrix: Soil/Solid (dry weight)

QC for Samples:

1215191001, 1215191002, 1215191003, 1215191004, 1215191005, 1215191006, 1215191007

Results by AK103

/										
		ВІ	ank Spike (mg/kg)	S	pike Duplic	ate (mg/kg)			
l	<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
l	Residual Range Organics	667	625	94	667	633	95	(60-120)	1.40	(< 20)
l	Surrogates									
l	n-Triacontane-d62 (surr)	16.7		96	16.7		97	(60-120)	0.77	

Batch Information

Analytical Batch: XFC16052 Analytical Method: AK103 Instrument: Agilent 7890B F

Analyst: IVM

Prep Batch: XXX45404
Prep Method: SW3550C

Prep Date/Time: 08/19/2021 07:25

Spike Init Wt./Vol.: 667 mg/kg Extract Vol: 5 mL Dupe Init Wt./Vol.: 667 mg/kg Extract Vol: 5 mL

Print Date: 09/01/2021 4:40:37PM

Method Blank

Blank ID: MB for HBN 1824412 [XXX/45415]

Blank Lab ID: 1631395

QC for Samples:

1215191005, 1215191006, 1215191007

Matrix: Soil/Solid (dry weight)

Results by 8270D SIM (PAH)

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1-Methylnaphthalene	0.0125U	0.0250	0.00625	mg/kg
2-Methylnaphthalene	0.0125U	0.0250	0.00625	mg/kg
Acenaphthene	0.0125U	0.0250	0.00625	mg/kg
Acenaphthylene	0.0125U	0.0250	0.00625	mg/kg
Anthracene	0.0125U	0.0250	0.00625	mg/kg
Benzo(a)Anthracene	0.0125U	0.0250	0.00625	mg/kg
Benzo[a]pyrene	0.0125U	0.0250	0.00625	mg/kg
Benzo[b]Fluoranthene	0.0125U	0.0250	0.00625	mg/kg
Benzo[g,h,i]perylene	0.0125U	0.0250	0.00625	mg/kg
Benzo[k]fluoranthene	0.0125U	0.0250	0.00625	mg/kg
Chrysene	0.0125U	0.0250	0.00625	mg/kg
Dibenzo[a,h]anthracene	0.0125U	0.0250	0.00625	mg/kg
Fluoranthene	0.0125U	0.0250	0.00625	mg/kg
Fluorene	0.0125U	0.0250	0.00625	mg/kg
Indeno[1,2,3-c,d] pyrene	0.0125U	0.0250	0.00625	mg/kg
Naphthalene	0.0100U	0.0200	0.00500	mg/kg
Phenanthrene	0.0125U	0.0250	0.00625	mg/kg
Pyrene	0.0125U	0.0250	0.00625	mg/kg
Surrogates				
2-Methylnaphthalene-d10 (surr)	92	58-103		%
Fluoranthene-d10 (surr)	94.7	54-113		%

Batch Information

Analytical Batch: XMS12849 Analytical Method: 8270D SIM (PAH)

Instrument: Agilent GC 7890B/5977A SWA

Analyst: LAW

Analytical Date/Time: 8/24/2021 12:28:00AM

Prep Batch: XXX45415 Prep Method: SW3550C

Prep Date/Time: 8/20/2021 11:11:14AM

Prep Initial Wt./Vol.: 22.5 g Prep Extract Vol: 5 mL

Print Date: 09/01/2021 4:40:40PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1215191 [XXX45415]

Blank Spike Lab ID: 1631396 Date Analyzed: 08/24/2021 00:49

Matrix: Soil/Solid (dry weight)

QC for Samples: 1215191005, 1215191006, 1215191007

Results by 8270D SIM (PAH)

	E	Blank Spike	(mg/kg)	
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>CL</u>
1-Methylnaphthalene	0.111	0.0986	89	(43-111)
2-Methylnaphthalene	0.111	0.0989	89	(39-114)
Acenaphthene	0.111	0.102	92	(44-111)
Acenaphthylene	0.111	0.100	90	(39-116)
Anthracene	0.111	0.0994	89	(50-114)
Benzo(a)Anthracene	0.111	0.0999	90	(54-122)
Benzo[a]pyrene	0.111	0.0966	87	(50-125)
Benzo[b]Fluoranthene	0.111	0.100	90	(53-128)
Benzo[g,h,i]perylene	0.111	0.0979	88	(49-127)
Benzo[k]fluoranthene	0.111	0.0961	87	(56-123)
Chrysene	0.111	0.104	94	(57-118)
Dibenzo[a,h]anthracene	0.111	0.0984	89	(50-129)
Fluoranthene	0.111	0.102	92	(55-119)
Fluorene	0.111	0.0970	87	(47-114)
Indeno[1,2,3-c,d] pyrene	0.111	0.0984	89	(49-130)
Naphthalene	0.111	0.0966	87	(38-111)
Phenanthrene	0.111	0.0987	89	(49-113)
Pyrene	0.111	0.104	94	(55-117)
Surrogates				
2-Methylnaphthalene-d10 (surr)	0.111		93	(58-103)
Fluoranthene-d10 (surr)	0.111		97	(54-113)

Batch Information

Analytical Batch: XMS12849
Analytical Method: 8270D SIM (PAH)

Instrument: Agilent GC 7890B/5977A SWA

Analyst: LAW

Prep Batch: XXX45415
Prep Method: SW3550C

Prep Date/Time: 08/20/2021 11:11

Spike Init Wt./Vol.: 0.111 mg/Kg Extract Vol: 5 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 09/01/2021 4:40:42PM

QC for Samples:

Matrix Spike Summary

Original Sample ID: 1215218019 MS Sample ID: 1631397 MS MSD Sample ID: 1631398 MSD

1215191005, 1215191006, 1215191007

Analysis Date: 08/24/2021 3:33 Analysis Date: 08/24/2021 3:33 Analysis Date: 08/24/2021 3:54 Matrix: Soil/Solid (dry weight)

Results by 8270D SIM (PAH)

		Mat	rix Spike (n	ng/kg)	Spike	Duplicate	(mg/kg)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
1-Methylnaphthalene	0.0141J	0.124	0.125	89	0.125	0.134	96	43-111	7.30	(< 20)
2-Methylnaphthalene	0.0171J	0.124	0.129	89	0.125	0.138	96	39-114	6.70	(< 20)
Acenaphthene	0.0140U	0.124	0.104	83	0.125	0.113	90	44-111	8.20	(< 20)
Acenaphthylene	0.0140U	0.124	0.104	84	0.125	0.109	87	39-116	4.60	(< 20)
Anthracene	0.0140U	0.124	0.103	82	0.125	0.109	87	50-114	6.10	(< 20)
Benzo(a)Anthracene	0.0140U	0.124	0.106	85	0.125	0.112	89	54-122	5.50	(< 20)
Benzo[a]pyrene	0.0140U	0.124	0.0960	77	0.125	0.102	81	50-125	5.80	(< 20)
Benzo[b]Fluoranthene	0.00743J	0.124	0.100	75	0.125	0.107	79	53-128	6.20	(< 20)
Benzo[g,h,i]perylene	0.0140U	0.124	0.0819	66	0.125	0.0862	69	49-127	5.20	(< 20)
Benzo[k]fluoranthene	0.0140U	0.124	0.0919	74	0.125	0.0975	78	56-123	6.00	(< 20)
Chrysene	0.0140U	0.124	0.114	92	0.125	0.122	97	57-118	6.30	(< 20)
Dibenzo[a,h]anthracene	0.0140U	0.124	0.0895	72	0.125	0.0941	75	50-129	5.00	(< 20)
Fluoranthene	0.0133J	0.124	0.119	85	0.125	0.127	90	55-119	6.40	(< 20)
Fluorene	0.0140U	0.124	0.102	82	0.125	0.110	88	47-114	7.50	(< 20)
Indeno[1,2,3-c,d] pyrene	0.0140U	0.124	0.0860	69	0.125	0.0910	73	49-130	5.70	(< 20)
Naphthalene	0.0112J	0.124	0.114	83	0.125	0.121	87	38-111	5.70	(< 20)
Phenanthrene	0.0147J	0.124	0.122	86	0.125	0.134	96	49-113	9.70	(< 20)
Pyrene	0.0114J	0.124	0.119	86	0.125	0.128	92	55-117	7.40	(< 20)
Surrogates										
2-Methylnaphthalene-d10 (surr)		0.124	0.104	83	0.125	0.112	90	58-103	7.80	
Fluoranthene-d10 (surr)		0.124	0.102	82	0.125	0.110	87	54-113	7.40	

Batch Information

Analytical Batch: XMS12849 Analytical Method: 8270D SIM (PAH)

Instrument: Agilent GC 7890B/5977A SWA

Analyst: LAW

Analytical Date/Time: 8/24/2021 3:33:00AM

Prep Batch: XXX45415

Prep Method: Sonication Extr Soil 8270 PAH SIM 5ml

Prep Date/Time: 8/20/2021 11:11:14AM

Prep Initial Wt./Vol.: 22.65g Prep Extract Vol: 5.00mL

Print Date: 09/01/2021 4:40:43PM

Method Blank

Blank ID: MB for HBN 1824472 [XXX/45426]

Blank Lab ID: 1631670

QC for Samples: 1215191004

Matrix: Soil/Solid (dry weight)

Results by 8270D SIM (PAH)

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1-Methylnaphthalene	0.0125U	0.0250	0.00625	mg/kg
2-Methylnaphthalene	0.0125U	0.0250	0.00625	mg/kg
Acenaphthene	0.0125U	0.0250	0.00625	mg/kg
Acenaphthylene	0.0125U	0.0250	0.00625	mg/kg
Anthracene	0.0125U	0.0250	0.00625	mg/kg
Benzo(a)Anthracene	0.0125U	0.0250	0.00625	mg/kg
Benzo[a]pyrene	0.0125U	0.0250	0.00625	mg/kg
Benzo[b]Fluoranthene	0.0125U	0.0250	0.00625	mg/kg
Benzo[g,h,i]perylene	0.0125U	0.0250	0.00625	mg/kg
Benzo[k]fluoranthene	0.0125U	0.0250	0.00625	mg/kg
Chrysene	0.0125U	0.0250	0.00625	mg/kg
Dibenzo[a,h]anthracene	0.0125U	0.0250	0.00625	mg/kg
Fluoranthene	0.0125U	0.0250	0.00625	mg/kg
Fluorene	0.0125U	0.0250	0.00625	mg/kg
Indeno[1,2,3-c,d] pyrene	0.0125U	0.0250	0.00625	mg/kg
Naphthalene	0.0100U	0.0200	0.00500	mg/kg
Phenanthrene	0.0125U	0.0250	0.00625	mg/kg
Pyrene	0.0125U	0.0250	0.00625	mg/kg
Surrogates				
2-Methylnaphthalene-d10 (surr)	98.7	58-103		%
Fluoranthene-d10 (surr)	94.3	54-113		%

Batch Information

Analytical Batch: XMS12848 Analytical Method: 8270D SIM (PAH)

Instrument: SVA Agilent 780/5975 GC/MS

Analyst: CDM

Analytical Date/Time: 8/24/2021 5:47:00PM

Prep Batch: XXX45426 Prep Method: SW3550C

Prep Date/Time: 8/23/2021 7:45:41AM

Prep Initial Wt./Vol.: 22.5 g Prep Extract Vol: 5 mL

Print Date: 09/01/2021 4:40:45PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1215191 [XXX45426]

Blank Spike Lab ID: 1631671 Date Analyzed: 08/24/2021 18:08

Matrix: Soil/Solid (dry weight)

QC for Samples: 1215191004

Results by 8270D SIM (PAH)

E	Blank Spike	(mg/kg)	
<u>Spike</u>	Result	Rec (%)	<u>CL</u>
0.111	0.104	94	(43-111)
0.111	0.103	92	(39-114)
0.111	0.105	95	(44-111)
0.111	0.102	92	(39-116)
0.111	0.107	96	(50-114)
0.111	0.104	93	(54-122)
0.111	0.104	93	(50-125)
0.111	0.107	96	(53-128)
0.111	0.107	97	(49-127)
0.111	0.109	98	(56-123)
0.111	0.104	94	(57-118)
0.111	0.110	99	(50-129)
0.111	0.104	94	(55-119)
0.111	0.106	95	(47-114)
0.111	0.107	97	(49-130)
0.111	0.101	91	(38-111)
0.111	0.110	99	(49-113)
0.111	0.103	93	(55-117)
0.111		98	(58-103)
0.111		94	(54-113)
	Spike 0.111	Spike Result 0.111 0.104 0.111 0.103 0.111 0.105 0.111 0.102 0.111 0.107 0.111 0.104 0.111 0.107 0.111 0.107 0.111 0.107 0.111 0.109 0.111 0.104 0.111 0.104 0.111 0.104 0.111 0.106 0.111 0.107 0.111 0.101 0.111 0.103	0.111 0.104 94 0.111 0.103 92 0.111 0.105 95 0.111 0.102 92 0.111 0.107 96 0.111 0.104 93 0.111 0.107 96 0.111 0.107 97 0.111 0.109 98 0.111 0.104 94 0.111 0.104 94 0.111 0.104 94 0.111 0.104 94 0.111 0.106 95 0.111 0.107 97 0.111 0.101 91 0.111 0.103 93 0.111 0.103 93

Batch Information

Analytical Batch: XMS12848 Analytical Method: 8270D SIM (PAH) Instrument: SVA Agilent 780/5975 GC/MS

Analyst: CDM

Prep Batch: XXX45426
Prep Method: SW3550C

Prep Date/Time: 08/23/2021 07:45

Spike Init Wt./Vol.: 0.111 mg/Kg Extract Vol: 5 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 09/01/2021 4:40:47PM

Matrix Spike Summary

Original Sample ID: 1215347001 MS Sample ID: 1631672 MS MSD Sample ID: 1631673 MSD

QC for Samples: 1215191004

Analysis Date: 08/24/2021 18:28 Analysis Date: 08/24/2021 18:49 Analysis Date: 08/24/2021 19:09 Matrix: Soil/Solid (dry weight)

Results by 8270D SIM (PAH)

results by 62700 Silli (i Ail)			_							
		Mat	rix Spike (n	ng/kg)	Spike	Duplicate	(mg/kg)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
1-Methylnaphthalene	0.0171U	0.151	0.123	82	0.151	0.129	86	43-111	4.70	(< 20)
2-Methylnaphthalene	0.0171U	0.151	0.120	80	0.151	0.129	86	39-114	7.10	(< 20)
Acenaphthene	0.0171U	0.151	0.125	83	0.151	0.131	87	44-111	4.10	(< 20)
Acenaphthylene	0.0171U	0.151	0.121	80	0.151	0.129	86	39-116	6.10	(< 20)
Anthracene	0.0171U	0.151	0.123	82	0.151	0.132	88	50-114	7.00	(< 20)
Benzo(a)Anthracene	0.0171U	0.151	0.119	79	0.151	0.122	81	54-122	2.70	(< 20)
Benzo[a]pyrene	0.0171U	0.151	0.118	78	0.151	0.121	81	50-125	2.90	(< 20)
Benzo[b]Fluoranthene	0.0171U	0.151	0.123	82	0.151	0.126	84	53-128	1.80	(< 20)
Benzo[g,h,i]perylene	0.0171U	0.151	0.118	78	0.151	0.120	80	49-127	1.60	(< 20)
Benzo[k]fluoranthene	0.0171U	0.151	0.118	79	0.151	0.122	81	56-123	3.00	(< 20)
Chrysene	0.0171U	0.151	0.121	81	0.151	0.125	83	57-118	2.90	(< 20)
Dibenzo[a,h]anthracene	0.0171U	0.151	0.122	81	0.151	0.124	83	50-129	1.40	(< 20)
Fluoranthene	0.0171U	0.151	0.120	79	0.151	0.125	83	55-119	4.40	(< 20)
Fluorene	0.0171U	0.151	0.125	83	0.151	0.134	89	47-114	6.60	(< 20)
Indeno[1,2,3-c,d] pyrene	0.0171U	0.151	0.118	78	0.151	0.120	80	49-130	1.80	(< 20)
Naphthalene	0.0137U	0.151	0.118	78	0.151	0.126	84	38-111	6.70	(< 20)
Phenanthrene	0.0171U	0.151	0.129	85	0.151	0.135	90	49-113	4.60	(< 20)
Pyrene	0.0171U	0.151	0.120	79	0.151	0.123	82	55-117	3.10	(< 20)
Surrogatos										
Surrogates		0.454	0.400	0.4	0.454	0.404	0.7	E0 400	4.00	
2-Methylnaphthalene-d10 (surr)		0.151	0.126	84	0.151	0.131	87	58-103	4.30	
Fluoranthene-d10 (surr)		0.151	0.120	80	0.151	0.126	84	54-113	4.50	

Batch Information

Analytical Batch: XMS12848

Analytical Method: 8270D SIM (PAH)

Instrument: SVA Agilent 780/5975 GC/MS

Analyst: CDM

Analytical Date/Time: 8/24/2021 6:49:00PM

Prep Batch: XXX45426

Prep Method: Sonication Extr Soil 8270 PAH SIM 5ml

Prep Date/Time: 8/23/2021 7:45:41AM

Prep Initial Wt./Vol.: 22.75g Prep Extract Vol: 5.00mL

Print Date: 09/01/2021 4:40:48PM

www.shamons/silon.com Turn Around Time:	SHANNON & WILSON, INC. 2355 Hill Road Fairbanks, AK 99709 (907) 479-0600		TODY RECOR	Laborato Attn:	ory SGS Page 1 of 1 en Dawkins used)
2/AXN SB ON(6,5+5) (2AD 1205 2/AXN SB ON(6,5+5) (3AD 1205 2/AXN SB ON(6,5+5) (3AD 1405 2/AXN SB ON(6,5+5) (3AD 1405 2/AXN SB ON(6,5+5) (3AD 1400 2/AXN SB ON(6,5+	Turn Around Time: Quote No: MSA Number: \$65 2010 Please Specify J-Flags: Yes No]]]	SOLETON AND SOLETO		Remarks/Matrix Composition/Grab?
Number: 102582-011 Name: ALU PFAS COC Seals/Intact? Y/N/NA Received Good Cond./Cold Total No. of Containers: 15 COC Seals/Intact? Y/N/NA Received Good Cond./Cold Temp: Delivery Method: 30dstreat Notes: Notes: Received By: 1. Received By: 2. Received By: 3. Tip blank was in cooler WHU Samples at acc times Printed Name: Date: Signature: Time: Signature: Time: Signature: Time: Signature: Time: Printed Name: Date: Printed	Sample Identity 21AKN-SB-O1(0'-1') 21AKN-SB-O1(6'-1') 21AKN-SB-O1(6.5'-1.5') 21AKN-SB-O1(6.5'-1.5') 21AKN-SB-O2(0'-1') 21AKN-SB-O2(6'-7') 21AKN-SB-O3(0'-1') 21AKN-SB-O3(1'-1') 21AKN-SB-O3(1'-1')			2 2 2 2 2	Soil
	Number: 102582-011 Name: ACH PFAS Contact: MX5 Ongoing Project? Yes No Sampler: 174,110 Notes: Notes: Trip blank was in cooler Will samples at act times	Printed Name: Company: Received B Signature: Printed Name:	Time: 0130 Signature: Pate: 6444 Printed Name: Company: Company: Time: Signature: Date: Printed Name:	Time: Sign Date: Prin Con d By: 2. Time: Sign Date: Prin	nature: Time: nted Name: Date: mpany: Received By: 3. nature: Time: 6.34 nature: Date: Date: 6.34 nature: Date:

Coolen

	AKIN 000	1 4	400										7-0001 2403
1 ''	Name and Address		lm -	1	Shipper's Acc 274423			1	egotiable				
	ion and Wils Fairbanks St				Customer's			- 1	Wayb	ill	_11_	-ka	
Suite		uet	5 l		109	125		Issue	d By		Alas	ARGO	
l .	orage, AK 99	51	8									ARGO 8900 SEATTLE, WA 98168	,
USA	,			907-56	1-2120							752 ALASKACARGO.COM	
Consigned	e's Name and Addre	ss	. 5		onsignee's Ad			Also	notify				
	North Americ				274002	<u> 2159</u>	4/	-		KD			·
	/ Potter Driv		_						NT	アレ			
	orage, AK 99	951	8						•				
USA				007.50	0 00 10						-	rol:	
1 1 -		4	ı el:	907-56	2-2343			A = -	intina I-f	mation		Геl:	10925
Issuing Ca	arrier's Agent and Ci	τy						1	unting Infor annon ar	mation nd Wilsor	n Inc		10323
								i i		anks Stre			:
									te 3				
Agent's IA	TA Code			Ac	count No.					AK 995	18		
								US	-1		2		
Airport of	Departure (Addr. of	First	Carrier) ar	nd Requested	Routing			Go	ldStreak				
	Salmon										×,		15-1-17: 5 5
To	By First Carrier				To / By	T	o / By	Curre	1 1	WT/VAL	 	eclared Value For Carriage	Declared Value For Customs
	Alaska Airli	nes		Flight/Date		Flight/D	ate		D PX		X	NVD	NCV
Airport of Ancho				_	212/16	riignt/D	ale	Amo	XXX				
	Information			, 10 22	. 12/10				^^^	*	L		
	DANGEROU	IS (GOODS	S IN EXC	EPTED (1AUÇ	NTITIES C	GD A	ND NC	TOC N	OT REQ	UIRED	
	STORE IN C												SCI
										•			
No of Pieces	Gross Weight	kg lb		mmodity em No.	Chargea Weigh	able nt	Rate Char	/ ge		Total			Quantity of Goods nsions or Volume)
1	26.0				26.	0				AS AG	REED	SOIL SAMPLE	 Es
]'	20.0	-			20.	.0				, 10 /10	,, <u>, , , , , , , , , , , , , , , , , ,</u>		
			11						l				
			11										
1													
				İ					1			Dims: 25 x 13 x	14 x 1
1													
									İ			1	
	,												
			Ш	1								GSX REQ COI	_
1	26.0	Π			1					AS AG	REED	Volume: 2.633	
		Щ	I Charles		Callact	Othai	Charges	-	l				
Prepaid	AS AGREEI		ight Charge	e	Collect	ı	•	.00					
ļ			ation Char	ge		^!	3C 10	.00				4.8	
			Tax			1						•	
	Total C	ther	Charges D	ue Agent	**********	Shipp	per certifies that	t the par	ticulars on	the face he	reof are corre	ect and that insofar as any pa I by name and is in proper co	rt of the consignment
						by a	ams dangerou iir according (o the ap	plicable D	angerous (Goods Regul	ations. I consent to the insp	ection of this cargo.
	Total O	ther (Charges D	ue Carrier		Foi	r: Shann	on ar	nd Wils	on		Signature of Shipper or h	is Agent
						Inc							
										CONTAIN	VT	THIS SHIPMENT DOES C	ONTAIN
	Total Prepaid		_	Total Col	lect	├	bANGERO	JUS GO	אטע			DANGEROUS GOODS	
	AS AGREE	D				1							
	NO NONLL		_			16	Aug 202	21 10):29	Ki	ng Salm	on Ala	ska Airlines
					,	Exe	ecuted On (Dat	e)			at (Place)	Signature of Issu	ling Carrier or its Agent
										1		₽ Q.	27 ₆ 2865 2403

Alert Expeditors Inc.

Citywide Delivery • 440-3351 8421 Flamingo Drive • Anchorage, Alaska 99502

Date			
From	:		
то			
Collect □	Prepay □	Advand	ce Charges
Job#	PO# 15 55	(4) 240	3
•			
	Samole		
			•
	- 1/	4	
Shipped Signature	7.11		
	· ·		
		Total Charge	
Received By:	<u> </u>	Page 63 of 6	5
neceived by		aye 05 01 0	

e-Sample Receipt Form

SGS Workorder #:

1215191

1215191

		_					
Review Criteria	Condition (Ye	s, No, N/A			eptions Not		
Chain of Custody / Temperature Requi			N/A	Exemption pe	rmitted if samp	ler hand carries/deli	vers.
Were Custody Seals intact? Note # &	location Ye	1F					
COC accompanied sa	amples? Ye	S					
DOD: Were samples received in COC corresponding of	coolers? N/A	N N					
N/A **Exemption permitted if	chilled & col	lected <8 h	ours	ago, or for san	nples where ch	illing is not required	
Temperature blank compliant* (i.e., 0-6 °C afte		_		1	@	1.5 °C Therm. ID:	D58
(,		Cooler	_		@	°C Therm. ID:	
If samples received without a temperature blank, the "cooler temperature" will	II be	Cooler			@	°C Therm. ID:	
documented instead & "COOLER TEMP" will be noted to the right. "ambient" or "ch		Cooler	_			°C Therm. ID:	
be noted if neither is available.			_		@		
*If COO ware complete collected to be were	2 2 2 2 NV	Cooler	D:		@	°C Therm. ID:	
*If >6°C, were samples collected <8 hours	s ago?	1					
If <0°C, were sample containers ice	e free?	<u> </u>					
Note: Identify containers received at non-compliant tempe							
Use form FS-0029 if more space is n	needed.						
Holding Time / Documentation / Sample Condition Re			er to fo	orm F-083 "Samp	le Guide" for spe	cific holding times.	
Were samples received within holding	g time? Ye	S					
Do samples match COC** (i.e.,sample IDs,dates/times colle	ected)?	S					
**Note: If times differ <1hr, record details & login per C	OC.						
***Note: If sample information on containers differs from COC, SGS will default to 0	COC information	<mark>on</mark>					
Were analytical requests clear? (i.e., method is specified for ar	nalvses Ye	s					
with multiple option for analysis (Ex: BTEX, I		7					
			N/A	***Exemption	permitted for n	netals (e.g,200.8/602	20A).
Were proper containers (type/mass/volume/preservative***	')used? Ye		1	2/(0)11 011	po		. <u></u>
vvoio propor contamoro (typo/maco/voiamo/procorvativo)dood.						
Volatile / LL-Hg Reg	uirement	2					
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with sai							
Were all water VOA vials free of headspace (i.e., bubbles ≤	· .						
Were all soil VOAs field extracted with MeOH							
Note to Client: Any "No", answer above indicates no	on-compliance	e with stan	dard p	procedures and	d may impact d	ata quality.	
Additiona	al notes (if	applicab	le):				
7.00.10		1 1 2 2 1 2	- /				

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	Container Condition	<u>Container Id</u>	<u>Preservative</u>	Container Condition
1215191001-A	No Preservative Required	ОК			
1215191001-B	Methanol field pres. 4 C	OK			
1215191002-A	No Preservative Required	OK			
1215191002-B	Methanol field pres. 4 C	OK			
1215191003-A	No Preservative Required	OK			
1215191003-B	Methanol field pres. 4 C	OK			
1215191004-A	No Preservative Required	OK			
1215191004-B	Methanol field pres. 4 C	OK			
1215191005-A	No Preservative Required	OK			
1215191005-B	Methanol field pres. 4 C	OK			
1215191006-A	No Preservative Required	OK			
1215191006-B	Methanol field pres. 4 C	OK			
1215191007-A	No Preservative Required	OK			
1215191007-B	Methanol field pres. 4 C	OK			
1215191008-A	Methanol field pres. 4 C	OK			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- $\ensuremath{\mathsf{OK}}$ The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN Insufficient sample quantity provided.

Page 65 of 65

Laboratory Data Review Checklist

Completed By:				
Amber Masters				
ïitle:				
Environmental Scientist				
Date:				
9/8/2021				
Consultant Firm:				
Shannon & Wilson, Inc.				
aboratory Name:				
SGS North America, Inc.				
Laboratory Report Number:				
1215191				
aboratory Report Date:				
9/1/2021				
CS Site Name:				
ADOT&PF King Salmon Airport Statewide PFAS				
ADEC File Number:				
2569.38.033				
Iazard Identification Number:				
26981				

12	
Labora	tory Report Date:
9/	/2021
CS Sit	e Name:
No	te: Any N/A or No box checked must have an explanation in the comments box.
1. <u>La</u>	<u>boratory</u>
	a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?
_	$Yes \boxtimes No \square N/A \square$ Comments:
_	b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
_	$Yes \square No \square N/A \boxtimes Comments:$
	All analyses were performed by the SGS laboratory in Anchorage, AK.
2. <u>Cł</u>	ain of Custody (CoC)
	a. CoC information completed, signed, and dated (including released/received by)?
	Yes \boxtimes No \square N/A \square Comments:
L	b. Correct analyses requested?
	$Yes \boxtimes No \square N/A \square$ Comments:
3. <u>La</u>	boratory Sample Receipt Documentation
	Sample/cooler temperature decumented and within range at receipt $(0^{\circ} \text{ to } 6^{\circ} \text{ C})^{\circ}$
	a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?
Γ	$Yes \boxtimes No \square N/A \square$ Comments:
	b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?
_	Yes \boxtimes No \square N/A \square Comments:

1215191
Laboratory Report Date:
9/1/2021
CS Site Name:
c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)?
Yes⊠ No□ N/A□ Comments:
The sample receipt documentation notes that the samples arrived in good condition and properly preserved at 1.5°C.
d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?
Yes \square No \square N/A \boxtimes Comments:
There were no discrepancies noted in the sample receipt documentation.
e. Data quality or usability affected?
Comments:
The data quality/usability is not affected.
4. <u>Case Narrative</u>
a. Present and understandable?
Yes \boxtimes No \square N/A \square Comments:
b. Discrepancies, errors, or QC failures identified by the lab?
$Yes \boxtimes No \square N/A \square$ Comments:
The PAH LOQs for samples 21AKN-SB-01(0'-1') and 21AKN-SB-03(0'-1') are elevated due to sample dilution. The samples were diluted due to the dark color of the extract.
The PAH MB associated with preparation batch XXX45393 had a surrogate recovery for 2-methyl-naphthalene-d10 outside QC criteria. Surrogate recovery criteria are met in all associated batch QC and samples.
The VOC MS associated with preparation batch VXX37709 had a recovery for trichlorofluoromethane outside QC criteria. This analyte is not a part of the target analyte list; reported results are not affected.
c. Were all corrective actions documented?
Yes \boxtimes No \square N/A \square Comments:

Page 3 May 2020

1215191
Laboratory Report Date:
9/1/2021
CS Site Name:
d. Wile die de effect en det en lite (en liite en en die et de en en en en en en en
d. What is the effect on data quality/usability according to the case narrative?
Comments: The case normative does not except on effect on the data refer to Sections 5 and 6 for further
The case narrative does not specify an effect on the data; refer to Sections 5 and 6 for further assessment.
5. <u>Samples Results</u>
a. Correct analyses performed/reported as requested on COC?
Yes \boxtimes No \square N/A \square Comments:
b. All applicable holding times met?
Yes⊠ No□ N/A□ Comments:
c. All soils reported on a dry weight basis?
$Yes \boxtimes No \square N/A \square$ Comments:
d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?
Yes \square No \boxtimes N/A \square Comments:
Naphthalene was not detected in the field samples 21AKN-SB-01(0'-1'), 21AKN-SB-02(0'-1'), and 21AKN-SB-03(0'-1'). These results are reported at the limit of detection (LOD), which was greater than its associated DEC cleanup level.
e. Data quality or usability affected?
The non-detect naphthalene results lacking sufficient analytical sensitivity are denoted in bold on the summary table.
6. QC Samples
a. Method Blank
i. One method blank reported per matrix, analysis and 20 samples?
Yes⊠ No□ N/A□ Comments:

12	215191
Labor	ratory Report Date:
9/	71/2021
CS Si	te Name:
	ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives? Yes \boxtimes No \square N/A \square Comments:
	GRO was detected at an estimated concentration below the LOQ in the AK101 method blank sample associated with preparation batch VXX37679.
	iii. If above LOQ or project specified objectives, what samples are affected? Comments:
	The samples 21AKN-SB-01(0'-1'), 21AKN-SB-01(6.5'-7.5'), 21AKN-SB-101(6.5'-7.5'), 21AKN-SB-02(0'-1'), 21AKN-SB-02(6'-7'), 21AKN-SB-03(0'-1'), and 21AKN-SB-03(7.3'-7.8') as well as the trip blank contained GRO concentrations less than the LOQ.
	iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
	$Yes \boxtimes No \square N/A \square$ Comments:
	The GRO results for the samples listed in 6.iii. are considered not detected due to contamination in a method blank. GRO results have been flagged "UB" at the LOQ in the analytical database.
	v. Data quality or usability affected? Comments:
	The data quality/usability is affected; see above.
	b. Laboratory Control Sample/Duplicate (LCS/LCSD)
	 i. Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
	Yes⊠ No□ N/A□ Comments:
	LCS/LCSDs were reported for methods AK101, AK102, and AK 103. LCS samples were reported for SW8260D and SW8270D SIM. Refer to Section 6.c for assessment of laboratory precision.
	ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
	$Yes \square No \square N/A \boxtimes Comments:$
	Metals/Inorganics analyses were not requested for these samples.
	iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
	$Yes \boxtimes No \square N/A \square$ Comments:

Page 5 May 2020

12	15191
Labora	atory Report Date:
9/1	1/2021
CS Sit	e Name:
	 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
	$Yes \boxtimes No \square N/A \square$ Comments:
	v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
	N/A. See above.
	vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
	Yes \square No \square N/A \boxtimes Comments:
	See above.
	vii. Data quality or usability affected? (Use comment box to explain.)
	Comments:
	The data quality/usability is not affected; see above.
	c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project
	i. Organics – One MS/MSD reported per matrix, analysis and 20 samples?
	Yes \boxtimes No \square N/A \square Comments:
	MS/MSD samples were reported for SW8260D, and SW8270D SIM.
	ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples?
	Yes \square No \square N/A \boxtimes Comments:
	Metals/Inorganics analyses were not requested for these samples.
	iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?
	Yes⊠ No□ N/A□ Comments:

1215191
Laboratory Report Date:
9/1/2021
CS Site Name:
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.
$Yes \boxtimes No \square N/A \square$ Comments:
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
N/A. See above.
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
$Yes \square No \square N/A \boxtimes Comments:$
See above.
vii. Data quality or usability affected? (Use comment box to explain.) Comments:
The data quality/usability is not affected.
d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only
i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?
Yes \boxtimes No \square N/A \square Comments:
ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)
Yes□ No⊠ N/A□ Comments:
PAH MB surrogate recovery for 2-methylnphthalene-d10 does not meet QC criteria
iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?
Yes \square No \square N/A \boxtimes Comments:
Surrogate recovery failures in laboratory QC samples are not considered to affect the project sample data. Surrogate recovery criteria are met in all associated batch QC and samples

1215191
Laboratory Report Date:
9/1/2021
CS Site Name:
iv. Data quality or usability affected? Comments:
The data quality/usability is not affected.
e. Trip Blanks
 i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)
Yes⊠ No□ N/A□ Comments:
ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)
Yes⊠ No□ N/A□ Comments:
iii. All results less than LOQ and project specified objectives?
Yes⊠ No□ N/A□ Comments:
GRO was detected in the trip blank below LOQ.
iv. If above LOQ or project specified objectives, what samples are affected? Comments:
GRO is considered not detected in the trip blank due to method blank contamination, results are not affected.
v. Data quality or usability affected? Comments:
The data quality/usability is not affected; see above.
f. Field Duplicate
i. One field duplicate submitted per matrix, analysis and 10 project samples?
Yes⊠ No□ N/A□ Comments:
ii. Submitted blind to lab?
Yes \boxtimes No \square N/A \square Comments:
Field duplicate pair 21AKN-SB-01(6.5'-7.5')/21AKN-SB-101(6.5'-7.5') was included with this work

order.

Г	7
	1215191
Lał	boratory Report Date:
	9/1/2021
CS	Site Name:
	iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$
	Where $R_1 = Sample Concentration$ $R_2 = Field Duplicate Concentration$
	Yes \boxtimes No \square N/A \square Comments:
	The relative precision could not be calculated. Analytes were not detected above the LOQ in the field duplicate pair.
	iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:
	The data quality and usability were not affected; see above.
	g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?
	Yes \square No \square N/A \boxtimes Comments:
	Samples were not collected with reusable sampling equipment, an equipment blank is not required.
	i. All results less than LOQ and project specified objectives?
	Yes No N/A Comments:
	An equipment blank was not submitted.
	ii. If above LOQ or project specified objectives, what samples are affected? Comments:
	N/A; an equipment blank was not submitted with this work order.
	iii. Data quality or usability affected? Comments:
	N/A, see above.
7.	Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
	a. Defined and appropriate?
	Yes□ No□ N/A⊠ Comments:
	No other data flags/qualifiers were required.

	1215191
La	boratory Report Date:
	9/1/2021
CS	Site Name:

Case Narrative

SGS Client: Shannon & Wilson-Fairbanks

SGS Project: 1215513

Project Name/Site: 102582-011 AKN PFAS
Project Contact: Michael Jaramillo

Refer to sample receipt form for information on sample condition.

21AKN-MW-01 (1215513001) PS

8270D SIM - PAH LCS/LCSD RPD for multiple analytes do not meet QC criteria. The sample was re-extracted outside of hold to confirm associated analytes. Results confirm and in-hold data is reported.

21AKN-MW-101 (1215513002) PS

8270D SIM - PAH LCS/LCSD RPD for multiple analytes do not meet QC criteria. The sample was re-extracted outside of hold to confirm associated analytes. Results confirm and in-hold data is reported.

21AKN-MW-02 (1215513003) PS

8270D SIM - PAH LCS/LCSD RPD for multiple analytes do not meet QC criteria. The sample was re-extracted outside of hold to confirm associated analytes. Results confirm and in-hold data is reported.

21AKN-MW-03 (1215513004) PS

8270D SIM - PAH LCS/LCSD RPD for multiple analytes do not meet QC criteria. The sample was re-extracted outside of hold to confirm associated analytes. Results confirm and in-hold data is reported.

21AKN-EB-03 (1215513005) PS

8270D SIM - PAH LCS/LCSD RPD for multiple analytes do not meet QC criteria. The sample was re-extracted outside of hold to confirm associated analytes. Results confirm and in-hold data is reported.

LCSD for HBN 1824853 [XXX/4547 (1633248) LCSD

8270D SIM - PAH LCS/LCSD RPD for multiple analytes do not meet QC criteria. The associated sample concentrations for this analyte are less than the LOQ.

LCSD for HBN 1825232 [VXX/3778 (1635018) LCSD

8260D - LCSD recovery for trans 1,4-Dichloro-2-Butene does not meet QC criteria, however this compound is not reported in the associated samples.

MB for HBN 1824853 [XXX/45479] (1633246) MB

8270D SIM - PAH phenanthrene is detect in the MB greater than one-half the LOQ, but less than the LOQ.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 09/17/2021 2:35:35PM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICV Initial Calibration Verification
J The quantitation is an estimation.
LCS(D) Laboratory Control Spike (Duplicate)
LLQC/LLIQC Low Level Quantitation Check

LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference
TNTC Too Numerous To Count

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 09/17/2021 2:35:37PM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
21AKN-MW-01	1215513001	08/25/2021	08/26/2021	Water (Surface, Eff., Ground)
21AKN-MW-101	1215513002	08/25/2021	08/26/2021	Water (Surface, Eff., Ground)
21AKN-MW-02	1215513003	08/25/2021	08/26/2021	Water (Surface, Eff., Ground)
21AKN-MW-03	1215513004	08/25/2021	08/26/2021	Water (Surface, Eff., Ground)
21AKN-EB-03	1215513005	08/25/2021	08/26/2021	Water (Surface, Eff., Ground)
Trip Blank	1215513006	08/25/2021	08/26/2021	Water (Surface, Eff., Ground)

MethodMethod Description8270D SIM LV (PAH)8270 PAH SIM GC/MS LVAK102DRO/RRO Low Volume WaterAK103DRO/RRO Low Volume WaterAK101Gasoline Range Organics (W)SW8260DVolatile Organic Compounds (W)

Print Date: 09/17/2021 2:35:38PM

Detectable Results Summary

Client Sample ID: 21AKN-MW-01 Lab Sample ID: 1215513001 Polynuclear Aromatics GC/MS Semivolatile Organic Fuels Client Sample ID: 21AKN-MW-101	<u>Parameter</u> Phenanthrene Diesel Range Organics	<u>Result</u> 0.0266J 0.198J	<u>Units</u> ug/L mg/L
Lab Sample ID: 1215513002	<u>Parameter</u>	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	0.0250J	ug/L
	2-Methylnaphthalene	0.0274J	ug/L
	Phenanthrene	0.0344J	ug/L
Client Sample ID: 21AKN-MW-02			
Lab Sample ID: 1215513003	<u>Parameter</u>	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	2-Methylnaphthalene	0.0197J	ug/L
	Fluoranthene	0.0255J	ug/L
	Phenanthrene	0.0475J	ug/L
	Pyrene	0.0189J	ug/L
Volatile GC/MS	Benzene	0.270J	ug/L
Client Sample ID: 21AKN-MW-03			
Lab Sample ID: 1215513004	<u>Parameter</u>	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	Phenanthrene	0.0207J	ug/L
Semivolatile Organic Fuels	Residual Range Organics	0.381J	mg/L
Client Sample ID: 21AKN-EB-03			
Lab Sample ID: 1215513005	<u>Parameter</u>	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	2-Methylnaphthalene	0.0258J	ug/L
	Naphthalene	0.0560J	ug/L
	Phenanthrene	0.0212J	ug/L

Print Date: 09/17/2021 2:35:40PM

Client Sample ID: 21AKN-MW-01

Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215513001 Lab Project ID: 1215513 Collection Date: 08/25/21 15:08 Received Date: 08/26/21 14:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

_						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	<u>Date Analyzed</u>
1-Methylnaphthalene	0.0240 U	0.0481	0.0144	ug/L	1		09/04/21 20:43
2-Methylnaphthalene	0.0240 U	0.0481	0.0144	ug/L	1		09/04/21 20:43
Acenaphthene	0.0240 U	0.0481	0.0144	ug/L	1		09/04/21 20:43
Acenaphthylene	0.0240 U	0.0481	0.0144	ug/L	1		09/04/21 20:43
Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		09/04/21 20:43
Benzo(a)Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		09/04/21 20:43
Benzo[a]pyrene	0.00960 U	0.0192	0.00596	ug/L	1		09/04/21 20:43
Benzo[b]Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		09/04/21 20:43
Benzo[g,h,i]perylene	0.0240 U	0.0481	0.0144	ug/L	1		09/04/21 20:43
Benzo[k]fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		09/04/21 20:43
Chrysene	0.0240 U	0.0481	0.0144	ug/L	1		09/04/21 20:43
Dibenzo[a,h]anthracene	0.00960 U	0.0192	0.00596	ug/L	1		09/04/21 20:43
Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		09/04/21 20:43
Fluorene	0.0240 U	0.0481	0.0144	ug/L	1		09/04/21 20:43
Indeno[1,2,3-c,d] pyrene	0.0240 U	0.0481	0.0144	ug/L	1		09/04/21 20:43
Naphthalene	0.0481 U	0.0962	0.0298	ug/L	1		09/04/21 20:43
Phenanthrene	0.0266 J	0.0481	0.0144	ug/L	1		09/04/21 20:43
Pyrene	0.0240 U	0.0481	0.0144	ug/L	1		09/04/21 20:43
Surrogates							
2-Methylnaphthalene-d10 (surr)	60.7	42-86		%	1		09/04/21 20:43
Fluoranthene-d10 (surr)	75.3	50-97		%	1		09/04/21 20:43

Batch Information

Analytical Batch: XMS12869

Analytical Method: 8270D SIM LV (PAH)

Analyst: CDM

Analytical Date/Time: 09/04/21 20:43 Container ID: 1215513001-C Prep Batch: XXX45479
Prep Method: SW3535A
Prep Date/Time: 08/31/21 01:30
Prep Initial Wt./Vol.: 260 mL
Prep Extract Vol: 1 mL

Print Date: 09/17/2021 2:35:41PM

J flagging is activated

Client Sample ID: 21AKN-MW-01

Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215513001 Lab Project ID: 1215513 Collection Date: 08/25/21 15:08 Received Date: 08/26/21 14:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Diesel Range Organics	0.198 J	0.566	0.189	mg/L	1		09/02/21 19:05
Surrogates							
5a Androstane (surr)	80.7	50-150		%	1		09/02/21 19:05

Batch Information

Analytical Batch: XFC16073 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 09/02/21 19:05 Container ID: 1215513001-A Prep Batch: XXX45490 Prep Method: SW3520C Prep Date/Time: 09/01/21 16:01 Prep Initial Wt./Vol.: 265 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.236 U	0.472	0.189	mg/L	1		09/02/21 19:05
Surrogates							
n-Triacontane-d62 (surr)	92.1	50-150		%	1		09/02/21 19:05

Batch Information

Analytical Batch: XFC16073 Analytical Method: AK103

Analyst: IVM

Analytical Date/Time: 09/02/21 19:05 Container ID: 1215513001-A Prep Batch: XXX45490
Prep Method: SW3520C
Prep Date/Time: 09/01/21 16:01
Prep Initial Wt./Vol.: 265 mL
Prep Extract Vol: 1 mL

Print Date: 09/17/2021 2:35:41PM J flagging is activated

Client Sample ID: 21AKN-MW-01

Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215513001 Lab Project ID: 1215513 Collection Date: 08/25/21 15:08 Received Date: 08/26/21 14:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0450	mg/L	1		08/31/21 09:07
Surrogates							
4-Bromofluorobenzene (surr)	74.2	50-150		%	1		08/31/21 09:07

Batch Information

Analytical Batch: VFC15787 Analytical Method: AK101 Analyst: MDT

Analytical Date/Time: 08/31/21 09:07 Container ID: 1215513001-E Prep Batch: VXX37736
Prep Method: SW5030B
Prep Date/Time: 08/30/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/17/2021 2:35:41PM J flagging is activated

Client Sample ID: 21AKN-MW-01

Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215513001 Lab Project ID: 1215513 Collection Date: 08/25/21 15:08 Received Date: 08/26/21 14:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.200 U	0.400	0.120	ug/L	1		09/07/21 22:57
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/07/21 22:57
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/07/21 22:57
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/07/21 22:57
Toluene	0.500 U	1.00	0.310	ug/L	1		09/07/21 22:57
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/07/21 22:57
Surrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		09/07/21 22:57
4-Bromofluorobenzene (surr)	103	85-114		%	1		09/07/21 22:57
Toluene-d8 (surr)	101	89-112		%	1		09/07/21 22:57

Batch Information

Analytical Batch: VMS21147 Analytical Method: SW8260D

Analyst: MDT

Analytical Date/Time: 09/07/21 22:57 Container ID: 1215513001-H Prep Batch: VXX37789
Prep Method: SW5030B
Prep Date/Time: 09/07/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/17/2021 2:35:41PM

J flagging is activated

Client Sample ID: 21AKN-MW-101 Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215513002 Lab Project ID: 1215513 Collection Date: 08/25/21 14:58 Received Date: 08/26/21 14:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0250 J	0.0510	0.0153	ug/L	1		09/04/21 21:03
2-Methylnaphthalene	0.0274 J	0.0510	0.0153	ug/L	1		09/04/21 21:03
Acenaphthene	0.0255 U	0.0510	0.0153	ug/L	1		09/04/21 21:03
Acenaphthylene	0.0255 U	0.0510	0.0153	ug/L	1		09/04/21 21:03
Anthracene	0.0255 U	0.0510	0.0153	ug/L	1		09/04/21 21:03
Benzo(a)Anthracene	0.0255 U	0.0510	0.0153	ug/L	1		09/04/21 21:03
Benzo[a]pyrene	0.0102 U	0.0204	0.00633	ug/L	1		09/04/21 21:03
Benzo[b]Fluoranthene	0.0255 U	0.0510	0.0153	ug/L	1		09/04/21 21:03
Benzo[g,h,i]perylene	0.0255 U	0.0510	0.0153	ug/L	1		09/04/21 21:03
Benzo[k]fluoranthene	0.0255 U	0.0510	0.0153	ug/L	1		09/04/21 21:03
Chrysene	0.0255 U	0.0510	0.0153	ug/L	1		09/04/21 21:03
Dibenzo[a,h]anthracene	0.0102 U	0.0204	0.00633	ug/L	1		09/04/21 21:03
Fluoranthene	0.0255 U	0.0510	0.0153	ug/L	1		09/04/21 21:03
Fluorene	0.0255 U	0.0510	0.0153	ug/L	1		09/04/21 21:03
Indeno[1,2,3-c,d] pyrene	0.0255 U	0.0510	0.0153	ug/L	1		09/04/21 21:03
Naphthalene	0.0510 U	0.102	0.0316	ug/L	1		09/04/21 21:03
Phenanthrene	0.0344 J	0.0510	0.0153	ug/L	1		09/04/21 21:03
Pyrene	0.0255 U	0.0510	0.0153	ug/L	1		09/04/21 21:03
Surrogates							
2-Methylnaphthalene-d10 (surr)	68.6	42-86		%	1		09/04/21 21:03
Fluoranthene-d10 (surr)	79.3	50-97		%	1		09/04/21 21:03

Batch Information

Analytical Batch: XMS12869

Analytical Method: 8270D SIM LV (PAH)

Analyst: CDM

Analytical Date/Time: 09/04/21 21:03 Container ID: 1215513002-C Prep Batch: XXX45479
Prep Method: SW3535A
Prep Date/Time: 08/31/21 01:30
Prep Initial Wt./Vol.: 245 mL
Prep Extract Vol: 1 mL

Print Date: 09/17/2021 2:35:41PM

J flagging is activated

Client Sample ID: 21AKN-MW-101 Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215513002 Lab Project ID: 1215513 Collection Date: 08/25/21 14:58 Received Date: 08/26/21 14:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Allowable</u>	Date Analyzed
	0.294 U	0.588	0.196	mg/L	1	<u>Limits</u>	09/02/21 19:15
Surrogates 5a Androstane (surr)	87.6	50-150		%	1		09/02/21 19:15

Batch Information

Analytical Batch: XFC16073 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 09/02/21 19:15 Container ID: 1215513002-A Prep Batch: XXX45490 Prep Method: SW3520C Prep Date/Time: 09/01/21 16:01 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.245 U	0.490	0.196	mg/L	1		09/02/21 19:15
Surrogates							
n-Triacontane-d62 (surr)	94	50-150		%	1		09/02/21 19:15

Batch Information

Analytical Batch: XFC16073 Analytical Method: AK103

Analyst: IVM

Analytical Date/Time: 09/02/21 19:15 Container ID: 1215513002-A Prep Batch: XXX45490 Prep Method: SW3520C Prep Date/Time: 09/01/21 16:01 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

Print Date: 09/17/2021 2:35:41PM J flagging is activated

Client Sample ID: 21AKN-MW-101 Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215513002 Lab Project ID: 1215513

Collection Date: 08/25/21 14:58 Received Date: 08/26/21 14:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	DF	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0450	mg/L	1		08/31/21 09:43
Surrogates							
4-Bromofluorobenzene (surr)	68.7	50-150		%	1		08/31/21 09:43

Batch Information

Analytical Batch: VFC15787 Analytical Method: AK101 Analyst: MDT

Analytical Date/Time: 08/31/21 09:43 Container ID: 1215513002-E

Prep Batch: VXX37736 Prep Method: SW5030B Prep Date/Time: 08/30/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: 21AKN-MW-101 Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215513002 Lab Project ID: 1215513 Collection Date: 08/25/21 14:58 Received Date: 08/26/21 14:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.200 U	0.400	0.120	ug/L	1		09/07/21 23:12
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/07/21 23:12
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/07/21 23:12
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/07/21 23:12
Toluene	0.500 U	1.00	0.310	ug/L	1		09/07/21 23:12
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/07/21 23:12
Surrogates							
1,2-Dichloroethane-D4 (surr)	102	81-118		%	1		09/07/21 23:12
4-Bromofluorobenzene (surr)	104	85-114		%	1		09/07/21 23:12
Toluene-d8 (surr)	102	89-112		%	1		09/07/21 23:12

Batch Information

Analytical Batch: VMS21147 Analytical Method: SW8260D

Analyst: MDT

Analytical Date/Time: 09/07/21 23:12 Container ID: 1215513002-H Prep Batch: VXX37789
Prep Method: SW5030B
Prep Date/Time: 09/07/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: 21AKN-MW-02 Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215513003 Lab Project ID: 1215513 Collection Date: 08/25/21 16:18 Received Date: 08/26/21 14:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

_						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	<u>Date Analyzed</u>
1-Methylnaphthalene	0.0245 U	0.0490	0.0147	ug/L	1		09/04/21 21:24
2-Methylnaphthalene	0.0197 J	0.0490	0.0147	ug/L	1		09/04/21 21:24
Acenaphthene	0.0245 U	0.0490	0.0147	ug/L	1		09/04/21 21:24
Acenaphthylene	0.0245 U	0.0490	0.0147	ug/L	1		09/04/21 21:24
Anthracene	0.0245 U	0.0490	0.0147	ug/L	1		09/04/21 21:24
Benzo(a)Anthracene	0.0245 U	0.0490	0.0147	ug/L	1		09/04/21 21:24
Benzo[a]pyrene	0.00980 U	0.0196	0.00608	ug/L	1		09/04/21 21:24
Benzo[b]Fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1		09/04/21 21:24
Benzo[g,h,i]perylene	0.0245 U	0.0490	0.0147	ug/L	1		09/04/21 21:24
Benzo[k]fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1		09/04/21 21:24
Chrysene	0.0245 U	0.0490	0.0147	ug/L	1		09/04/21 21:24
Dibenzo[a,h]anthracene	0.00980 U	0.0196	0.00608	ug/L	1		09/04/21 21:24
Fluoranthene	0.0255 J	0.0490	0.0147	ug/L	1		09/04/21 21:24
Fluorene	0.0245 U	0.0490	0.0147	ug/L	1		09/04/21 21:24
Indeno[1,2,3-c,d] pyrene	0.0245 U	0.0490	0.0147	ug/L	1		09/04/21 21:24
Naphthalene	0.0490 U	0.0980	0.0304	ug/L	1		09/04/21 21:24
Phenanthrene	0.0475 J	0.0490	0.0147	ug/L	1		09/04/21 21:24
Pyrene	0.0189 J	0.0490	0.0147	ug/L	1		09/04/21 21:24
Surrogates							
2-Methylnaphthalene-d10 (surr)	62.6	42-86		%	1		09/04/21 21:24
Fluoranthene-d10 (surr)	74.8	50-97		%	1		09/04/21 21:24

Batch Information

Analytical Batch: XMS12869

Analytical Method: 8270D SIM LV (PAH)

Analyst: CDM

Analytical Date/Time: 09/04/21 21:24 Container ID: 1215513003-C Prep Batch: XXX45479
Prep Method: SW3535A
Prep Date/Time: 08/31/21 01:30
Prep Initial Wt./Vol.: 255 mL
Prep Extract Vol: 1 mL

Client Sample ID: 21AKN-MW-02 Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215513003 Lab Project ID: 1215513 Collection Date: 08/25/21 16:18 Received Date: 08/26/21 14:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Diesel Range Organics	0.300 U	0.600	0.200	mg/L	1		09/02/21 19:25
Surrogates							
5a Androstane (surr)	87.5	50-150		%	1		09/02/21 19:25

Batch Information

Analytical Batch: XFC16073 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 09/02/21 19:25 Container ID: 1215513003-A Prep Batch: XXX45490 Prep Method: SW3520C Prep Date/Time: 09/01/21 16:01 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.250 U	0.500	0.200	mg/L	1		09/02/21 19:25
Surrogates							
n-Triacontane-d62 (surr)	92.4	50-150		%	1		09/02/21 19:25

Batch Information

Analytical Batch: XFC16073 Analytical Method: AK103

Analyst: IVM

Analytical Date/Time: 09/02/21 19:25 Container ID: 1215513003-A Prep Batch: XXX45490 Prep Method: SW3520C Prep Date/Time: 09/01/21 16:01 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Client Sample ID: 21AKN-MW-02 Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215513003 Lab Project ID: 1215513 Collection Date: 08/25/21 16:18 Received Date: 08/26/21 14:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0450	mg/L	1		08/31/21 10:01
Surrogates							
4-Bromofluorobenzene (surr)	71.1	50-150		%	1		08/31/21 10:01

Batch Information

Analytical Batch: VFC15787 Analytical Method: AK101 Analyst: MDT

Analytical Date/Time: 08/31/21 10:01 Container ID: 1215513003-E

Prep Batch: VXX37736
Prep Method: SW5030B
Prep Date/Time: 08/30/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: 21AKN-MW-02 Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215513003 Lab Project ID: 1215513 Collection Date: 08/25/21 16:18 Received Date: 08/26/21 14:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.270 J	0.400	0.120	ug/L	1		09/07/21 23:27
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/07/21 23:27
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/07/21 23:27
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/07/21 23:27
Toluene	0.500 U	1.00	0.310	ug/L	1		09/07/21 23:27
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/07/21 23:27
Surrogates							
1,2-Dichloroethane-D4 (surr)	99.9	81-118		%	1		09/07/21 23:27
4-Bromofluorobenzene (surr)	105	85-114		%	1		09/07/21 23:27
Toluene-d8 (surr)	102	89-112		%	1		09/07/21 23:27

Batch Information

Analytical Batch: VMS21147 Analytical Method: SW8260D

Analyst: MDT

Analytical Date/Time: 09/07/21 23:27 Container ID: 1215513003-H Prep Batch: VXX37789
Prep Method: SW5030B
Prep Date/Time: 09/07/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: 21AKN-MW-03 Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215513004 Lab Project ID: 1215513 Collection Date: 08/25/21 17:20 Received Date: 08/26/21 14:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

_						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0240 U	0.0481	0.0144	ug/L	1		09/04/21 21:44
2-Methylnaphthalene	0.0240 U	0.0481	0.0144	ug/L	1		09/04/21 21:44
Acenaphthene	0.0240 U	0.0481	0.0144	ug/L	1		09/04/21 21:44
Acenaphthylene	0.0240 U	0.0481	0.0144	ug/L	1		09/04/21 21:44
Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		09/04/21 21:44
Benzo(a)Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		09/04/21 21:44
Benzo[a]pyrene	0.00960 U	0.0192	0.00596	ug/L	1		09/04/21 21:44
Benzo[b]Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		09/04/21 21:44
Benzo[g,h,i]perylene	0.0240 U	0.0481	0.0144	ug/L	1		09/04/21 21:44
Benzo[k]fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		09/04/21 21:44
Chrysene	0.0240 U	0.0481	0.0144	ug/L	1		09/04/21 21:44
Dibenzo[a,h]anthracene	0.00960 U	0.0192	0.00596	ug/L	1		09/04/21 21:44
Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		09/04/21 21:44
Fluorene	0.0240 U	0.0481	0.0144	ug/L	1		09/04/21 21:44
Indeno[1,2,3-c,d] pyrene	0.0240 U	0.0481	0.0144	ug/L	1		09/04/21 21:44
Naphthalene	0.0481 U	0.0962	0.0298	ug/L	1		09/04/21 21:44
Phenanthrene	0.0207 J	0.0481	0.0144	ug/L	1		09/04/21 21:44
Pyrene	0.0240 U	0.0481	0.0144	ug/L	1		09/04/21 21:44
Surrogates							
2-Methylnaphthalene-d10 (surr)	59.8	42-86		%	1		09/04/21 21:44
Fluoranthene-d10 (surr)	72	50-97		%	1		09/04/21 21:44

Batch Information

Analytical Batch: XMS12869

Analytical Method: 8270D SIM LV (PAH)

Analyst: CDM

Analytical Date/Time: 09/04/21 21:44 Container ID: 1215513004-C Prep Batch: XXX45479
Prep Method: SW3535A
Prep Date/Time: 08/31/21 01:30
Prep Initial Wt./Vol.: 260 mL
Prep Extract Vol: 1 mL

Print Date: 09/17/2021 2:35:41PM

J flagging is activated

Client Sample ID: 21AKN-MW-03 Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215513004 Lab Project ID: 1215513 Collection Date: 08/25/21 17:20 Received Date: 08/26/21 14:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Diesel Range Organics	0.300 U	0.600	0.200	mg/L	1		09/02/21 19:35
Surrogates							
5a Androstane (surr)	89	50-150		%	1		09/02/21 19:35

Batch Information

Analytical Batch: XFC16073 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 09/02/21 19:35 Container ID: 1215513004-A Prep Batch: XXX45490 Prep Method: SW3520C Prep Date/Time: 09/01/21 16:01 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.381 J	0.500	0.200	mg/L	1		09/02/21 19:35
Surrogates							
n-Triacontane-d62 (surr)	97.6	50-150		%	1		09/02/21 19:35

Batch Information

Analytical Batch: XFC16073 Analytical Method: AK103

Analyst: IVM

Analytical Date/Time: 09/02/21 19:35 Container ID: 1215513004-A Prep Batch: XXX45490 Prep Method: SW3520C Prep Date/Time: 09/01/21 16:01 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Client Sample ID: 21AKN-MW-03

Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215513004 Lab Project ID: 1215513

Collection Date: 08/25/21 17:20 Received Date: 08/26/21 14:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0450	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 08/31/21 10:19
Surrogates 4-Bromofluorobenzene (surr)	72.3	50-150		%	1		08/31/21 10:19

Batch Information

Analytical Batch: VFC15787 Analytical Method: AK101 Analyst: MDT

Analytical Date/Time: 08/31/21 10:19 Container ID: 1215513004-E

Prep Batch: VXX37736 Prep Method: SW5030B Prep Date/Time: 08/30/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: 21AKN-MW-03 Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215513004 Lab Project ID: 1215513 Collection Date: 08/25/21 17:20 Received Date: 08/26/21 14:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.200 U	0.400	0.120	ug/L	1		09/07/21 23:41
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/07/21 23:41
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/07/21 23:41
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/07/21 23:41
Toluene	0.500 U	1.00	0.310	ug/L	1		09/07/21 23:41
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/07/21 23:41
Surrogates							
1,2-Dichloroethane-D4 (surr)	101	81-118		%	1		09/07/21 23:41
4-Bromofluorobenzene (surr)	104	85-114		%	1		09/07/21 23:41
Toluene-d8 (surr)	102	89-112		%	1		09/07/21 23:41

Batch Information

Analytical Batch: VMS21147 Analytical Method: SW8260D

Analyst: MDT

Analytical Date/Time: 09/07/21 23:41 Container ID: 1215513004-H Prep Batch: VXX37789
Prep Method: SW5030B
Prep Date/Time: 09/07/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: 21AKN-EB-03

Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215513005 Lab Project ID: 1215513 Collection Date: 08/25/21 18:00 Received Date: 08/26/21 14:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

_						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u> <u>Date Analy</u>	
1-Methylnaphthalene	0.0250 U	0.0500	0.0150	ug/L	1	09/04/21 2	:2:05
2-Methylnaphthalene	0.0258 J	0.0500	0.0150	ug/L	1	09/04/21 2	2:05
Acenaphthene	0.0250 U	0.0500	0.0150	ug/L	1	09/04/21 2	2:05
Acenaphthylene	0.0250 U	0.0500	0.0150	ug/L	1	09/04/21 2	2:05
Anthracene	0.0250 U	0.0500	0.0150	ug/L	1	09/04/21 2	2:05
Benzo(a)Anthracene	0.0250 U	0.0500	0.0150	ug/L	1	09/04/21 2	2:05
Benzo[a]pyrene	0.0100 U	0.0200	0.00620	ug/L	1	09/04/21 2	2:05
Benzo[b]Fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1	09/04/21 2	2:05
Benzo[g,h,i]perylene	0.0250 U	0.0500	0.0150	ug/L	1	09/04/21 2	2:05
Benzo[k]fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1	09/04/21 2	2:05
Chrysene	0.0250 U	0.0500	0.0150	ug/L	1	09/04/21 2	2:05
Dibenzo[a,h]anthracene	0.0100 U	0.0200	0.00620	ug/L	1	09/04/21 2	2:05
Fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1	09/04/21 2	2:05
Fluorene	0.0250 U	0.0500	0.0150	ug/L	1	09/04/21 2	2:05
Indeno[1,2,3-c,d] pyrene	0.0250 U	0.0500	0.0150	ug/L	1	09/04/21 2	2:05
Naphthalene	0.0560 J	0.100	0.0310	ug/L	1	09/04/21 2	2:05
Phenanthrene	0.0212 J	0.0500	0.0150	ug/L	1	09/04/21 2	2:05
Pyrene	0.0250 U	0.0500	0.0150	ug/L	1	09/04/21 2	2:05
Surrogates							
2-Methylnaphthalene-d10 (surr)	70.6	42-86		%	1	09/04/21 2	2:05
Fluoranthene-d10 (surr)	90.6	50-97		%	1	09/04/21 2	2:05

Batch Information

Analytical Batch: XMS12869

Analytical Method: 8270D SIM LV (PAH)

Analyst: CDM

Analytical Date/Time: 09/04/21 22:05 Container ID: 1215513005-C Prep Batch: XXX45479
Prep Method: SW3535A
Prep Date/Time: 08/31/21 01:30
Prep Initial Wt./Vol.: 250 mL
Prep Extract Vol: 1 mL

Print Date: 09/17/2021 2:35:41PM

J flagging is activated

Client Sample ID: 21AKN-EB-03

Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215513005 Lab Project ID: 1215513 Collection Date: 08/25/21 18:00 Received Date: 08/26/21 14:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u> Diesel Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	0.313 U	0.625	0.208	mg/L	1	Limits	09/02/21 19:45
Surrogates 5a Androstane (surr)	73.7	50-150		%	1		09/02/21 19:45

Batch Information

Analytical Batch: XFC16073 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 09/02/21 19:45 Container ID: 1215513005-A Prep Batch: XXX45490 Prep Method: SW3520C Prep Date/Time: 09/01/21 16:01 Prep Initial Wt./Vol.: 240 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.261 U	0.521	0.208	mg/L	1		09/02/21 19:45
Surrogates							
n-Triacontane-d62 (surr)	91.6	50-150		%	1		09/02/21 19:45

Batch Information

Analytical Batch: XFC16073 Analytical Method: AK103

Analyst: IVM

Analytical Date/Time: 09/02/21 19:45 Container ID: 1215513005-A Prep Batch: XXX45490
Prep Method: SW3520C
Prep Date/Time: 09/01/21 16:01
Prep Initial Wt./Vol.: 240 mL
Prep Extract Vol: 1 mL

Client Sample ID: 21AKN-EB-03

Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215513005 Lab Project ID: 1215513 Collection Date: 08/25/21 18:00 Received Date: 08/26/21 14:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual 0.0500 U	LOQ/CL 0.100	<u>DL</u> 0.0450	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 08/31/21 10:37
Surrogates	70.2	50 150		%	1		08/31/21 10:37
4-Bromofluorobenzene (surr)	70.3	50-150		%	1		08/31/21 10:37

Batch Information

Analytical Batch: VFC15787 Analytical Method: AK101 Analyst: MDT

Analytical Date/Time: 08/31/21 10:37 Container ID: 1215513005-E Prep Batch: VXX37736
Prep Method: SW5030B
Prep Date/Time: 08/30/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: 21AKN-EB-03

Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215513005 Lab Project ID: 1215513 Collection Date: 08/25/21 18:00 Received Date: 08/26/21 14:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.200 U	0.400	0.120	ug/L	1		09/07/21 23:56
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/07/21 23:56
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/07/21 23:56
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/07/21 23:56
Toluene	0.500 U	1.00	0.310	ug/L	1		09/07/21 23:56
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/07/21 23:56
Surrogates							
1,2-Dichloroethane-D4 (surr)	103	81-118		%	1		09/07/21 23:56
4-Bromofluorobenzene (surr)	102	85-114		%	1		09/07/21 23:56
Toluene-d8 (surr)	101	89-112		%	1		09/07/21 23:56

Batch Information

Analytical Batch: VMS21147 Analytical Method: SW8260D

Analyst: MDT

Analytical Date/Time: 09/07/21 23:56 Container ID: 1215513005-H Prep Batch: VXX37789
Prep Method: SW5030B
Prep Date/Time: 09/07/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/17/2021 2:35:41PM

J flagging is activated

Results of Trip Blank

Client Sample ID: Trip Blank

Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215513006 Lab Project ID: 1215513 Collection Date: 08/25/21 14:58 Received Date: 08/26/21 14:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

<u>Parameter</u> Gasoline Range Organics	Result Qual 0.0500 U	LOQ/CL 0.100	<u>DL</u> 0.0450	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 08/31/21 10:56
Surrogates (var)	74.7	50.450		0/	4		00/04/04 40/50
4-Bromofluorobenzene (surr)	74.7	50-150		%	1		08/31/21 10:56

Batch Information

Analytical Batch: VFC15787 Analytical Method: AK101 Analyst: MDT

Analytical Date/Time: 08/31/21 10:56 Container ID: 1215513006-A Prep Batch: VXX37736
Prep Method: SW5030B
Prep Date/Time: 08/30/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Results of Trip Blank

Client Sample ID: Trip Blank

Client Project ID: 102582-011 AKN PFAS

Lab Sample ID: 1215513006 Lab Project ID: 1215513 Collection Date: 08/25/21 14:58 Received Date: 08/26/21 14:19 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/07/21 19:02
Benzene	0.200 U	0.400	0.120	ug/L	1		09/07/21 19:02
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/07/21 19:02
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/07/21 19:02
Toluene	0.500 U	1.00	0.310	ug/L	1		09/07/21 19:02
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/07/21 19:02
Surrogates							
1,2-Dichloroethane-D4 (surr)	98.9	81-118		%	1		09/07/21 19:02
4-Bromofluorobenzene (surr)	103	85-114		%	1		09/07/21 19:02
Toluene-d8 (surr)	103	89-112		%	1		09/07/21 19:02

Batch Information

Analytical Batch: VMS21147 Analytical Method: SW8260D

Analyst: MDT

Analytical Date/Time: 09/07/21 19:02 Container ID: 1215513006-C Prep Batch: VXX37789
Prep Method: SW5030B
Prep Date/Time: 09/07/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Method Blank

Blank ID: MB for HBN 1824887 [VXX/37736]

Blank Lab ID: 1633379

QC for Samples:

1215513001, 1215513002, 1215513003, 1215513004, 1215513005, 1215513006

Results by AK101

ParameterResultsLOQ/CLDLUnitsGasoline Range Organics0.0500U0.1000.0450mg/L

Matrix: Water (Surface, Eff., Ground)

Surrogates

4-Bromofluorobenzene (surr) 73.8 50-150 %

Batch Information

Analytical Batch: VFC15787 Prep Batch: VXX37736
Analytical Method: AK101 Prep Method: SW5030B

Instrument: Agilent 7890A PID/FID Prep Date/Time: 8/30/2021 6:00:00AM

Analyst: MDT Prep Initial Wt./Vol.: 5 mL Analytical Date/Time: 8/31/2021 6:24:00AM Prep Extract Vol: 5 mL

Print Date: 09/17/2021 2:35:43PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1215513 [VXX37736]

Blank Spike Lab ID: 1633380 Date Analyzed: 08/31/2021 09:25 Spike Duplicate ID: LCSD for HBN 1215513

[VXX37736]

Spike Duplicate Lab ID: 1633381 Matrix: Water (Surface, Eff., Ground)

1215513001, 1215513002, 1215513003, 1215513004, 1215513005, 1215513006 QC for Samples:

Results by AK101

	l	Blank Spike	(mg/L)	5	Spike Duplic	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	1.00	0.966	97	1.00	1.02	102	(60-120)	5.20	(< 20)

Surrogates

4-Bromofluorobenzene (surr) 0.0500 88 0.0500 92 (50-150) 4.30

Batch Information

Analytical Batch: VFC15787 Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: MDT

Prep Batch: VXX37736 Prep Method: SW5030B

Prep Date/Time: 08/30/2021 06:00

Spike Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL

Print Date: 09/17/2021 2:35:46PM

Method Blank

Blank ID: MB for HBN 1825232 [VXX/37789]

Blank Lab ID: 1635016

QC for Samples:

1215513001, 1215513002, 1215513003, 1215513004, 1215513005, 1215513006

Results by SW8260D

Results	LOQ/CL	<u>DL</u>	<u>Units</u>
0.200U	0.400	0.120	ug/L
0.500U	1.00	0.310	ug/L
0.500U	1.00	0.310	ug/L
1.00U	2.00	0.620	ug/L
0.500U	1.00	0.310	ug/L
1.50U	3.00	1.00	ug/L
104	81-118		%
104	85-114		%
101	89-112		%
	0.200U 0.500U 0.500U 1.00U 0.500U 1.50U	0.200U 0.400 0.500U 1.00 0.500U 1.00 1.00U 2.00 0.500U 1.00 1.50U 3.00 104 81-118 104 85-114	0.200U 0.400 0.120 0.500U 1.00 0.310 0.500U 1.00 0.310 1.00U 2.00 0.620 0.500U 1.00 0.310 1.50U 3.00 1.00 104 81-118 104 85-114

Batch Information

Analytical Batch: VMS21147 Analytical Method: SW8260D

Instrument: VPA 780/5975 GC/MS

Analyst: MDT

Analytical Date/Time: 9/7/2021 4:06:00PM

Prep Batch: VXX37789

Prep Method: SW5030B

Prep Date/Time: 9/7/2021 6:00:00AM

Matrix: Water (Surface, Eff., Ground)

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/17/2021 2:35:49PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1215513 [VXX37789]

Blank Spike Lab ID: 1635017 Date Analyzed: 09/07/2021 16:21 Spike Duplicate ID: LCSD for HBN 1215513

[VXX37789]

Spike Duplicate Lab ID: 1635018 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1215513001, 1215513002, 1215513003, 1215513004, 1215513005, 1215513006

Results by SW8260D

		Blank Spike	e (ug/L)	:	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Benzene	30	30.6	102	30	30.5	102	(79-120)	0.33	(< 20)
Ethylbenzene	30	32.1	107	30	32.3	108	(79-121)	0.68	(< 20)
o-Xylene	30	32.5	108	30	32.4	108	(78-122)	0.31	(< 20)
P & M -Xylene	60	64.5	108	60	63.9	106	(80-121)	1.00	(< 20)
Toluene	30	30.9	103	30	31.0	103	(80-121)	0.03	(< 20)
Xylenes (total)	90	97.0	108	90	96.2	107	(79-121)	0.80	(< 20)
Surrogates									
1,2-Dichloroethane-D4 (surr)	30		99	30		96	(81-118)	2.80	
4-Bromofluorobenzene (surr)	30		104	30		103	(85-114)	0.81	
Toluene-d8 (surr)	30		103	30		103	(89-112)	0.16	

Batch Information

Analytical Batch: VMS21147 Analytical Method: SW8260D Instrument: VPA 780/5975 GC/MS

Analyst: MDT

Prep Batch: VXX37789
Prep Method: SW5030B

Prep Date/Time: 09/07/2021 06:00

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 09/17/2021 2:35:51PM

Method Blank

Blank ID: MB for HBN 1824853 [XXX/45479]

Blank Lab ID: 1633246

QC for Samples:

1215513001, 1215513002, 1215513003, 1215513004, 1215513005

Matrix: Water (Surface, Eff., Ground)

Results by 8270D SIM LV (PAH)

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
2-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
Acenaphthene	0.0250U	0.0500	0.0150	ug/L
Acenaphthylene	0.0250U	0.0500	0.0150	ug/L
Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo(a)Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo[a]pyrene	0.0100U	0.0200	0.00620	ug/L
Benzo[b]Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Benzo[g,h,i]perylene	0.0250U	0.0500	0.0150	ug/L
Benzo[k]fluoranthene	0.0250U	0.0500	0.0150	ug/L
Chrysene	0.0250U	0.0500	0.0150	ug/L
Dibenzo[a,h]anthracene	0.0100U	0.0200	0.00620	ug/L
Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Fluorene	0.0250U	0.0500	0.0150	ug/L
Indeno[1,2,3-c,d] pyrene	0.0250U	0.0500	0.0150	ug/L
Naphthalene	0.0500U	0.100	0.0310	ug/L
Phenanthrene	0.0295J	0.0500	0.0150	ug/L
Pyrene	0.0250U	0.0500	0.0150	ug/L
Surrogates				
2-Methylnaphthalene-d10 (surr)	57.2	42-86		%
Fluoranthene-d10 (surr)	76.4	50-97		%

Batch Information

Analytical Batch: XMS12869

Analytical Method: 8270D SIM LV (PAH)

Instrument: Agilent GC 7890B/5977A SWA

Analyst: CDM

Analytical Date/Time: 9/4/2021 5:37:00PM

Prep Batch: XXX45479 Prep Method: SW3535A

Prep Date/Time: 8/31/2021 1:30:20AM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 09/17/2021 2:35:53PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1215513 [XXX45479]

Blank Spike Lab ID: 1633247 Date Analyzed: 09/04/2021 17:58 Spike Duplicate ID: LCSD for HBN 1215513

[XXX45479]

Spike Duplicate Lab ID: 1633248 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1215513001, 1215513002, 1215513003, 1215513004, 1215513005

Results by 8270D SIM LV (PAH)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
1-Methylnaphthalene	2	1.20	60	2	1.46	73	(41-115)	19.70	(< 20)
2-Methylnaphthalene	2	1.17	58	2	1.45	72	(39-114)	21.20	* (< 20)
Acenaphthene	2	1.33	66	2	1.69	85	(48-114)	24.10	* (< 20)
Acenaphthylene	2	1.42	71	2	1.75	87	(35-121)	20.90	* (< 20)
Anthracene	2	1.44	72	2	1.80	90	(53-119)	22.00	* (< 20)
Benzo(a)Anthracene	2	1.43	71	2	1.70	85	(59-120)	17.60	(< 20)
Benzo[a]pyrene	2	1.55	78	2	1.85	93	(53-120)	17.70	(< 20)
Benzo[b]Fluoranthene	2	1.57	78	2	1.86	93	(53-126)	16.90	(< 20)
Benzo[g,h,i]perylene	2	1.67	84	2	1.98	99	(44-128)	16.90	(< 20)
Benzo[k]fluoranthene	2	1.48	74	2	1.76	88	(54-125)	17.30	(< 20)
Chrysene	2	1.48	74	2	1.78	89	(57-120)	18.30	(< 20)
Dibenzo[a,h]anthracene	2	1.70	85	2	2.01	101	(44-131)	16.60	(< 20)
Fluoranthene	2	1.44	72	2	1.75	87	(58-120)	19.60	(< 20)
Fluorene	2	1.44	72	2	1.81	91	(50-118)	22.80	* (< 20)
Indeno[1,2,3-c,d] pyrene	2	1.57	78	2	1.85	93	(48-130)	16.60	(< 20)
Naphthalene	2	1.18	59	2	1.45	73	(43-114)	20.60	* (< 20)
Phenanthrene	2	1.43	72	2	1.75	87	(53-115)	19.80	(< 20)
Pyrene	2	1.47	73	2	1.78	89	(53-121)	19.30	(< 20)
Surrogates									
2-Methylnaphthalene-d10 (surr)	2		54	2		69	(42-86)	23.70	
Fluoranthene-d10 (surr)	2		69	2		87	(50-97)	23.60	

Batch Information

Analytical Batch: XMS12869

Analytical Method: 8270D SIM LV (PAH)
Instrument: Agilent GC 7890B/5977A SWA

Analyst: CDM

Prep Batch: XXX45479
Prep Method: SW3535A

Prep Date/Time: 08/31/2021 01:30

Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL

Print Date: 09/17/2021 2:35:55PM

Method Blank

Blank ID: MB for HBN 1824961 [XXX/45490]

Blank Lab ID: 1633764

QC for Samples:

1215513001, 1215513002, 1215513003, 1215513004, 1215513005

Matrix: Water (Surface, Eff., Ground)

Results by AK102

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Diesel Range Organics
 0.300U
 0.600
 0.200
 mg/L

Surrogates

5a Androstane (surr) 75.6 60-120 %

Batch Information

Analytical Batch: XFC16073 Analytical Method: AK102

Instrument: Agilent 7890B F Analyst: IVM

Analytical Date/Time: 9/2/2021 2:58:00PM

Prep Batch: XXX45490 Prep Method: SW3520C

Prep Date/Time: 9/1/2021 4:01:13PM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 09/17/2021 2:35:57PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1215513 [XXX45490]

Blank Spike Lab ID: 1633765 Date Analyzed: 09/02/2021 15:08 Spike Duplicate ID: LCSD for HBN 1215513

[XXX45490]

Spike Duplicate Lab ID: 1633766

Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1215513001, 1215513002, 1215513003, 1215513004, 1215513005

Results by AK102

		Blank Spike (mg/L)		Spike Duplicate (mg/L)					
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Diesel Range Organics	20	18.9	94	20	19.4	97	(75-125)	2.90	(< 20)
Surrogates									
5a Androstane (surr)	0.4		102	0.4		105	(60-120)	3.40	

Batch Information

Analytical Batch: XFC16073 Analytical Method: AK102 Instrument: Agilent 7890B F

Analyst: IVM

Prep Batch: XXX45490
Prep Method: SW3520C

Prep Date/Time: 09/01/2021 16:01

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 09/17/2021 2:35:59PM

Method Blank

Blank ID: MB for HBN 1824961 [XXX/45490]

Blank Lab ID: 1633764

QC for Samples:

1215513001, 1215513002, 1215513003, 1215513004, 1215513005

Matrix: Water (Surface, Eff., Ground)

Results by AK103

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Residual Range Organics
 0.250U
 0.500
 0.200
 mg/L

Surrogates

n-Triacontane-d62 (surr) 94.6 60-120 %

Batch Information

Analytical Batch: XFC16073 Analytical Method: AK103

Instrument: Agilent 7890B F

Analyst: IVM

Analytical Date/Time: 9/2/2021 2:58:00PM

Prep Batch: XXX45490 Prep Method: SW3520C

Prep Date/Time: 9/1/2021 4:01:13PM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 09/17/2021 2:36:01PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1215513 [XXX45490]

Blank Spike Lab ID: 1633765 Date Analyzed: 09/02/2021 15:08 Spike Duplicate ID: LCSD for HBN 1215513

[XXX45490]

Spike Duplicate Lab ID: 1633766

Matrix: Water (Surface, Eff., Ground)

QC for Samples:

1215513001, 1215513002, 1215513003, 1215513004, 1215513005

Results by AK103

	ı	Blank Spike	(mg/L)	5	Spike Duplic	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Residual Range Organics	20	19.1	95	20	20.0	100	(60-120)	4.60	(< 20)
Surrogates									
n-Triacontane-d62 (surr)	0.4		97	0.4		108	(60-120)	10.20	

Batch Information

Analytical Batch: XFC16073 Analytical Method: AK103 Instrument: Agilent 7890B F

A saluet DAM

Analyst: IVM

Prep Batch: XXX45490
Prep Method: SW3520C

Prep Date/Time: 09/01/2021 16:01

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 09/17/2021 2:36:04PM

Laboratory SGS Attn: Sen Daw Krus	Stelleston to ted	TUNN JESO,	10 apurchuarec	10 OV	6 lab provided the Ha	2. Reliquished By: 3. Time. Time.	Date: Printed Name: Date:	Company: Received By: 3.	Time: Signature: Culture (1875) Spate: Printed Name: Date (1862)	SOS KI
F-CUST	-2016 Jah (2) 1405.	640	××.	X	X X 1215513	Reliquished By: 1. Reliquished By: Signature: Time: M350 Signature: Time: me. Date: Beland Printed Name:	Shannon Milaon Received By: 1. Received By:	Signature: Time: T	Company:	
SHANNON & WILSON, INC. GHAIN-C Fairbanks, AK 99709 (907) 479-0600 www.shannonwilson.com	Sh MSA Number: 4544-565	J-Flags: X Yes	(A)	5 (54) (6/8) (880)	(6AC)	n Sample Receipt Total No. of Containers: 56	Received Good Cond./Cold Temp:	Notes:	beank has been m er with samples at Ames.	Distribution: White - w/shipment - returned to Shannon & Wilson w/ laboratory report Yellow - w/shipment - for consignee files Pink - Shannon & Wilson - job file
SHANNON 2350 (907) www.sha	Turn Around Time:	Please Specify Sample Identity	214KN- MW- 214KN-HW-	214KN-HW-03 214KN-HW-03	Trip blank	roject Info	Name: 4KN K Contact: KXX Ongoing Project? Yes	Sampler: VVV	Trip blan	Distribution: White - w/shir Yellow - w/sh Pink - Shann

2.8 DCJ Alect

No.

Alert Expeditors Inc.

#414528

Citywide Delivery • 440-3351 8421 Flamingo Drive • Anchorage, Alaska 99502

	: 이번 사람이 모델린 사고인	
Date		
From	- 7 / 10/11	in + 1/1 mm
To	5/49	
Collect □	Prepay □	Advance Charges
Job #	PO#	
	1 1304	
		4,510
	78 (1)	205
Shipped Signature		
\$ }		Total Charge
Received By:		Page 40 of 43

e-Sample Receipt Form

SGS Workorder #:

1215513

1215513

Review Criteria	Condition (Yes,	No, N/A		Excep	otions No	oted below		
Chain of Custody / Temperature Requi	rements		N/A	Exemption pern	nitted if sam	pler hand carr	ies/deliv	ers.
Were Custody Seals intact? Note # &		1F, 1B		II.				
·								
COC accompanied sa								
DOD: Were samples received in COC corresponding of	coolers? N/A							
N/A **Exemption permitted if	chilled & colle	cted <8 h	ours	ago, or for samp	les where c	hilling is not re	quired	
Temperature blank compliant* (i.e., 0-6 °C after		Cooler I	_	1	@	2.8 °C The		D63
Temperature blank compliant (i.e., o o o alte	71 01): 103							
		Cooler I			@		erm. ID:	
If samples received without a temperature blank, the "cooler temperature" will documented instead & "COOLER TEMP" will be noted to the right. "ambient" or "ch		Cooler I	D:		@	°C The	erm. ID:	
be noted if neither is available.	illed will	Cooler I	D:		@	°C The	erm. ID:	
		Cooler I	D.		@	°C The	erm. ID:	
*If , 6°C ware complete collected , C hours	2002	OCCIOI I	<u> </u>		J	9	J	
*If >6°C, were samples collected <8 hours	ago? N/A							
If <0°C, were sample containers ice	free? N/A							
	<u> </u>	9						
Note: Identify containers received at non-compliant temps	ratura							
Note: Identify containers received at non-compliant temper Use form FS-0029 if more space is n								
Ose form F3-0029 if more space is in	eeueu.							
Holding Time / Documentation / Sample Condition Re	aquiroments	Note: Ref	ar to fo	orm F-083 "Sample	Guide" for en	ecific holding tim	000	
Were samples received within holding		Note. Itel	51 10 10	omi i -005 Sample	Oulde for sp	becine floiding tim	C 3.	
were samples received within holding	g time?	<u>.</u>						
Do samples match COC** (i.e.,sample IDs,dates/times colle	ected)? Yes							
**Note: If times differ <1hr, record details & login per C								
***Note: If sample information on containers differs from COC, SGS will default to 0	COC information							
Were analytical requests clear? (i.e., method is specified for ar	nalyses Yes							
with multiple option for analysis (Ex: BTEX, I								
					In the second		0.01-	
			N/A	***Exemption pe	ermitted for	metals (e.g,20	<u>0.8/6020</u>) <u>A).</u>
Were proper containers (type/mass/volume/preservative***)used? Yes							-
	-							
Volatile / LL-Hg Req	uirements							
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with sar								
	•							
Were all water VOA vials free of headspace (i.e., bubbles ≤	6mm)? Yes							
Were all soil VOAs field extracted with MeOH	+BFB? N/A							
Note to Client: Any "No", answer above indicates no	n-compliance	with stan	dard r	orocedures and r	nav impact	data quality		
110.0 to Offent. Ally 110 , allower above indicates 110	compliance	mui stall	auru þ	orocodulos and I	nay impact	data quality.		
Additiona	I notes (if a	pplicab	le):					
	,		•					

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	Container Condition	Container Id	<u>Preservative</u>	<u>Container</u> <u>Condition</u>
1215513001-A	HCL to pH < 2	OK	1215513005-J	HCL to pH < 2	OK
1215513001-B	HCL to pH < 2	OK	1215513006-A	HCL to pH < 2	OK
1215513001-C	No Preservative Required	OK	1215513006-B	HCL to pH < 2	OK
1215513001-D	No Preservative Required	OK	1215513006-C	HCL to pH < 2	OK
1215513001-E	HCL to pH < 2	OK			
1215513001-F	HCL to pH < 2	OK			
1215513001-G	HCL to pH < 2	OK			
1215513001-H	HCL to pH < 2	OK			
1215513001-I	HCL to pH < 2	OK			
1215513001-J	HCL to pH < 2	OK			
1215513002-A	HCL to pH < 2	OK			
1215513002-В	HCL to pH < 2	OK			
1215513002-C	No Preservative Required	OK			
1215513002-D	No Preservative Required	OK			
1215513002-Е	HCL to pH < 2	OK			
1215513002-F	HCL to pH < 2	OK			
1215513002-G	HCL to pH < 2	OK			
1215513002-H	HCL to pH < 2	OK			
1215513002-I	HCL to pH < 2	OK			
1215513002-J	HCL to pH < 2	OK			
1215513003-A	HCL to pH < 2	OK			
1215513003-B	HCL to pH < 2	OK			
1215513003-C	No Preservative Required	OK			
1215513003-D	No Preservative Required	OK			
1215513003-E	HCL to pH < 2	OK			
1215513003-F	HCL to pH < 2	OK			
1215513003-G	HCL to $pH < 2$	OK			
1215513003-H	HCL to $pH < 2$	OK			
1215513003-I	HCL to pH < 2	OK			
1215513003-J	HCL to pH < 2	OK			
1215513004-A	HCL to $pH < 2$	OK			
1215513004-B	HCL to $pH < 2$	OK			
1215513004-C	No Preservative Required	OK			
1215513004-D	No Preservative Required	OK			
1215513004-E	HCL to pH < 2	OK			
1215513004-F	HCL to pH < 2	OK			
1215513004-G	HCL to pH < 2	OK			
1215513004-H	HCL to pH < 2	OK			
1215513004-I	HCL to pH < 2	OK			
1215513004-J	HCL to pH < 2	OK			
1215513005-A	HCL to pH < 2	OK			
1215513005-B	HCL to pH < 2	OK			
1215513005-C	No Preservative Required	OK			
1215513005-D	No Preservative Required	OK			
1215513005-E	HCL to pH < 2	ОК			
1215513005-F	HCL to pH < 2	OK			
1215513005-G	HCL to pH < 2	OK			
1215513005-H	HCL to pH < 2	OK			
1215513005-I	HCL to pH < 2	OK			

Page 42 of 43 8/27/2021

<u>Container Id Preservative Container Container Id Preservative Container Condition</u>

<u>Condition</u>

<u>Container Id Preservative Container Id Preservative Condition</u>

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN Insufficient sample quantity provided.

Laboratory Data Review Checklist

Completed By:
Michael Jaramillo
Title:
Senior Chemist
Date:
September 27, 2021
Consultant Firm:
Shannon & Wilson, Inc.
aboratory Name:
SGS North America, Inc (SGS)
aboratory Report Number:
1215513
aboratory Report Date:
September 17, 2021
CS Site Name:
ADOT&PF King Salmon Airport Statewide PFAS
ADEC File Number:
2569.38.033
Hazard Identification Number:
26981

	1215513
Lał	boratory Report Date:
	September 17, 2021
CS	Site Name:
	ADOT&PF King Salmon Airport Statewide PFAS
	Note: Any N/A or No box checked must have an explanation in the comments box.
1.	<u>Laboratory</u>
	a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?
	Yes \boxtimes No \square N/A \square Comments: The DEC certified SGS of Anchorage, AK for the requested analyses. The reported analytes were
	included in the DEC's Contaminated Sites Laboratory Approval 17-020.
	b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
	Yes□ No□ N/A⊠ Comments:
	The samples were not transferred to another "network" laboratory or sub-contracted to an alternate laboratory
2.	Chain of Custody (CoC)
	a. CoC information completed, signed, and dated (including released/received by)?
	$Yes \boxtimes No \square N/A \square$ Comments:
	b. Correct analyses requested?
	$Yes \boxtimes No \square N/A \square$ Comments:
3.	<u>Laboratory Sample Receipt Documentation</u>
	a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?
	Yes⊠ No□ N/A□ Comments:
	b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?
	$Yes \boxtimes No \square N/A \square$ Comments:

1215513	
Laboratory Report Date:	
September 17, 2021	
CS Site Name:	
ADOT&PF King Salmon Airport Statewide PFAS	
 c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)? Yes⊠ No□ N/A□ Comments: The sample receipt form notes that the samples arrived in good condition, and where required, prope 	
preserved and on ice were received in good condition.	119
d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?	
Yes□ No□ N/A⊠ Comments:	
No discrepancies identified, therefore no documentation needed.	
e. Data quality or usability affected?	
Comments:	
Not applicable, see above.	
4. <u>Case Narrative</u>	
a. Present and understandable?	
Yes \boxtimes No \square N/A \square Comments:	
Test Tion Time Comments.	
 b. Discrepancies, errors, or QC failures identified by the lab? Yes⊠ No□ N/A□ Comments: 	
The LCS associated with preparation batch XXX45479 had several PAH RPD failures. Refer to Section 4.c. for corrective actions and Section 6.b. for assessment of LCSD RPD failures.	
The VOC LCSD associated with preparation batch VXX37789 had a recovery failure for 1,4-dichloro-2-butadiene. The analyte was not detected in the associated project samples. However, this analyte is not a target analyte and project samples are not affected by the recovery failure for this analyte.	}
The PAH MB associated with preparation batch XXX45479 had a detection for phenanthrene greater than ½ the LOQ but less than the LOQ. Refer to Section 6.a. for further assessment.	er

1215513
Laboratory Report Date:
September 17, 2021
CS Site Name:
ADOT&PF King Salmon Airport Statewide PFAS
c. Were all corrective actions documented?
Yes \boxtimes No \square N/A \square Comments:
The samples associated with the preparation batch XXX45479 with LCSD RPD failures were reextracted outside of hold time to confirm associated analytes. Results were confirmed and in-hold data were reported.
d. What is the effect on data quality/usability according to the case narrative?
Comments:
The case narrative does not discuss effect on data quality, it only discusses discrepancies and what was done considering them, as applicable. Any notable data quality issues mentioned in the case narrative are discussed elsewhere within this DEC checklist.
5. <u>Samples Results</u>
a. Correct analyses performed/reported as requested on COC?
$Yes \boxtimes No \square N/A \square$ Comments:
b. All applicable holding times met?
Yes \boxtimes No \square N/A \square Comments:
c. All soils reported on a dry weight basis?
$Yes \square No \square N/A \boxtimes Comments:$
Soil samples were not submitted with this work order.
d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?
Yes⊠ No□ N/A□ Comments:
Analytical sensitivity was evaluated to verify that reporting limits (RLs) met applicable DEC groundwater cleanup levels for non-detect results, as appropriate. RLs met applicable regulatory levels.
e. Data quality or usability affected?
Not applicable, see above.

1215513						
Laboratory Report Date:						
September 17, 2021						
CS Site Name:						
ADOT&PF King Salmon Airport Statewide PFAS						
6. QC Samples						
a. Method Blank						
i. One method blank reported per matrix, analysis and 20 samples?						
$Yes \boxtimes No \square N/A \square$ Comments:						
ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives? Yes \boxtimes No \square N/A \square Comments:						
No analytes were detected in method blank samples at concentrations exceeding the LOQ; however, the PAH analyte phenanthrene was detected at an estimated concentration below the LOQ in preparatory batch XXX45479.						
iii. If above LOQ or project specified objectives, what samples are affected? Comments:						
The project samples 21AKN-MW-01, 21AKN-MW-101, 21AKN-MW-02, and 21AKN-MW-03 and the equipment blank sample 21AKN-EB-03 had detections for phenanthrene at concentrations below the LOQ and less than five-times the concentration detected in the method blank sample. Therefore, the phenanthrene results for these samples are considered not-detected due to potential laboratory cross-contamination and are flagged 'B' at the LOQ in the analytical tables.						
iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?						
$Yes \boxtimes No \square N/A \square$ Comments:						
See above.						
v. Data quality or usability affected? Comments:						
The data quality and/or usability was not affected; see above.						
b. Laboratory Control Sample/Duplicate (LCS/LCSD)						
 Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846) 						
$Yes \boxtimes No \square N/A \square$ Comments:						

1215513
Laboratory Report Date:
September 17, 2021
CS Site Name:
ADOT&PF King Salmon Airport Statewide PFAS
ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
Yes \square No \square N/A \boxtimes Comments:
Metals and/or inorganics were not analyzed as part of this work order.
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
Yes⊠ No□ N/A□ Comments:
The LCS associated with preparation batch 320-522308 had a high recovery failure for HFPO-DA. HFPO-DA was not detected in any associated project sample. Data qualification not required, and data quality/and for usability not affected.
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
Yes \square No \boxtimes N/A \square Comments:
The LCSD associated with preparation batch XXX45479 had RPDs outside acceptance criteria for the PAH analytes 2-methylnaphthalene, acenaphthene, acenaphthylene, anthracene, fluorene, and naphthalene. Sample results are considered estimated, no direction of bias, and are flagged "J" in the analytical tables.
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
See above.
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes⊠ No□ N/A□ Comments:
See above.
vii. Data quality or usability affected? (Use comment box to explain.) Comments:
Yes; see above.

1215513
Laboratory Report Date:
September 17, 2021
CS Site Name:
ADOT&PF King Salmon Airport Statewide PFAS
 c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project i. Organics – One MS/MSD reported per matrix, analysis and 20 samples? Yes \Boxedow N/A \Boxedow Comments:
ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples?Yes□ No□ N/A□ Comments:
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?
Yes□ No□ N/A□ Comments:
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.
$Yes \square No \square N/A \square$ Comments:
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes \square No \square N/A \square Comments:

	1215513						
La	boratory Report Date:						
	September 17, 2021						
CS	S Site Name:						
	ADOT&PF King Salmon Airport Statewide PFAS						
	vii. Data quality or usability affected? (Use comment box to explain.) Comments:						
	d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only						
	 i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples? 						
	Yes⊠ No□ N/A□ Comments:						
	ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)						
	Yes⊠ No□ N/A□ Comments:						
iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, a flags clearly defined?							
	Yes□ No□ N/A⊠ Comments:						
	Surrogate recoveries were within acceptance criteria. Samples were not affected.						
	iv. Data quality or usability affected? Comments:						
	See above.						
	e. Trip Blanks						
	 i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.) 						
	Yes⊠ No□ N/A□ Comments:						
	ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)						
	Yes⊠ No□ N/A□ Comments:						

121551	3				
oratory	Report Date:				
Septem	ber 17, 2021				
Site Na	me:				
ADOT	&PF King Salmon Airport Statewide PFAS				
	iii. All results less than LOQ and project specified objectives?				
	Yes⊠ No□ N/A□ Comments:				
Targ	get analytes were not detected in the trip blank samples.				
	iv. If above LOQ or project specified objectives, what samples are affected? Comments:				
Not	applicable, see above.				
	v. Data quality or usability affected? Comments:				
Not applicable, see above.					
f. Field Duplicatei. One field duplicate submitted per matrix, analysis and 10 project samples?					
21A	KN-MW-101 was a field duplicate of 21AKN-MW-01.				
	ii. Submitted blind to lab?				
	Yes \boxtimes No \square N/A \square Comments:				
	iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$ Where $R_1 = Semple Concentration$				
	Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration				
33.71	Yes⊠ No□ N/A□ Comments:				
	ere calculable, analytical results met the comparison criterion ($\leq 30\%$ for water) for the field licate pairs.				
	iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:				

1015510						
1215513						
Laboratory Report Date:						
September 17, 2021						
September 17, 2021						
CS Site Name:						
ADOT&PF King Salmon Airport Statewide PFAS						
g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?						
$Yes \boxtimes No \square N/A \boxtimes Comments:$						
The equipment blank sample 21AKN-EB-03 was submitted with this work order.						
i. All results less than LOQ and project specified objectives?						
$Yes \boxtimes No \square N/A \square$ Comments:						
No analytes were detected in equipment blank sample at concentrations exceeding the LOQ; however, the PAH analytes 2-methylnaphthalene, naphthalene, and phenanthrene were detected at an estimated concentration below the LOQ.						
ii. If above LOQ or project specified objectives, what samples are affected? Comments:						
The project samples 21AKN-MW-01 and 21AKN-MW-02 had detections for 2-methylnaphthalene at concentrations below the LOQ and less than five-times the concentration detected in the method blank sample. Therefore, the 2-methylnaphthalene results for these samples are considered not-detected due to potential cross-contamination and are flagged 'B' at the LOQ in the analytical tables.						
The project samples did not have detections for naphthalene and are not considered affected by the potential cross-contamination.						
The project samples and the equipment blank sample had detections for phenanthrene at concentrations similar to concentrations observed in the associated method blank sample. Refer to Section 6.a. for applied qualifiers.						
iii. Data quality or usability affected? Comments:						
Yes, see above.						
7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)						
a. Defined and appropriate?						
Yes \square No \square N/A \boxtimes Comments:						
There were no additional flags/qualifiers required for this work order.						

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-77653-1 Client Project/Site: AKN PFAS

For:

Shannon & Wilson, Inc 2355 Hill Rd. Fairbanks, Alaska 99709-5244

Attn: Michael X Jaramillo

Jamil Oltimo

Authorized for release by: 8/30/2021 11:08:49 AM

David Alltucker, Project Manager I (916)374-4383

David.Alltucker@Eurofinset.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

4

5

6

Q

9

4 4

12

13

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS Laboratory Job ID: 320-77653-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	6
Client Sample Results	9
Isotope Dilution Summary	20
QC Sample Results	22
QC Association Summary	26
Lab Chronicle	28
Certification Summary	31
Method Summary	32
Sample Summary	33
Chain of Custody	34
Receipt Checklists	36

11

12

14

Definitions/Glossary

Client: Shannon & Wilson, Inc

Job ID: 320-77653-1

Project/Site: AKN PFAS

Qualifiers

10	٠,٧	ΛS
	, II	$^{\prime\prime}$

Qualifier	Qualifier Description
*5-	Isotope dilution analyte is outside acceptance limits, low biased.
В	Compound was found in the blank and sample.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

DL, RA, RE, IN

Abbreviation	These commonly used abbreviations may or may not be present in this report.				
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis				
%R	Percent Recovery				
CFL	Contains Free Liquid				
CFU	Colony Forming Unit				
CNF	Contains No Free Liquid				
DER	Duplicate Error Ratio (normalized absolute difference)				
Dil Fac	Dilution Factor				
DL	Detection Limit (DoD/DOE)				

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

 LOD
 Limit of Detection (DoD/DOE)

 LOQ
 Limit of Quantitation (DoD/DOE)

 MCL
 EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit

ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

8/30/2021

Case Narrative

Client: Shannon & Wilson, Inc

Project/Site: AKN PFAS

Job ID: 320-77653-1

Job ID: 320-77653-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Job Narrative 320-77653-1

Receipt

The samples were received on 8/17/2021 10:32 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.5° C.

LCMS

Method EPA 537(Mod): The method blank for preparation batch 320-517458 and analytical batch 320-518032 contained Perfluorooctanesulfonic acid (PFOS) above a half of the reporting limit (1/2RL). Associated samples were not re-extracted and/or re-analyzed because results were greater than 10X the value found in the method blank.

Method EPA 537(Mod): The "I" qualifier means the transition mass ratio for the indicated analyte was outside of the established ratio limits. The qualitative identification of the analyte has some degree of uncertainty, and the reported value may have some high bias. However, analyst judgment was used to positively identify the analyte. (CCVL 320-520224/2)

Method EPA 537(Mod): Results for samples 21AKN-SW-02 (320-77653-3) and 21AKN-SW-07 (320-77653-9) were reported from the analysis of a diluted extract due to high concentration of the target analyte in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits.

Method EPA 537(Mod): Results for samples 21AKN-SW-04 (320-77653-5), 21AKN-SW-107 (320-77653-10) and 21AKN-SW-08 (320-77653-11) were reported from the analysis of a diluted extract due to high concentration of the target analyte in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits

Method EPA 537(Mod): The Isotope Dilution Analyte (IDA) recovery associated with the following sample is below the method recommended limit: 21AKN-SW-07 (320-77653-9). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample.

Method EPA 537(Mod): The Isotope Dilution Analyte (IDA) recovery associated with the following samples is below the method recommended limit: 21AKN-SW-08 (320-77653-11). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the samples.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3535: The following samples 21AKN-SW-01 (320-77653-1), 21AKN-SW-101 (320-77653-2), 21AKN-SW-02 (320-77653-3), 21AKN-SW-03 (320-77653-4), 21AKN-SW-04 (320-77653-5), 21AKN-SW-05 (320-77653-6), 21AKN-SW-105 (320-77653-7), 21AKN-SW-06 (320-77653-8), 21AKN-SW-07 (320-77653-9), 21AKN-SW-107 (320-77653-10) and 21AKN-SW-08 (320-77653-11) in preparation batch 320-517458 were light yellow/orange in color with a thin layer of sediment at the bottom of the bottle prior to extraction.

Method 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-517458.

Method 3535: During the solid phase extraction process, the following samples 21AKN-SW-03 (320-77653-4), 21AKN-SW-07 (320-77653-9) and 21AKN-SW-08 (320-77653-11) in preparation batch 320-517458 contained non-settable particulates which clogged the solid phase extraction column.

Method 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-519512.

Method 3535: The following samples contained floating particulates in the sample bottle prior to extraction: 21AKN-SW-01 (320-77653-1) and 21AKN-SW-101 (320-77653-2).

4

5

0

8

9

11

12

14

Case Narrative

Client: Shannon & Wilson, Inc
Project/Site: AKN PFAS

Job ID: 320-77653-1

Job ID: 320-77653-1 (Continued)

Laboratory: Eurofins TestAmerica, Sacramento (Continued)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

5

9

10

40

13

14

Client: Shannon & Wilson, Inc Job ID: 320-77653-1 Project/Site: AKN PFAS

Client Sample ID: 21AKN-SW-01

Lab Sample ID: 320-77653-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Perfluorohexanoic acid (PFHxA)	3.5		1.9	0.56	ng/L	1	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.8	J	1.9	0.24	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	1.5	J	1.9	0.26	ng/L	1	EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-S	W-101		Lab Sample ID:	320-77653-2

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	3.4		2.0	0.57	ng/L	1	_	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	2.0		2.0	0.25	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	1.7 J	J	2.0	0.26	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS) -	1.0 J	J	2.0	0.53	ng/L	1		EPA 537(Mod)	Total/NA
RE									

Client Sample ID: 21AKN-SW-02

Lab Sample ID: 320-77653-3

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	48	1.9	0.55	ng/L		EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	19	1.9	0.24	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	64	1.9	0.81	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	5.2	1.9	0.26	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	8.2	1.9	0.19	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	200	1.9	0.54	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS) -	1900 B	38	10	ng/L	20	EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-SW-03

Lab Sample ID: 320-77653-4

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	19	1.9	0.55	ng/L	1	_	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	9.8	1.9	0.24	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	26	1.9	0.81	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	2.1	1.9	0.26	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	5.7	1.9	0.19	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	130	1.9	0.54	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	230 B	1.9	0.51	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-SW-04 Lab Sample ID: 320-77653-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluoroheptanoic acid (PFHpA)	120		1.9	0.24	ng/L	1	_	EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	14		1.9	0.26	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorodecanoic acid (PFDA)	1.7	J	1.9	0.30	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	54		1.9	0.19	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanoic acid (PFHxA) - DL	600		97	28	ng/L	50		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA) - DL	1500		97	41	ng/L	50		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS) - DL	1600		97	28	ng/L	50		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS) - DL	4100	В	97	26	ng/L	50		EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-SW-05

Lab Sample ID: 320-77653-6 Analyte Result Qualifier **MDL** Unit Dil Fac D Method **Prep Type** Perfluorohexanoic acid (PFHxA) 1.9 0.54 ng/L EPA 537(Mod) Total/NA 11

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Sacramento

Page 6 of 36 8/30/2021

Client: Shannon & Wilson, Inc

Project/Site: AKN PFAS

Job ID: 320-77653-1

Client Sample ID: 21AKN-SW-05 (Continued)

Lab Sample ID: 320-77653-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluoroheptanoic acid (PFHpA)	5.0		1.9	0.23	ng/L	1	_	EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	30		1.9	0.79	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	0.94	J	1.9	0.25	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	3.0		1.9	0.19	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	60		1.9	0.53	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	110	В	1.9	0.50	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-SW-105

Lab Sample ID: 320-77653-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	13		1.9	0.55	ng/L	1	_	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	4.6		1.9	0.24	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	32		1.9	0.81	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	1.0	J	1.9	0.26	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	3.2		1.9	0.19	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	58		1.9	0.54	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	130	В	1.9	0.51	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-SW-06

Lab Sample ID: 320-77653-8

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	9.6	1.9	0.56	ng/L		EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	4.4	1.9	0.24	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	31	1.9	0.82	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	0.87 J	1.9	0.26	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	2.4	1.9	0.19	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	50	1.9	0.55	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	110 B	1.9	0.52	ng/L	1	EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-SW-07

Lab Sample ID: 320-77653-9

Analyte	Result C	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	84		1.9	0.55	ng/L		_	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	39		1.9	0.24	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	170		1.9	0.81	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	8.0		1.9	0.26	ng/L	1		EPA 537(Mod)	Total/NA
Perfluoroundecanoic acid (PFUnA)	6.7		1.9	1.1	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorotridecanoic acid (PFTriA)	1.8 J	I	1.9	1.2	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	10		1.9	0.19	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	320		1.9	0.54	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS) -	2400 E	3	38	10	ng/L	20		EPA 537(Mod)	Total/NA

_

Client Sample ID: 21AKN-SW-107

Lab Sample ID: 320-77653-10

Analyte	Result Q	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	78		1.9	0.56	ng/L		_	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	39		1.9	0.24	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	180		1.9	0.82	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	8.4		1.9	0.26	ng/L	1		EPA 537(Mod)	Total/NA
Perfluoroundecanoic acid (PFUnA)	5.2		1.9	1.1	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorododecanoic acid (PFDoA)	0.60 J		1.9	0.53	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorotridecanoic acid (PFTriA)	2.8		1.9	1.3	ng/L	1		EPA 537(Mod)	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Sacramento

Page 7 of 36 8/30/2021

Detection Summary

Client: Shannon & Wilson, Inc Job ID: 320-77653-1

Project/Site: AKN PFAS

Client Sample ID: 21AKN-SW-107 (Continued)

Lab Sample ID: 320-77653-10

Analyte	Result Qualifie	r RL	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorobutanesulfonic acid (PFBS)	11	1.9	0.19	ng/L		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	290	1.9	0.55	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS) -	2200 B	39	10	ng/L	20	EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-SW-08

Lab Sample ID: 320-77653-11

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	74		1.9	0.54	ng/L	1	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	34		1.9	0.23	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	130		1.9	0.80	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	7.5		1.9	0.25	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	11		1.9	0.19	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	330		1.9	0.54	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS) - DL	3200	В	38	10	ng/L	20	EPA 537(Mod)	Total/NA

10

12

13

14

Client: Shannon & Wilson, Inc Job ID: 320-77653-1

Project/Site: AKN PFAS

13C4 PFOS

Client Sample ID: 21AKN-SW-01 Lab Sample ID: 320-77653-1

Date Collected: 08/15/21 09:30 **Matrix: Water** Date Received: 08/17/21 10:32

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	3.5		1.9	0.56	ng/L		08/18/21 12:42	08/20/21 03:56	
Perfluoroheptanoic acid (PFHpA)	1.8	J	1.9	0.24	ng/L		08/18/21 12:42	08/20/21 03:56	1
Perfluorooctanoic acid (PFOA)	ND		1.9	0.82	ng/L		08/18/21 12:42	08/20/21 03:56	1
Perfluorononanoic acid (PFNA)	1.5	J	1.9	0.26	ng/L		08/18/21 12:42	08/20/21 03:56	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.30	ng/L		08/18/21 12:42	08/20/21 03:56	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.1	ng/L		08/18/21 12:42	08/20/21 03:56	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.53	ng/L		08/18/21 12:42	08/20/21 03:56	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.3	ng/L		08/18/21 12:42	08/20/21 03:56	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.71	ng/L		08/18/21 12:42	08/20/21 03:56	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.19	ng/L		08/18/21 12:42	08/20/21 03:56	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9	0.55	ng/L		08/18/21 12:42	08/20/21 03:56	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.8		ng/L		08/18/21 12:42	08/20/21 03:56	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.8	1.3	ng/L		08/18/21 12:42	08/20/21 03:56	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.9	0.23				08/20/21 03:56	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.9		ng/L			08/20/21 03:56	
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.9	0.31			08/18/21 12:42	08/20/21 03:56	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.39	ng/L		08/18/21 12:42	08/20/21 03:56	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	86		50 - 150				08/18/21 12:42	08/20/21 03:56	
13C4 PFHpA	81		50 - 150				08/18/21 12:42	08/20/21 03:56	1
13C4 PFOA	100		50 - 150				08/18/21 12:42	08/20/21 03:56	1
13C5 PFNA	91		50 - 150				08/18/21 12:42	08/20/21 03:56	1
13C2 PFDA	96		50 - 150				08/18/21 12:42	08/20/21 03:56	1
13C2 PFUnA	86		50 - 150				08/18/21 12:42	08/20/21 03:56	1
13C2 PFDoA	83		50 - 150				08/18/21 12:42	08/20/21 03:56	1
13C2 PFTeDA	80		50 - 150				08/18/21 12:42	08/20/21 03:56	1
13C3 PFBS	95		50 - 150				08/18/21 12:42	08/20/21 03:56	1
1802 PFHxS	74		50 - 150				08/18/21 12:42	08/20/21 03:56	1
13C4 PFOS	84		50 - 150				08/18/21 12:42	08/20/21 03:56	1
d3-NMeFOSAA	90		50 - 150				08/18/21 12:42	08/20/21 03:56	1
d5-NEtFOSAA	101		50 - 150				08/18/21 12:42	08/20/21 03:56	1
13C3 HFPO-DA	83		50 - 150					08/20/21 03:56	1
			45 05						
: Method: EPA 537(Mod) - PFAS		•							
Analyte	Result	.3, Table B Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
• • •		Qualifier		MDL 0.53		<u>D</u>	Prepared 08/25/21 04:51 Prepared	Analyzed 08/27/21 01:28 Analyzed	Dil Fac

08/25/21 04:51 08/27/21 01:28

50 - 150

Client: Shannon & Wilson, Inc Job ID: 320-77653-1

Project/Site: AKN PFAS

Client Sample ID: 21AKN-SW-101 Lab Sample ID: 320-77653-2

Date Collected: 08/15/21 09:20 **Matrix: Water**

Date Received: 08/17/21 10:32

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	3.4		2.0	0.57	ng/L		08/18/21 12:42	08/20/21 04:05	1
Perfluoroheptanoic acid (PFHpA)	2.0		2.0	0.25	ng/L		08/18/21 12:42	08/20/21 04:05	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.83	ng/L		08/18/21 12:42	08/20/21 04:05	1
Perfluorononanoic acid (PFNA)	1.7	J	2.0	0.26	ng/L		08/18/21 12:42	08/20/21 04:05	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.30	ng/L		08/18/21 12:42	08/20/21 04:05	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		08/18/21 12:42	08/20/21 04:05	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.54	ng/L		08/18/21 12:42	08/20/21 04:05	,
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		08/18/21 12:42	08/20/21 04:05	
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.72	ng/L		08/18/21 12:42	08/20/21 04:05	
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20	ng/L		08/18/21 12:42	08/20/21 04:05	
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.56	ng/L		08/18/21 12:42	08/20/21 04:05	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.9		ng/L		08/18/21 12:42	08/20/21 04:05	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.9	1.3	ng/L		08/18/21 12:42	08/20/21 04:05	
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		2.0	0.24	ng/L		08/18/21 12:42	08/20/21 04:05	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.9	1.5	ng/L		08/18/21 12:42	08/20/21 04:05	
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		2.0	0.31	ng/L		08/18/21 12:42	08/20/21 04:05	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.39	ng/L		08/18/21 12:42	08/20/21 04:05	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C2 PFHxA	91		50 - 150				08/18/21 12:42	08/20/21 04:05	
13C4 PFHpA	79		50 - 150				08/18/21 12:42	08/20/21 04:05	
13C4 PFOA	95		50 - 150				08/18/21 12:42	08/20/21 04:05	
13C5 PFNA	95		50 - 150				08/18/21 12:42	08/20/21 04:05	
13C2 PFDA	90		50 - 150				08/18/21 12:42	08/20/21 04:05	
13C2 PFUnA	93		50 - 150				08/18/21 12:42	08/20/21 04:05	
13C2 PFDoA	92		50 - 150				08/18/21 12:42	08/20/21 04:05	
13C2 PFTeDA	87		50 - 150				08/18/21 12:42	08/20/21 04:05	
13C3 PFBS	93		50 ₋ 150				08/18/21 12:42	08/20/21 04:05	
1802 PFHxS	87		50 - 150				08/18/21 12:42	08/20/21 04:05	
13C4 PFOS	85		50 ₋ 150				08/18/21 12:42	08/20/21 04:05	
d3-NMeFOSAA	96		50 ₋ 150					08/20/21 04:05	
d5-NEtFOSAA	106		50 - 150				08/18/21 12:42	08/20/21 04:05	
13C3 HFPO-DA	83		50 - 150					08/20/21 04:05	
Method: EPA 537(Mod) - PFAS		•				_			
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Perfluorooctanesulfonic acid	1.0	J	2.0	0.53	ng/L		08/25/21 04:51	08/27/21 01:37	
(PFOS)									
(PFOS) Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Client: Shannon & Wilson, Inc Job ID: 320-77653-1

Project/Site: AKN PFAS

Client Sample ID: 21AKN-SW-02

Lab Sample ID: 320-77653-3 Date Collected: 08/15/21 10:12

Matrix: Water Date Received: 08/17/21 10:32

Analyte	Result C	Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil F
Perfluorohexanoic acid (PFHxA)	48		1.9	0.55	ng/L		08/18/21 12:42	08/20/21 04:14	
Perfluoroheptanoic acid (PFHpA)	19		1.9	0.24	ng/L		08/18/21 12:42	08/20/21 04:14	
Perfluorooctanoic acid (PFOA)	64		1.9	0.81	ng/L		08/18/21 12:42	08/20/21 04:14	
Perfluorononanoic acid (PFNA)	5.2		1.9	0.26	ng/L		08/18/21 12:42	08/20/21 04:14	
Perfluorodecanoic acid (PFDA)	ND		1.9	0.29	ng/L		08/18/21 12:42	08/20/21 04:14	
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.0	ng/L		08/18/21 12:42	08/20/21 04:14	
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.52	ng/L		08/18/21 12:42	08/20/21 04:14	
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.2	ng/L		08/18/21 12:42	08/20/21 04:14	
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.69	ng/L		08/18/21 12:42	08/20/21 04:14	
Perfluorobutanesulfonic acid	8.2		1.9	0.19			08/18/21 12:42	08/20/21 04:14	
(PFBS)					Ü				
Perfluorohexanesulfonic acid	200		1.9	0.54	ng/L		08/18/21 12:42	08/20/21 04:14	
(PFHxS)									
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.7	1.1	ng/L		08/18/21 12:42	08/20/21 04:14	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.7	1.2	ng/L		08/18/21 12:42	08/20/21 04:14	
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.9	0.23	ng/L		08/18/21 12:42	08/20/21 04:14	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.8	1.4	ng/L		08/18/21 12:42	08/20/21 04:14	
11-Chloroeicosafluoro-3-oxaundecan	ND		1.9	0.30	ng/L		08/18/21 12:42	08/20/21 04:14	
e-1-sulfonic acid									
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.38	ng/L		08/18/21 12:42	08/20/21 04:14	
sotope Dilution	%Recovery G	Qualifier	Limits				Prepared	Analyzed	Dil
13C2 PFHxA	79		50 - 150				08/18/21 12:42	08/20/21 04:14	
13C4 PFHpA	80		50 - 150				08/18/21 12:42	08/20/21 04:14	
13C4 PFOA	90		50 - 150				08/18/21 12:42	08/20/21 04:14	
13C5 PFNA	68		50 - 150				08/18/21 12:42	08/20/21 04:14	
13C2 PFDA	87		50 - 150				08/18/21 12:42	08/20/21 04:14	
13C2 PFUnA	77		50 - 150				08/18/21 12:42	08/20/21 04:14	
13C2 PFDoA	78		50 - 150				08/18/21 12:42	08/20/21 04:14	
13C2 PFTeDA	81		50 - 150				08/18/21 12:42	08/20/21 04:14	
13C3 PFBS	84		50 - 150					08/20/21 04:14	
1802 PFHxS	78		50 - 150					08/20/21 04:14	
13C4 PFOS	70		50 - 150 50 - 150					08/20/21 04:14	
d3-NMeFOSAA	70 80		50 - 150 50 - 150					08/20/21 04:14	
d5-NEtFOSAA	80		50 - 150					08/20/21 04:14	
Method: EPA 537(Mod) - PFAS	S for OSM 5.3	Table R-1	5 - DI						
Analyte	Result C		RL	MDL	Unit	D	Prepared	Analyzed	Dil I
Perfluorooctanesulfonic acid PFOS)	1900 E		38		ng/L	=		08/24/21 14:57	
sotope Dilution	%Recovery C	Qualifier	Limits				Prepared	Analyzed	Dil l

Client: Shannon & Wilson, Inc Job ID: 320-77653-1

Project/Site: AKN PFAS

Date Received: 08/17/21 10:32

Client Sample ID: 21AKN-SW-03

Lab Sample ID: 320-77653-4 Date Collected: 08/15/21 12:00

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	19		1.9	0.55	ng/L		08/18/21 12:42	08/20/21 04:23	1
Perfluoroheptanoic acid (PFHpA)	9.8		1.9	0.24	ng/L		08/18/21 12:42	08/20/21 04:23	1
Perfluorooctanoic acid (PFOA)	26		1.9	0.81	ng/L		08/18/21 12:42	08/20/21 04:23	1
Perfluorononanoic acid (PFNA)	2.1		1.9	0.26	ng/L		08/18/21 12:42	08/20/21 04:23	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.29	ng/L		08/18/21 12:42	08/20/21 04:23	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.0	ng/L		08/18/21 12:42	08/20/21 04:23	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.52	ng/L		08/18/21 12:42	08/20/21 04:23	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.2	ng/L		08/18/21 12:42	08/20/21 04:23	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.69	ng/L		08/18/21 12:42	08/20/21 04:23	1
Perfluorobutanesulfonic acid (PFBS)	5.7		1.9	0.19	ng/L		08/18/21 12:42	08/20/21 04:23	1
Perfluorohexanesulfonic acid (PFHxS)	130		1.9	0.54	ng/L		08/18/21 12:42	08/20/21 04:23	1
Perfluorooctanesulfonic acid (PFOS)	230	В	1.9	0.51	ng/L		08/18/21 12:42	08/20/21 04:23	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.8	1.1	ng/L		08/18/21 12:42	08/20/21 04:23	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.8	1.2	ng/L		08/18/21 12:42	08/20/21 04:23	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.9	0.23	ng/L		08/18/21 12:42	08/20/21 04:23	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.8	1.4	ng/L		08/18/21 12:42	08/20/21 04:23	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.9	0.30	ng/L		08/18/21 12:42	08/20/21 04:23	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.38	ng/L		08/18/21 12:42	08/20/21 04:23	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	71		50 - 150				08/18/21 12:42	08/20/21 04:23	
13C4 PFHpA	77		50 ₋ 150				08/18/21 12:42	08/20/21 04:23	1
13C4 PFOA	90		50 - 150				08/18/21 12:42	08/20/21 04:23	1
13C5 PFNA	81		50 ₋ 150				08/18/21 12:42	08/20/21 04:23	
13C2 PFDA	84		50 ₋ 150				08/18/21 12:42	08/20/21 04:23	1
13C2 PFUnA	73		50 - 150				08/18/21 12:42	08/20/21 04:23	1
13C2 PFDoA	80		50 ₋ 150				08/18/21 12:42	08/20/21 04:23	1
13C2 PFTeDA	64		50 ₋ 150				08/18/21 12:42	08/20/21 04:23	1
13C3 PFBS	82		50 ₋ 150				08/18/21 12:42	08/20/21 04:23	1
1802 PFHxS	79		50 - 150				08/18/21 12:42	08/20/21 04:23	1
13C4 PFOS	75		50 - 150				08/18/21 12:42	08/20/21 04:23	1
d3-NMeFOSAA	75		50 ₋ 150					08/20/21 04:23	1
d5-NEtFOSAA	91		50 - 150					08/20/21 04:23	1
13C3 HFPO-DA	73		50 ₋ 150					08/20/21 04:23	1

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS

Client Sample ID: 21AKN-SW-04

Date Collected: 08/15/21 16:21 Date Received: 08/17/21 10:32 Lab Sample ID: 320-77653-5

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid (PFHpA)	120		1.9	0.24	ng/L		08/18/21 12:42	08/20/21 04:32	1
Perfluorononanoic acid (PFNA)	14		1.9	0.26	ng/L		08/18/21 12:42	08/20/21 04:32	1
Perfluorodecanoic acid (PFDA)	1.7	J	1.9	0.30	ng/L		08/18/21 12:42	08/20/21 04:32	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.1	ng/L		08/18/21 12:42	08/20/21 04:32	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.53	ng/L		08/18/21 12:42	08/20/21 04:32	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.3	ng/L		08/18/21 12:42	08/20/21 04:32	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.71	ng/L		08/18/21 12:42	08/20/21 04:32	1
Perfluorobutanesulfonic acid (PFBS)	54		1.9	0.19	ng/L		08/18/21 12:42	08/20/21 04:32	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.8	1.2	ng/L		08/18/21 12:42	08/20/21 04:32	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.8	1.3	ng/L		08/18/21 12:42	08/20/21 04:32	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.9	0.23	ng/L		08/18/21 12:42	08/20/21 04:32	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.9	1.4	ng/L		08/18/21 12:42	08/20/21 04:32	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.9	0.31	ng/L		08/18/21 12:42	08/20/21 04:32	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.39	ng/L		08/18/21 12:42	08/20/21 04:32	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	107		50 - 150				08/18/21 12:42	08/20/21 04:32	1
13C4 PFHpA	87		50 - 150				08/18/21 12:42	08/20/21 04:32	1
13C4 PFOA	87		50 - 150				08/18/21 12:42	08/20/21 04:32	1
13C5 PFNA	69		50 - 150				08/18/21 12:42	08/20/21 04:32	1
13C2 PFDA	100		50 - 150				08/18/21 12:42	08/20/21 04:32	1
13C2 PFUnA	112		50 - 150				08/18/21 12:42	08/20/21 04:32	1
13C2 PFDoA	107		50 - 150				08/18/21 12:42	08/20/21 04:32	1
13C2 PFTeDA	118		50 - 150				08/18/21 12:42	08/20/21 04:32	1
13C3 PFBS	118		50 - 150				08/18/21 12:42	08/20/21 04:32	1
1802 PFHxS	94		50 - 150				08/18/21 12:42	08/20/21 04:32	1
13C4 PFOS	74		50 - 150				08/18/21 12:42	08/20/21 04:32	1
d3-NMeFOSAA	100		50 - 150				08/18/21 12:42	08/20/21 04:32	1
d5-NEtFOSAA	118		50 - 150				08/18/21 12:42	08/20/21 04:32	1
13C3 HFPO-DA	98		50 ₋ 150				08/18/21 12:42	08/20/21 04:32	1

Method. Li A 337 (MC	d) - I I Ao Ioi Qolli 3.3, Iable D-13 -	
Analyte	Result Qualifier	RL

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	600		97	28	ng/L		08/18/21 12:42	08/26/21 01:03	50
Perfluorooctanoic acid (PFOA)	1500		97	41	ng/L		08/18/21 12:42	08/26/21 01:03	50
Perfluorohexanesulfonic acid (PFHxS)	1600		97	28	ng/L		08/18/21 12:42	08/26/21 01:03	50
Perfluorooctanesulfonic acid (PFOS)	4100	В	97	26	ng/L		08/18/21 12:42	08/26/21 01:03	50
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	83		50 - 150				08/18/21 12:42	08/26/21 01:03	50
13C4 PFOA	101		50 - 150				08/18/21 12:42	08/26/21 01:03	50
1802 PFHxS	113		50 - 150				08/18/21 12:42	08/26/21 01:03	50
13C4 PFOS	107		50 - 150				08/18/21 12:42	08/26/21 01:03	50

Eurofins TestAmerica, Sacramento

Client: Shannon & Wilson, Inc Job ID: 320-77653-1 Project/Site: AKN PFAS

Client Sample ID: 21AKN-SW-05

Date Received: 08/17/21 10:32

Hexafluoropropylene Oxide Dimer

11-Chloroeicosafluoro-3-oxaundecan

4,8-Dioxa-3H-perfluorononanoic acid

Acid (HFPO-DA)

e-1-sulfonic acid

Lab Sample ID: 320-77653-6 Date Collected: 08/15/21 17:38

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	11		1.9	0.54	ng/L		08/18/21 12:42	08/20/21 04:42	1
Perfluoroheptanoic acid (PFHpA)	5.0		1.9	0.23	ng/L		08/18/21 12:42	08/20/21 04:42	1
Perfluorooctanoic acid (PFOA)	30		1.9	0.79	ng/L		08/18/21 12:42	08/20/21 04:42	1
Perfluorononanoic acid (PFNA)	0.94	J	1.9	0.25	ng/L		08/18/21 12:42	08/20/21 04:42	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.29	ng/L		08/18/21 12:42	08/20/21 04:42	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.0	ng/L		08/18/21 12:42	08/20/21 04:42	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.51	ng/L		08/18/21 12:42	08/20/21 04:42	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.2	ng/L		08/18/21 12:42	08/20/21 04:42	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.68	ng/L		08/18/21 12:42	08/20/21 04:42	1
Perfluorobutanesulfonic acid (PFBS)	3.0		1.9	0.19	ng/L		08/18/21 12:42	08/20/21 04:42	1
Perfluorohexanesulfonic acid (PFHxS)	60		1.9	0.53	ng/L		08/18/21 12:42	08/20/21 04:42	1
Perfluorooctanesulfonic acid (PFOS)	110	В	1.9	0.50	ng/L		08/18/21 12:42	08/20/21 04:42	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.7	1.1	ng/L		08/18/21 12:42	08/20/21 04:42	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.7	1.2	ng/L		08/18/21 12:42	08/20/21 04:42	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.9	0.22	ng/L		08/18/21 12:42	08/20/21 04:42	1

(ADONA)	0/5	0 1/6'	1.114.	2	A t	D# 5
Isotope Dilution		Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	83		50 - 150	08/18/21 12:42	08/20/21 04:42	1
13C4 PFHpA	94		50 - 150	08/18/21 12:42	08/20/21 04:42	1
13C4 PFOA	103		50 - 150	08/18/21 12:42	08/20/21 04:42	1
13C5 PFNA	95		50 - 150	08/18/21 12:42	08/20/21 04:42	1
13C2 PFDA	95		50 - 150	08/18/21 12:42	08/20/21 04:42	1
13C2 PFUnA	93		50 - 150	08/18/21 12:42	08/20/21 04:42	1
13C2 PFDoA	90		50 - 150	08/18/21 12:42	08/20/21 04:42	1
13C2 PFTeDA	84		50 - 150	08/18/21 12:42	08/20/21 04:42	1
13C3 PFBS	85		50 - 150	08/18/21 12:42	08/20/21 04:42	1
1802 PFHxS	88		50 - 150	08/18/21 12:42	08/20/21 04:42	1
13C4 PFOS	95		50 - 150	08/18/21 12:42	08/20/21 04:42	1
d3-NMeFOSAA	85		50 - 150	08/18/21 12:42	08/20/21 04:42	1
d5-NEtFOSAA	96		50 - 150	08/18/21 12:42	08/20/21 04:42	1
13C3 HFPO-DA	82		50 - 150	08/18/21 12:42	08/20/21 04:42	1

3.7

1.9

1.9

ND

ND

1.4 ng/L

0.30 ng/L

0.37 ng/L

08/18/21 12:42 08/20/21 04:42

08/18/21 12:42 08/20/21 04:42

08/18/21 12:42 08/20/21 04:42

Client: Shannon & Wilson, Inc Job ID: 320-77653-1

Project/Site: AKN PFAS

13C3 HFPO-DA

Date Received: 08/17/21 10:32

Client Sample ID: 21AKN-SW-105

Lab Sample ID: 320-77653-7 Date Collected: 08/15/21 17:28

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	13		1.9	0.55	ng/L		08/18/21 12:42	08/20/21 04:51	1
Perfluoroheptanoic acid (PFHpA)	4.6		1.9	0.24	ng/L		08/18/21 12:42	08/20/21 04:51	1
Perfluorooctanoic acid (PFOA)	32		1.9	0.81	ng/L		08/18/21 12:42	08/20/21 04:51	1
Perfluorononanoic acid (PFNA)	1.0	J	1.9	0.26	ng/L		08/18/21 12:42	08/20/21 04:51	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.30	ng/L		08/18/21 12:42	08/20/21 04:51	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.0	ng/L		08/18/21 12:42	08/20/21 04:51	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.52	ng/L		08/18/21 12:42	08/20/21 04:51	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.2	ng/L		08/18/21 12:42	08/20/21 04:51	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.70	ng/L		08/18/21 12:42	08/20/21 04:51	1
Perfluorobutanesulfonic acid (PFBS)	3.2		1.9	0.19	ng/L		08/18/21 12:42	08/20/21 04:51	1
Perfluorohexanesulfonic acid (PFHxS)	58		1.9	0.54	ng/L		08/18/21 12:42	08/20/21 04:51	1
Perfluorooctanesulfonic acid (PFOS)	130	В	1.9		ng/L		08/18/21 12:42	08/20/21 04:51	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.8		ng/L			08/20/21 04:51	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.8		ng/L			08/20/21 04:51	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.9	0.23	ng/L		08/18/21 12:42	08/20/21 04:51	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.8		ng/L		08/18/21 12:42	08/20/21 04:51	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.9		ng/L		08/18/21 12:42	08/20/21 04:51	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.38	ng/L		08/18/21 12:42	08/20/21 04:51	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	75		50 - 150				08/18/21 12:42	08/20/21 04:51	1
13C4 PFHpA	79		50 - 150				08/18/21 12:42	08/20/21 04:51	1
13C4 PFOA	102		50 - 150				08/18/21 12:42	08/20/21 04:51	1
13C5 PFNA	83		50 - 150				08/18/21 12:42	08/20/21 04:51	1
13C2 PFDA	100		50 ₋ 150				08/18/21 12:42	08/20/21 04:51	1
13C2 PFUnA	91		50 - 150				08/18/21 12:42	08/20/21 04:51	1
13C2 PFDoA	93		50 - 150				08/18/21 12:42	08/20/21 04:51	1
13C2 PFTeDA	78		50 ₋ 150				08/18/21 12:42	08/20/21 04:51	1
13C3 PFBS	81		50 ₋ 150				08/18/21 12:42	08/20/21 04:51	1
1802 PFHxS	86		50 - 150					08/20/21 04:51	1
13C4 PFOS	87		50 - 150					08/20/21 04:51	1
d3-NMeFOSAA	86		50 ₋ 150					08/20/21 04:51	1
d5-NEtFOSAA	98		50 - 150					08/20/21 04:51	

08/18/21 12:42 08/20/21 04:51

50 - 150

8/30/2021

Client: Shannon & Wilson, Inc Job ID: 320-77653-1

Project/Site: AKN PFAS

Client Sample ID: 21AKN-SW-06

Lab Sample ID: 320-77653-8 Date Collected: 08/15/21 17:55 **Matrix: Water**

Date Received: 08/17/21 10:32

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perfluorohexanoic acid (PFHxA)	9.6		1.9	0.56	ng/L		08/18/21 12:42	08/20/21 05:18	
Perfluoroheptanoic acid (PFHpA)	4.4		1.9	0.24	ng/L		08/18/21 12:42	08/20/21 05:18	
Perfluorooctanoic acid (PFOA)	31		1.9	0.82	ng/L		08/18/21 12:42	08/20/21 05:18	
Perfluorononanoic acid (PFNA)	0.87	J	1.9	0.26	ng/L		08/18/21 12:42	08/20/21 05:18	
Perfluorodecanoic acid (PFDA)	ND		1.9	0.30	ng/L		08/18/21 12:42	08/20/21 05:18	
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.1	ng/L		08/18/21 12:42	08/20/21 05:18	
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.53	ng/L		08/18/21 12:42	08/20/21 05:18	
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.3	ng/L		08/18/21 12:42	08/20/21 05:18	
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.71	ng/L		08/18/21 12:42	08/20/21 05:18	
Perfluorobutanesulfonic acid (PFBS)	2.4		1.9	0.19	ng/L		08/18/21 12:42	08/20/21 05:18	
Perfluorohexanesulfonic acid (PFHxS)	50		1.9	0.55	ng/L		08/18/21 12:42	08/20/21 05:18	
Perfluorooctanesulfonic acid (PFOS)	110	В	1.9	0.52	ng/L		08/18/21 12:42	08/20/21 05:18	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.8	1.2	ng/L			08/20/21 05:18	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.8	1.3	ng/L		08/18/21 12:42	08/20/21 05:18	
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.9		ng/L		08/18/21 12:42	08/20/21 05:18	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.9	1.5	ng/L		08/18/21 12:42	08/20/21 05:18	
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.9	0.31	ng/L		08/18/21 12:42	08/20/21 05:18	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.39	ng/L		08/18/21 12:42	08/20/21 05:18	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C2 PFHxA	86		50 - 150				08/18/21 12:42	08/20/21 05:18	
13C4 PFHpA	80		50 - 150				08/18/21 12:42	08/20/21 05:18	
13C4 PFOA	108		50 - 150				08/18/21 12:42	08/20/21 05:18	
13C5 PFNA	80		50 - 150				08/18/21 12:42	08/20/21 05:18	
13C2 PFDA	99		50 ₋ 150				08/18/21 12:42	08/20/21 05:18	
13C2 PFUnA	92		50 - 150				08/18/21 12:42	08/20/21 05:18	
13C2 PFDoA	90		50 - 150				08/18/21 12:42	08/20/21 05:18	
13C2 PFTeDA	78		50 ₋ 150				08/18/21 12:42	08/20/21 05:18	
13C3 PFBS	84		50 ₋ 150				08/18/21 12:42	08/20/21 05:18	
1802 PFHxS	89		50 - 150					08/20/21 05:18	
13C4 PFOS	84		50 - 150					08/20/21 05:18	
d3-NMeFOSAA	83		50 - 150					08/20/21 05:18	
d5-NEtFOSAA	88		50 - 150					08/20/21 05:18	
13C3 HFPO-DA	73		50 - 150					08/20/21 05:18	

Client: Shannon & Wilson, Inc Job ID: 320-77653-1

Project/Site: AKN PFAS

Client Sample ID: 21AKN-SW-07

Lab Sample ID: 320-77653-9

Date Collected: 08/16/21 08:30 **Matrix: Water** Date Received: 08/17/21 10:32

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	84		1.9	0.55	ng/L		08/18/21 12:42	08/20/21 05:27	1
Perfluoroheptanoic acid (PFHpA)	39		1.9	0.24	ng/L		08/18/21 12:42	08/20/21 05:27	1
Perfluorooctanoic acid (PFOA)	170		1.9	0.81	ng/L		08/18/21 12:42	08/20/21 05:27	1
Perfluorononanoic acid (PFNA)	8.0		1.9	0.26	ng/L		08/18/21 12:42	08/20/21 05:27	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.30	ng/L		08/18/21 12:42	08/20/21 05:27	1
Perfluoroundecanoic acid	6.7		1.9	1.1	ng/L		08/18/21 12:42	08/20/21 05:27	1
(PFUnA)					Ü				
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.53	ng/L		08/18/21 12:42	08/20/21 05:27	1
Perfluorotridecanoic acid (PFTriA)	1.8	J	1.9	1.2	ng/L		08/18/21 12:42	08/20/21 05:27	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.70	ng/L		08/18/21 12:42	08/20/21 05:27	1
Perfluorobutanesulfonic acid (PFBS)	10		1.9	0.19	ng/L		08/18/21 12:42	08/20/21 05:27	1
Perfluorohexanesulfonic acid (PFHxS)	320		1.9	0.54	ng/L		08/18/21 12:42	08/20/21 05:27	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.8	1.1	ng/L		08/18/21 12:42	08/20/21 05:27	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.8	1.2	ng/L		08/18/21 12:42	08/20/21 05:27	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.9	0.23	ng/L		08/18/21 12:42	08/20/21 05:27	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.8	1.4	ng/L		08/18/21 12:42	08/20/21 05:27	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.9	0.31	ng/L		08/18/21 12:42	08/20/21 05:27	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.38	ng/L		08/18/21 12:42	08/20/21 05:27	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	54		50 - 150				08/18/21 12:42	08/20/21 05:27	1
13C4 PFHpA	64		50 - 150				08/18/21 12:42	08/20/21 05:27	1
13C4 PFOA	67		50 - 150				08/18/21 12:42	08/20/21 05:27	1
13C5 PFNA	52		50 - 150				08/18/21 12:42	08/20/21 05:27	1
13C2 PFDA	70		50 - 150				08/18/21 12:42	08/20/21 05:27	1
13C2 PFUnA	59		50 - 150				08/18/21 12:42	08/20/21 05:27	1
13C2 PFDoA	59		50 - 150				08/18/21 12:42	08/20/21 05:27	1
13C2 PFTeDA	59		50 ₋ 150				08/18/21 12:42	08/20/21 05:27	1
13C3 PFBS	65		50 ₋ 150				08/18/21 12:42	08/20/21 05:27	1
1802 PFHxS	58		50 ₋ 150				08/18/21 12:42	08/20/21 05:27	1
13C4 PFOS	50		50 - 150					08/20/21 05:27	1
d3-NMeFOSAA		*5-	50 - 150					08/20/21 05:27	1
d5-NEtFOSAA	59	.	50 - 150					08/20/21 05:27	
13C3 HFPO-DA	57		50 - 150					08/20/21 05:27	1
Method: EPA 537(Mod) - PFAS									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Perfluorooctanesulfonic acid (PFOS)	2400	В	38	10	ng/L		08/18/21 12:42	08/24/21 15:07	20
								A a l a al	D:// E
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Client: Shannon & Wilson, Inc
Project/Site: AKN PFAS

Job ID: 320-77653-1

Client Sample ID: 21AKN-SW-107 Lab Sample ID: 320-77653-10

Matrix: Water

Date Collected: 08/16/21 08:20 Date Received: 08/17/21 10:32

Isotope Dilution	%Recovery		Limits				Prepared	Analyzed	Dil Fa
Perfluorooctanesulfonic acid (PFOS)	2200	В	39	10	ng/L		08/18/21 12:42	08/26/21 00:45	20
Method: EPA 537(Mod) - PFAS Analyte		.3, Table B Qualifier	-15 - DL RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
							00.70.21.72.72	00/20/21 00:00	
13C3 HFPO-DA	74		50 - 150 50 - 150					08/20/21 05:36	
d5-NEtFOSAA	89		50 - 150 50 - 150					08/20/21 05:36	
d3-NMeFOSAA	85		50 - 150 50 - 150					08/20/21 05:36	
13C4 PFOS	75		50 - 150					08/20/21 05:36	
1802 PFHxS	87		50 - 150					08/20/21 05:36	
13C3 PFBS	83		50 ₋ 150					08/20/21 05:36	
13C2 PFTeDA	97		50 - 150					08/20/21 05:36	
13C2 PFDoA	74		50 ₋ 150					08/20/21 05:36	
13C2 PFUnA	86		50 ₋ 150				08/18/21 12:42	08/20/21 05:36	
13C2 PFDA	86		50 - 150				08/18/21 12:42	08/20/21 05:36	
13C5 PFNA	64		50 - 150				08/18/21 12:42	08/20/21 05:36	
13C4 PFOA	93		50 - 150				08/18/21 12:42	08/20/21 05:36	
13C4 PFHpA	85		50 - 150				08/18/21 12:42	08/20/21 05:36	
13C2 PFHxA	78		50 - 150				08/18/21 12:42	08/20/21 05:36	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.39	ng/L		08/18/21 12:42	08/20/21 05:36	
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.9	0.31	ng/L		08/18/21 12:42	08/20/21 05:36	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.9		ng/L			08/20/21 05:36	
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.9	0.23	-			08/20/21 05:36	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.8		ng/L			08/20/21 05:36	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.8		ng/L			08/20/21 05:36	
Perfluorohexanesulfonic acid (PFHxS)	290		1.9	0.55	-			08/20/21 05:36	
(PFBS)					-				
Perfluorotetradecanoic acid (PFTeA) Perfluorobutanesulfonic acid	טא 11		1.9 1.9	0.71 0.19	_			08/20/21 05:36 08/20/21 05:36	
Perfluorotridecanoic acid (PFTriA)	2.8 ND		1.9		ng/L			08/20/21 05:36	
Perfluorododecanoic acid (PFDoA)	0.60	J	1.9	0.53	-			08/20/21 05:36	
(PFUnA)	0.2		1.5		ng/L		00/10/21 12.42	00/20/21 00:00	
Perfluoroundecanoic acid	5.2		1.9		ng/L			08/20/21 05:36	
Perfluorodecanoic acid (PFDA)	ND		1.9	0.30	-			08/20/21 05:36	
Perfluorononanoic acid (PFNA)	8.4		1.9	0.26				08/20/21 05:36	
Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA)	180		1.9	0.82	Ū		08/18/21 12:42		
Perfluorohexanoic acid (PFHxA)	78 39		1.9	0.56 0.24	-			08/20/21 05:36	
	70		1.9	0.56	na/l		08/18/21 12:42	00/20/24 05:26	

Eurofins TestAmerica, Sacramento

Page 18 of 36

_

3

5

9

11 12

Client: Shannon & Wilson, Inc Job ID: 320-77653-1

Project/Site: AKN PFAS

13C4 PFOS

Client Sample ID: 21AKN-SW-08 Lab Sample ID: 320-77653-11

Date Collected: 08/16/21 09:00 **Matrix: Water** Date Received: 08/17/21 10:32

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	74		1.9	0.54	ng/L		08/18/21 12:42	08/20/21 05:46	1
Perfluoroheptanoic acid (PFHpA)	34		1.9	0.23	ng/L		08/18/21 12:42	08/20/21 05:46	1
Perfluorooctanoic acid (PFOA)	130		1.9	0.80	ng/L		08/18/21 12:42	08/20/21 05:46	1
Perfluorononanoic acid (PFNA)	7.5		1.9	0.25	ng/L		08/18/21 12:42	08/20/21 05:46	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.29	ng/L		08/18/21 12:42	08/20/21 05:46	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.0	ng/L		08/18/21 12:42	08/20/21 05:46	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.52			08/18/21 12:42	08/20/21 05:46	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9		ng/L		08/18/21 12:42	08/20/21 05:46	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9		ng/L		08/18/21 12:42	08/20/21 05:46	1
Perfluorobutanesulfonic acid (PFBS)	11		1.9	0.19	ng/L		08/18/21 12:42	08/20/21 05:46	1
Perfluorohexanesulfonic acid (PFHxS)	330		1.9		ng/L			08/20/21 05:46	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.7		ng/L			08/20/21 05:46	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.7		ng/L			08/20/21 05:46	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.9	0.23				08/20/21 05:46	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.8		ng/L			08/20/21 05:46	
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.9	0.30	-			08/20/21 05:46	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.38	ng/L		08/18/21 12:42	08/20/21 05:46	1
Isotope Dilution	%Recovery		Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	25	*5-	50 - 150				08/18/21 12:42	08/20/21 05:46	1
13C4 PFHpA	25	*5-	50 - 150				08/18/21 12:42	08/20/21 05:46	1
13C4 PFOA	30	*5-	50 - 150				08/18/21 12:42	08/20/21 05:46	1
13C5 PFNA	24	*5-	50 - 150				08/18/21 12:42	08/20/21 05:46	1
13C2 PFDA	27	*5-	50 - 150				08/18/21 12:42	08/20/21 05:46	1
13C2 PFUnA	28	*5-	50 - 150				08/18/21 12:42	08/20/21 05:46	1
13C2 PFDoA	28	*5-	50 - 150				08/18/21 12:42	08/20/21 05:46	1
13C2 PFTeDA	30	*5-	50 - 150				08/18/21 12:42	08/20/21 05:46	1
13C3 PFBS	27	*5-	50 - 150				08/18/21 12:42	08/20/21 05:46	1
1802 PFHxS	25	*5-	50 - 150				08/18/21 12:42	08/20/21 05:46	1
13C4 PFOS	24	*5-	50 - 150				08/18/21 12:42	08/20/21 05:46	1
d3-NMeFOSAA	26	*5-	50 - 150				08/18/21 12:42	08/20/21 05:46	1
d5-NEtFOSAA		*5-	50 - 150					08/20/21 05:46	1
13C3 HFPO-DA	22	*5-	50 - 150					08/20/21 05:46	1
Method: EPA 537(Mod) - PFAS						_			 -
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Perfluorooctanesulfonic acid (PFOS)	3200	В	38	10	ng/L		08/18/21 12:42	08/26/21 00:54	20
	3200 %Recovery		38 Limits	10	ng/L		08/18/21 12:42 Prepared	08/26/21 00:54 Analyzed	Dil Fac

08/18/21 12:42 08/26/21 00:54

50 - 150

27 *5-

Isotope Dilution Summary

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS Job ID: 320-77653-1

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Matrix: Water Prep Type: Total/NA

			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)			
		PFHxA	C4PFHA	PFOA	PFNA	PFDA	PFUnA	PFDoA	PFTD		
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-1		
320-77653-1	21AKN-SW-01	86	81	100	91	96	86	83	80		
320-77653-1 - RE	21AKN-SW-01										
320-77653-2	21AKN-SW-101	91	79	95	95	90	93	92	87		
320-77653-2 - RE	21AKN-SW-101										
320-77653-3	21AKN-SW-02	79	80	90	68	87	77	78	81		
320-77653-3 - DL	21AKN-SW-02										
320-77653-4	21AKN-SW-03	71	77	90	81	84	73	80	64		
320-77653-5	21AKN-SW-04	107	87	87	69	100	112	107	118		
320-77653-5 - DL	21AKN-SW-04	83		101							
320-77653-6	21AKN-SW-05	83	94	103	95	95	93	90	84		
320-77653-7	21AKN-SW-105	75	79	102	83	100	91	93	78		
320-77653-8	21AKN-SW-06	86	80	108	80	99	92	90	78		
320-77653-9	21AKN-SW-07	54	64	67	52	70	59	59	59		
320-77653-9 320-77653-9 - DL	21AKN-SW-07	J4	04	01	JZ	10	Jä	Jä	Je		
320-77653-9 - DL 320-77653-10	21AKN-SW-107	78	85	93	64	86	86	74	97		
				93							
320-77653-10 - DL	21AKN-SW-107	05 *5	OF *F	20.*5	04 *5	07 *5	00 *5	00 *5	20.*		
320-77653-11	21AKN-SW-08	25 *5-	25 *5-	30 *5-	24 *5-	27 *5-	28 *5-	28 *5-	30 *		
320-77653-11 - DL	21AKN-SW-08						<u></u>				
_CS 320-517458/2-A	Lab Control Sample	89	92	96	89	90	95	90	95		
_CS 320-519512/2-A	Lab Control Sample										
_CSD 320-517458/3-A	Lab Control Sample Dup	87	95	95	80	98	84	94	91		
_CSD 320-519512/3-A	Lab Control Sample Dup										
MB 320-517458/1-A	Method Blank	84	95	95	83	88	97	90	10		
MB 320-519512/1-A	Method Blank										
			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)			
		C3PFBS	PFHxS	PFOS	d3NMFOS	d5NEFOS	HFPODA				
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)				
320-77653-1	21AKN-SW-01	95	74	84	90	101	83				
320-77653-1 - RE	21AKN-SW-01			71							
320-77653-2	21AKN-SW-101	93	87	85	96	106	83				
320-77653-2 - RE	21AKN-SW-101			76							
320-77653-3	21AKN-SW-02	84	78	70	80	80					
320-77653-3 - DL	21AKN-SW-02	٠.	. •	72							
320-77653-4	21AKN-SW-03	82	79	75	75	91	73				
320-77653-5	21AKN-SW-04	118	94	74	100	118	98				
320-77653-5 - DL	21AKN-SW-04 21AKN-SW-04	110	113	107	100	110	30				
320-77653-6	21AKN-SW-05	85	88	95	85	96	82				
320-77653-7	21AKN-SW-105	81	86	93 87	86	98	75				
320-77653-7 320-77653-8											
	21AKN-SW-06	84	89	84	83	88	73				
320-77653-9	21AKN-SW-07	65	58	50	49 *5-	59	57				
320-77653-9 - DL	21AKN-SW-07			49 *5-							
320-77653-10	21AKN-SW-107	83	87	75	85	89	74				
320-77653-10 - DL	21AKN-SW-107			76							
320-77653-11	21AKN-SW-08	27 *5-	25 *5-	24 *5-	26 *5-	27 *5-	22 *5-				
320-77653-11 - DL	21AKN-SW-08			27 *5-							
_CS 320-517458/2-A	Lab Control Sample	106	91	91	85	98	89				
_CS 320-519512/2-A	Lab Control Sample			75							
_CSD 320-517458/3-A	Lab Control Sample Dup	91	91	83	78	90	84				
LCSD 320-519512/3-A	Lab Control Sample Dup			76							

Eurofins TestAmerica, Sacramento

Page 20 of 36

2

3

5

7

9

11

Isotope Dilution Summary

Client: Shannon & Wilson, Inc Job ID: 320-77653-1 Project/Site: AKN PFAS

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Matrix: Water Prep Type: Total/NA

			Percent Isotope Dilution Recovery (Acceptance Limits)								
Lab Sample ID Client Sample ID (50-150) (50-150) (50-150) (50-150) (50-150)			C3PFBS	PFHxS	PFOS	d3NMFOS	d5NEFOS	HFPODA			
	Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)			
MB 320-517458/1-A Method Blank 85 97 87 78 97 77	MB 320-517458/1-A	Method Blank	85	97	87	78	97	77			
MB 320-519512/1-A Method Blank 84	MB 320-519512/1-A	Method Blank			84						

Surrogate Legend

PFHxA = 13C2 PFHxA

C4PFHA = 13C4 PFHpA

PFOA = 13C4 PFOA

PFNA = 13C5 PFNA

PFDA = 13C2 PFDA

PFUnA = 13C2 PFUnA

PFDoA = 13C2 PFDoA

PFTDA = 13C2 PFTeDA

C3PFBS = 13C3 PFBS

PFHxS = 18O2 PFHxS

PFOS = 13C4 PFOS

d3NMFOS = d3-NMeFOSAA

d5NEFOS = d5-NEtFOSAA

HFPODA = 13C3 HFPO-DA

Eurofins TestAmerica, Sacramento

Page 21 of 36

Client: Shannon & Wilson, Inc Job ID: 320-77653-1 Project/Site: AKN PFAS

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Lab Sample ID: MB 320-517458/1-A

Matrix: Water

Analysis Batch: 518032

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 517458

7									• • • • • •
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.58	ng/L		08/18/21 12:42	08/20/21 03:29	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.25	ng/L		08/18/21 12:42	08/20/21 03:29	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.85	ng/L		08/18/21 12:42	08/20/21 03:29	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.27	ng/L		08/18/21 12:42	08/20/21 03:29	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.31	ng/L		08/18/21 12:42	08/20/21 03:29	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		08/18/21 12:42	08/20/21 03:29	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55	ng/L		08/18/21 12:42	08/20/21 03:29	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		08/18/21 12:42	08/20/21 03:29	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.73	ng/L		08/18/21 12:42	08/20/21 03:29	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20	ng/L		08/18/21 12:42	08/20/21 03:29	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.57	ng/L		08/18/21 12:42	08/20/21 03:29	1
Perfluorooctanesulfonic acid (PFOS)	3.40		2.0	0.54	ng/L		08/18/21 12:42	08/20/21 03:29	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		5.0	1.2	ng/L		08/18/21 12:42	08/20/21 03:29	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		5.0	1.3	ng/L		08/18/21 12:42	08/20/21 03:29	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		2.0	0.24	ng/L		08/18/21 12:42	08/20/21 03:29	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		4.0	1.5	ng/L		08/18/21 12:42	08/20/21 03:29	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		2.0	0.32	ng/L		08/18/21 12:42	08/20/21 03:29	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.40	ng/L		08/18/21 12:42	08/20/21 03:29	1
	MR	MR							

MB	MD
IVID	IVID

	IVID IVID				
Isotope Dilution	%Recovery Quali	fier Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	84	50 - 150	08/18/21 12:42	08/20/21 03:29	1
13C4 PFHpA	95	50 - 150	08/18/21 12:42	08/20/21 03:29	1
13C4 PFOA	95	50 - 150	08/18/21 12:42	08/20/21 03:29	1
13C5 PFNA	83	50 - 150	08/18/21 12:42	08/20/21 03:29	1
13C2 PFDA	88	50 - 150	08/18/21 12:42	08/20/21 03:29	1
13C2 PFUnA	97	50 - 150	08/18/21 12:42	08/20/21 03:29	1
13C2 PFDoA	90	50 - 150	08/18/21 12:42	08/20/21 03:29	1
13C2 PFTeDA	101	50 - 150	08/18/21 12:42	08/20/21 03:29	1
13C3 PFBS	85	50 - 150	08/18/21 12:42	08/20/21 03:29	1
18O2 PFHxS	97	50 - 150	08/18/21 12:42	08/20/21 03:29	1
13C4 PFOS	87	50 - 150	08/18/21 12:42	08/20/21 03:29	1
d3-NMeFOSAA	78	50 - 150	08/18/21 12:42	08/20/21 03:29	1
d5-NEtFOSAA	97	50 - 150	08/18/21 12:42	08/20/21 03:29	1
13C3 HFPO-DA	77	50 - 150	08/18/21 12:42	08/20/21 03:29	1

Lab Sample ID: LCS 320-517458/2-A

Matrix: Water

Analysis Batch: 518032

Client Sample ID:	Lab	Control Sample
	Prep	Type: Total/NA

Prep Batch: 517458

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorohexanoic acid (PFHxA)	40.0	41.5		ng/L		104	72 - 129	
Perfluoroheptanoic acid (PFHpA)	40.0	48.2		ng/L		120	72 - 130	
Perfluorooctanoic acid (PFOA)	40.0	41.9		ng/L		105	71 - 133	
Perfluorononanoic acid (PFNA)	40.0	46.6		ng/L		117	69 - 130	

Eurofins TestAmerica, Sacramento

Page 22 of 36

Client: Shannon & Wilson, Inc
Project/Site: AKN PFAS

Job ID: 320-77653-1

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCS 320-517458/2-A

Matrix: Water

Analysis Batch: 518032

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 517458

Analysis Baton, 010002	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Perfluorodecanoic acid (PFDA)	40.0	43.3		ng/L		108	71 - 129
Perfluoroundecanoic acid	40.0	40.5		ng/L		101	69 - 133
(PFUnA)				•			
Perfluorododecanoic acid	40.0	42.8		ng/L		107	72 - 134
(PFDoA)							
Perfluorotridecanoic acid	40.0	43.4		ng/L		108	65 - 144
(PFTriA)							
Perfluorotetradecanoic acid	40.0	40.2		ng/L		101	71 - 132
(PFTeA)							
Perfluorobutanesulfonic acid	35.4	30.0		ng/L		85	72 - 130
(PFBS)							
Perfluorohexanesulfonic acid	36.4	41.8		ng/L		115	68 - 131
(PFHxS)							
Perfluorooctanesulfonic acid	37.1	40.6		ng/L		109	65 - 140
(PFOS)							
N-methylperfluorooctanesulfona	40.0	45.5		ng/L		114	65 - 136
midoacetic acid (NMeFOSAA)							
N-ethylperfluorooctanesulfonami	40.0	39.7		ng/L		99	61 - 135
doacetic acid (NEtFOSAA)							
9-Chlorohexadecafluoro-3-oxan	37.3	38.4		ng/L		103	77 - 137
onane-1-sulfonic acid							
Hexafluoropropylene Oxide	40.0	44.7		ng/L		112	72 - 132
Dimer Acid (HFPO-DA)	07.7	00.4				404	70 400
11-Chloroeicosafluoro-3-oxaund	37.7	38.1		ng/L		101	76 - 136
ecane-1-sulfonic acid	07.7	45.0				400	04 444
4,8-Dioxa-3H-perfluorononanoic	37.7	45.9		ng/L		122	81 - 141
acid (ADONA)							

LCS LCS

	LUS	LUJ	
Isotope Dilution	%Recovery	Qualifier	Limits
13C2 PFHxA	89		50 - 150
13C4 PFHpA	92		50 - 150
13C4 PFOA	96		50 - 150
13C5 PFNA	89		50 - 150
13C2 PFDA	90		50 - 150
13C2 PFUnA	95		50 - 150
13C2 PFDoA	90		50 - 150
13C2 PFTeDA	95		50 - 150
13C3 PFBS	106		50 - 150
1802 PFHxS	91		50 - 150
13C4 PFOS	91		50 - 150
d3-NMeFOSAA	85		50 - 150
d5-NEtFOSAA	98		50 - 150
13C3 HFPO-DA	89		50 - 150

Lab Sample ID: LCSD 320-517458/3-A Client Sample ID: Lab Control Sample Dup

Analysis Batch: 518032

Matrix: Water

Analysis Batch: 518032							7458			
	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Perfluorohexanoic acid (PFHxA)	40.0	40.7		ng/L		102	72 - 129	2	30	
Perfluoroheptanoic acid (PFHpA)	40.0	40.2		ng/L		100	72 - 130	18	30	
Perfluorooctanoic acid (PFOA)	40.0	46.4		ng/L		116	71 - 133	10	30	

Eurofins TestAmerica, Sacramento

Page 23 of 36

9

3

4

6

8

10

12

10

11

1 4

8/30/2021

Prep Type: Total/NA

Client: Shannon & Wilson, Inc
Project/Site: AKN PFAS

Job ID: 320-77653-1

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCSD 320-517458/3-A Client Sample ID: Lab Control

Matrix: Water

Analysis Batch: 518032

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 517458

analysis Baton, orotoz							i icp Baton. o		11400
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorononanoic acid (PFNA)	40.0	46.1		ng/L		115	69 - 130	1	30
Perfluorodecanoic acid (PFDA)	40.0	41.1		ng/L		103	71 - 129	5	30
Perfluoroundecanoic acid (PFUnA)	40.0	45.7		ng/L		114	69 - 133	12	30
Perfluorododecanoic acid (PFDoA)	40.0	42.0		ng/L		105	72 - 134	2	30
Perfluorotridecanoic acid (PFTriA)	40.0	39.2		ng/L		98	65 - 144	10	30
Perfluorotetradecanoic acid (PFTeA)	40.0	40.3		ng/L		101	71 - 132	0	30
Perfluorobutanesulfonic acid (PFBS)	35.4	35.0		ng/L		99	72 - 130	15	30
Perfluorohexanesulfonic acid (PFHxS)	36.4	38.4		ng/L		105	68 - 131	8	30
Perfluorooctanesulfonic acid (PFOS)	37.1	39.5		ng/L		106	65 - 140	3	30
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	40.0	45.0		ng/L		112	65 - 136	1	30
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	40.0	43.0		ng/L		107	61 - 135	8	30
9-Chlorohexadecafluoro-3-oxan onane-1-sulfonic acid	37.3	39.7		ng/L		106	77 - 137	3	30
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	40.0	44.0		ng/L		110	72 - 132	2	30
11-Chloroeicosafluoro-3-oxaund ecane-1-sulfonic acid	37.7	42.0		ng/L		111	76 - 136	10	30
4,8-Dioxa-3H-perfluorononanoic	37.7	45.7		ng/L		121	81 - 141	0	30

LCSD LCSD

%Recovery Qualifier 87 95 95	Limits 50 - 150 50 - 150 50 - 150
95 95	50 - 150
95	
	50 - 150
00	
δU	50 - 150
98	50 - 150
84	50 - 150
94	50 - 150
91	50 - 150
91	50 - 150
91	50 - 150
83	50 - 150
78	50 - 150
90	50 - 150
84	50 ₋ 150
	84 94 91 91 91 83 78 90

Lab Sample ID: MB 320-519512/1-A

Matrix: Water

acid (ADONA)

Analysis Batch: 520224

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 519512

Prep Batch: 519512

AnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FacePerfluorooctanesulfonic acid (PFOS)ND2.00.54ng/L08/25/21 04:5108/27/21 01:01

Eurofins TestAmerica, Sacramento

Page 24 of 36

3

4

0

10

12

13

14

13

8/30/2021

QC Sample Results

Client: Shannon & Wilson, Inc Job ID: 320-77653-1 Project/Site: AKN PFAS

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

76

13C4 PFOS

	MB	MB				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C4 PFOS	84		50 - 150	08/25/21 04:51	08/27/21 01:01	1

Lab Sample ID: LCS 320-519512/2-A		Client Sample ID: Lab Control Sample
Matrix: Water		Prep Type: Total/NA
Analysis Batch: 520224		Prep Batch: 519512
	 	0/ 5

•		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorooctanesulfonic acid (PFOS)		37.1	39.5		ng/L		107	65 - 140	
	LCS LCS								

Isotope Dilution	%Recovery Qualifier	Limits	
13C4 PFOS	75	50 - 150	
Lab Sample ID: LCSI	D 320-519512/3-A		Client Sample ID: Lab Control Sample D
Matrix: Water			Prep Type: Total

50 - 150

Analysis Batch: 520224							Prep Ba	atch: 5'	19512
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorooctanesulfonic acid	37.1	36.9		ng/L		100	65 - 140	7	30

Allalyte		Auueu	Result	Qualifier	UIIIL	U	MEC	Lilling	KFD	LIIIII
Perfluorooctanesulfonic acid		37.1	36.9		ng/L		100	65 - 140	7	30
(PFOS)										
	LCSD LCSD									
Isotope Dilution	%Recovery Qualifier	Limits								

Client: Shannon & Wilson, Inc
Project/Site: AKN PFAS

Job ID: 320-77653-1

LCMS

Prep Batch: 517458

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-77653-1	21AKN-SW-01	Total/NA	Water	3535	
320-77653-2	21AKN-SW-101	Total/NA	Water	3535	
320-77653-3 - DL	21AKN-SW-02	Total/NA	Water	3535	
320-77653-3	21AKN-SW-02	Total/NA	Water	3535	
320-77653-4	21AKN-SW-03	Total/NA	Water	3535	
320-77653-5	21AKN-SW-04	Total/NA	Water	3535	
320-77653-5 - DL	21AKN-SW-04	Total/NA	Water	3535	
320-77653-6	21AKN-SW-05	Total/NA	Water	3535	
320-77653-7	21AKN-SW-105	Total/NA	Water	3535	
320-77653-8	21AKN-SW-06	Total/NA	Water	3535	
320-77653-9 - DL	21AKN-SW-07	Total/NA	Water	3535	
320-77653-9	21AKN-SW-07	Total/NA	Water	3535	
320-77653-10	21AKN-SW-107	Total/NA	Water	3535	
320-77653-10 - DL	21AKN-SW-107	Total/NA	Water	3535	
320-77653-11 - DL	21AKN-SW-08	Total/NA	Water	3535	
320-77653-11	21AKN-SW-08	Total/NA	Water	3535	
MB 320-517458/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-517458/2-A	Lab Control Sample	Total/NA	Water	3535	
LCSD 320-517458/3-A	Lab Control Sample Dup	Total/NA	Water	3535	

Analysis Batch: 518032

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-77653-1	21AKN-SW-01	Total/NA	Water	EPA 537(Mod)	517458
320-77653-2	21AKN-SW-101	Total/NA	Water	EPA 537(Mod)	517458
320-77653-3	21AKN-SW-02	Total/NA	Water	EPA 537(Mod)	517458
320-77653-4	21AKN-SW-03	Total/NA	Water	EPA 537(Mod)	517458
320-77653-5	21AKN-SW-04	Total/NA	Water	EPA 537(Mod)	517458
320-77653-6	21AKN-SW-05	Total/NA	Water	EPA 537(Mod)	517458
320-77653-7	21AKN-SW-105	Total/NA	Water	EPA 537(Mod)	517458
320-77653-8	21AKN-SW-06	Total/NA	Water	EPA 537(Mod)	517458
320-77653-9	21AKN-SW-07	Total/NA	Water	EPA 537(Mod)	517458
320-77653-10	21AKN-SW-107	Total/NA	Water	EPA 537(Mod)	517458
320-77653-11	21AKN-SW-08	Total/NA	Water	EPA 537(Mod)	517458
MB 320-517458/1-A	Method Blank	Total/NA	Water	EPA 537(Mod)	517458
LCS 320-517458/2-A	Lab Control Sample	Total/NA	Water	EPA 537(Mod)	517458
LCSD 320-517458/3-A	Lab Control Sample Dup	Total/NA	Water	EPA 537(Mod)	517458

Analysis Batch: 519284

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-77653-3 - DL	21AKN-SW-02	Total/NA	Water	EPA 537(Mod)	517458
320-77653-9 - DL	21AKN-SW-07	Total/NA	Water	EPA 537(Mod)	517458

Prep Batch: 519512

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-77653-1 - RE	21AKN-SW-01	Total/NA	Water	3535	
320-77653-2 - RE	21AKN-SW-101	Total/NA	Water	3535	
MB 320-519512/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-519512/2-A	Lab Control Sample	Total/NA	Water	3535	
LCSD 320-519512/3-A	Lab Control Sample Dup	Total/NA	Water	3535	

Eurofins TestAmerica, Sacramento

Page 26 of 36

-

3

4

6

8

9

44

. .

15

8/30/2021

QC Association Summary

Client: Shannon & Wilson, Inc
Project/Site: AKN PFAS

Job ID: 320-77653-1

LCMS

Analysis Batch: 519850

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-77653-5 - DL	21AKN-SW-04	Total/NA	Water	EPA 537(Mod)	517458
320-77653-10 - DL	21AKN-SW-107	Total/NA	Water	EPA 537(Mod)	517458
320-77653-11 - DL	21AKN-SW-08	Total/NA	Water	EPA 537(Mod)	517458

Analysis Batch: 520224

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-77653-1 - RE	21AKN-SW-01	Total/NA	Water	EPA 537(Mod)	519512
320-77653-2 - RE	21AKN-SW-101	Total/NA	Water	EPA 537(Mod)	519512
MB 320-519512/1-A	Method Blank	Total/NA	Water	EPA 537(Mod)	519512
LCS 320-519512/2-A	Lab Control Sample	Total/NA	Water	EPA 537(Mod)	519512
LCSD 320-519512/3-A	Lab Control Sample Dup	Total/NA	Water	EPA 537(Mod)	519512

4

5

7

8

9

10

12

14

Job ID: 320-77653-1

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS

Client Sample ID: 21AKN-SW-01

Date Collected: 08/15/21 09:30 Date Received: 08/17/21 10:32 Lab Sample ID: 320-77653-1

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			258 mL	10.0 mL	517458	08/18/21 12:42	EH	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			518032	08/20/21 03:56	S1M	TAL SAC
Total/NA	Prep	3535	RE		256.4 mL	10.0 mL	519512	08/25/21 04:51	EG	TAL SAC
Total/NA	Analysis	EPA 537(Mod)	RE	1			520224	08/27/21 01:28	JRB	TAL SAC

Client Sample ID: 21AKN-SW-101

Date Collected: 08/15/21 09:20 Date Received: 08/17/21 10:32 Lab Sample ID: 320-77653-2

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			254.9 mL	10.0 mL	517458	08/18/21 12:42	EH	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			518032	08/20/21 04:05	S1M	TAL SAC
Total/NA Total/NA	Prep Analysis	3535 EPA 537(Mod)	RE RE	1	255.8 mL	10.0 mL	519512 520224	08/25/21 04:51 08/27/21 01:37		TAL SAC TAL SAC

Client Sample ID: 21AKN-SW-02

Date Collected: 08/15/21 10:12

Date Received: 08/17/21 10:32

Lab Sample ID: 320-77653-3 Matrix: Water

Lab Sample ID: 320-77653-4

Lab Sample ID: 320-77653-5

Matrix: Water

Matrix: Water

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Type Method Amount Amount Number or Analyzed Analyst Run **Factor** Lab Total/NA Prep 3535 263.4 mL 10.0 mL 517458 08/18/21 12:42 EH TAL SAC Total/NA Analysis EPA 537(Mod) 518032 08/20/21 04:14 S1M TAL SAC 1 Total/NA Prep 3535 DL 263.4 mL 10.0 mL 517458 08/18/21 12:42 EH TAL SAC Total/NA 20 519284 08/24/21 14:57 JRB TAL SAC Analysis EPA 537(Mod) DL

Client Sample ID: 21AKN-SW-03

Date Collected: 08/15/21 12:00

Date Received: 08/17/21 10:32

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			263 mL	10.0 mL	517458	08/18/21 12:42	EH	TAL SAC
Total/NA	Analysis	FPA 537(Mod)		1			518032	08/20/21 04:23	S1M	TAL SAC

Client Sample ID: 21AKN-SW-04

Date Collected: 08/15/21 16:21

Date Received: 08/17/21 10:32

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			258.7 mL	10.0 mL	517458	08/18/21 12:42	EH	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			518032	08/20/21 04:32	S1M	TAL SAC
Total/NA	Prep	3535	DL		258.7 mL	10.0 mL	517458	08/18/21 12:42	EH	TAL SAC
Total/NA	Analysis	EPA 537(Mod)	DL	50			519850	08/26/21 01:03	S1M	TAL SAC

Eurofins TestAmerica, Sacramento

Page 28 of 36

2

3

5

0

8

10

12

1/

15

8/30/2021

Job ID: 320-77653-1

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS

Client Sample ID: 21AKN-SW-05

Date Collected: 08/15/21 17:38 Date Received: 08/17/21 10:32

Lab Sample ID: 320-77653-6

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			268.1 mL	10.0 mL	517458	08/18/21 12:42	EH	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			518032	08/20/21 04:42	S1M	TAL SAC

Client Sample ID: 21AKN-SW-105

Date Collected: 08/15/21 17:28

Date Received: 08/17/21 10:32

Lab Sample ID: 320-77653	3-7
--------------------------	-----

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			262.2 mL	10.0 mL	517458	08/18/21 12:42	EH	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			518032	08/20/21 04:51	S1M	TAL SAC

Client Sample ID: 21AKN-SW-06

Date Collected: 08/15/21 17:55

Date Received: 08/17/21 10:32

Lab Sample ID: 320-77653-8

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			258.4 mL	10.0 mL	517458	08/18/21 12:42	EH	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			518032	08/20/21 05:18	S1M	TAL SAC

Client Sample ID: 21AKN-SW-07

Date Collected: 08/16/21 08:30

Date Received: 08/17/21 10:32

Lab Sample ID: 320-77653-9

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			261.5 mL	10.0 mL	517458	08/18/21 12:42	EH	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			518032	08/20/21 05:27	S1M	TAL SAC
Total/NA	Prep	3535	DL		261.5 mL	10.0 mL	517458	08/18/21 12:42	EH	TAL SAC
Total/NA	Analysis	EPA 537(Mod)	DL	20			519284	08/24/21 15:07	JRB	TAL SAC

Date Received: 08/17/21 10:32

Iotal/NA	Analysis	EPA 537(Mod)	DL	20	519284 08/24/21 15:07 JRB IAL SAC
Client Sam	ple ID: 21A	KN-SW-107			Lab Sample ID: 320-77653-10
Date Collecte	ed: 08/16/21 0	8:20			Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			258.8 mL	10.0 mL	517458	08/18/21 12:42	EH	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			518032	08/20/21 05:36	S1M	TAL SAC
Total/NA	Prep	3535	DL		258.8 mL	10.0 mL	517458	08/18/21 12:42	EH	TAL SAC
Total/NA	Analysis	EPA 537(Mod)	DL	20			519850	08/26/21 00:45	S1M	TAL SAC

Client Sample ID: 21AKN-SW-08

Date Collected: 08/16/21 09:00

Date Received: 08/17/21 10:32

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			266.1 mL	10.0 mL	517458	08/18/21 12:42	EH	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			518032	08/20/21 05:46	S1M	TAL SAC

Eurofins TestAmerica, Sacramento

Lab Sample ID: 320-77653-11

Page 29 of 36

8/30/2021

Matrix: Water

Lab Chronicle

Client: Shannon & Wilson, Inc Job ID: 320-77653-1

Project/Site: AKN PFAS

Client Sample ID: 21AKN-SW-08 Lab Sample ID: 320-77653-11

Date Collected: 08/16/21 09:00 Matrix: Water Date Received: 08/17/21 10:32

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535	DL		266.1 mL	10.0 mL	517458	08/18/21 12:42	EH	TAL SAC
Total/NA	Analysis	EPA 537(Mod)	DL	20			519850	08/26/21 00:54	S1M	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

2

4

Ē

6

_

4.0

11

13

14

Accreditation/Certification Summary

Client: Shannon & Wilson, Inc Job ID: 320-77653-1

Project/Site: AKN PFAS

Laboratory: Eurofins TestAmerica, Sacramento

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	17-020	02-20-24

3

4

5

7

8

10

11

13

14

Method Summary

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS

Job ID: 320-77653-1

Method	Method Description	Protocol	Laboratory
EPA 537(Mod)	PFAS for QSM 5.3, Table B-15	EPA	TAL SAC
3535	Solid-Phase Extraction (SPE)	SW846	TAL SAC

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Sample Summary

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
320-77653-1	21AKN-SW-01	Water	08/15/21 09:30	08/17/21 10:32
320-77653-2	21AKN-SW-101	Water	08/15/21 09:20	08/17/21 10:32
320-77653-3	21AKN-SW-02	Water	08/15/21 10:12	08/17/21 10:32
320-77653-4	21AKN-SW-03	Water	08/15/21 12:00	08/17/21 10:32
320-77653-5	21AKN-SW-04	Water	08/15/21 16:21	08/17/21 10:32
320-77653-6	21AKN-SW-05	Water	08/15/21 17:38	08/17/21 10:32
320-77653-7	21AKN-SW-105	Water	08/15/21 17:28	08/17/21 10:32
320-77653-8	21AKN-SW-06	Water	08/15/21 17:55	08/17/21 10:32
320-77653-9	21AKN-SW-07	Water	08/16/21 08:30	08/17/21 10:32
320-77653-10	21AKN-SW-107	Water	08/16/21 08:20	08/17/21 10:32
320-77653-11	21AKN-SW-08	Water	08/16/21 09:00	08/17/21 10:32

Job ID: 320-77653-1

Client: Shannon & Wilson, Inc

Job Number: 320-77653-1

Login Number: 77653

List Source: Eurofins TestAmerica, Sacramento

List Number: 1 Creator: Her, David A

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	Seal
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Laboratory Data Review Checklist

Completed By:
Amber Masters
Title:
Environmental Scientist
Date:
September 7, 2021
Consultant Firm:
Shannon & Wilson, Inc.
Laboratory Name:
Eurofins / TestAmerica Laboratories, Inc. (TestAmerica)
Laboratory Report Number:
320-77653-1
Laboratory Report Date:
August 30, 2021
CS Site Name:
ADOT&PF King Salmon Airport Statewide PFAS
ADEC File Number:
2569.38.033
Hazard Identification Number:
26981

3	320-77653-1
Labo	oratory Report Date:
A	August 30, 2021
CS S	Site Name:
A	ADOT&PF King Salmon Airport Statewide PFAS
ľ	Note: Any N/A or No box checked must have an explanation in the comments box.
1. <u>I</u>	Laboratory
	a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?
	Yes \boxtimes No \square N/A \square Comments:
	The DEC certified TestAmerica of West Sacramento, CA for the analysis of per- and polyfluorinated alkyl substances (PFAS) on February 11, 2021 by LCMSMS compliant with QSM Version 5.3 Table B-15. These reported analytes were included in the DEC's Contaminated Sites Laboratory Approval 17-020
	b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
	Yes \square No \square N/A \boxtimes Comments:
	The requested analyses were conducted by TestAmerica of West Sacramento, CA.
2. (Chain of Custody (CoC)
	a. CoC information completed, signed, and dated (including released/received by)?
	Yes \boxtimes No \square N/A \square Comments:
	b. Correct analyses requested?
	$Yes \boxtimes No \square N/A \square$ Comments:
3. <u>I</u>	Laboratory Sample Receipt Documentation
	a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?
	$Yes \boxtimes No \square N/A \square$ Comments:
	b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?
	Yes \boxtimes No \square N/A \square Comments:

320-77653-1
Laboratory Report Date:
August 30, 2021
CS Site Name:
ADOT&PF King Salmon Airport Statewide PFAS
 c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)? Yes⊠ No□ N/A□ Comments:
The sample receipt form notes that the samples were received in good condition.
d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?
Yes□ No□ N/A⊠ Comments:
There were no discrepancies noted by the laboratory.
e. Data quality or usability affected?
Comments:
The data quality and/or usability was not affected; see above.
4. <u>Case Narrative</u>
a. Present and understandable?
Yes \boxtimes No \square N/A \square Comments:

	320-77653-1		
La	boratory Report Date:		
	August 30, 2021		
CS	Site Name:		
	ADOT&PF King Salmon Airport	Statewide PFAS	

b. Discrepancies, errors, or QC failures identified by the lab?

	—		
Yes⊠	Nall	N/A∟	Comments
1 65 2	110	11//	Comments

The method blank for preparation batch 320-517485 contained PFOS above half the reporting limit. Associated samples were not re-extracted and/or re-analyzed because results are greater than 10x the value found in the method blank.

The "I" qualifier means the transition mass ratio for the low-level continuing calibration verification (CCVL) associated with analytical batch 320-520224 was outside of the established ratio limit. The qualitative identification of the analyte has some degree of uncertainty, and the reported value may have some high bias. However, analyst judgment was used to positively identify the analyte. The transition mass ratios in the project samples were within established ratios and are not affected by the uncertainty in the CCVL sample.

Results for samples 21AKN-SW-02, 21AKN-SW-04, 21AKN-SW-07, 21AKN-SW-107, and 21AKN-SW-08 were reported at a dilution due to high concentration of the target analyte in the analysis of undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits.

The Isotope Dilution Analyte (IDA) recovery associated with the following sample is below the method recommended limit: 21AKN-SW-07 and 21AKN-SW-08. Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample. Refer to Section 6.d. for further assessment.

The samples 21AKN-SW-01, 21AKN-SW-101, 21AKN-SW-02, 21AKN-SW-03, 21AKN-SW-04, 21AKN-SW-05, 21AKN-SW-105, 21AKN-SW-06, 21AKN-SW-07, 21AKN-SW-107, and 21AKN-SW-08 in preparation batch 320-517458 were light yellow/orange in color with a thin layer of sediment at the bottom of the bottle prior to extraction

During the solid phase extraction process, the samples 21AKN-SW-03, 21AKN-SW-07, and 21AKN-SW-08 in preparation batch 320-517458 contained non-settable particulates which clogged the solid phase extraction column.

The samples 21AKN-SW-01 and 21AKN-SW-101 contained floating particulates in the sample bottle prior to extraction.

There was insufficient sample volume available to perform a matrix spike (MS) and MS duplicate (MSD) in conjunction with preparation batches 320-517458 and 320-519512.

320-77653-1
Laboratory Report Date:
August 30, 2021
CS Site Name:
ADOT&PF King Salmon Airport Statewide PFAS
c. Were all corrective actions documented?
Yes \boxtimes No \square N/A \square Comments:
The laboratory analyzed a laboratory control sample/laboratory control sample duplicate (LCS/LCSD) to assess laboratory accuracy and precision since there was insufficient volume for an MS/MSD. The data quality and usability were not affected.
d. What is the effect on data quality/usability according to the case narrative?
Comments:
The case narrative does not identify an effect on the data quality and/or usability.
5. <u>Samples Results</u>
a. Correct analyses performed/reported as requested on COC?
$Yes \boxtimes No \square N/A \square$ Comments:
h All applicable helding times met?
b. All applicable holding times met?
Yes⊠ No□ N/A□ Comments:
A11 1
c. All soils reported on a dry weight basis?
Yes□ No□ N/A⊠ Comments:
Soil samples were not submitted with this work order.
d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?
Yes \square No \boxtimes N/A \square Comments:
The reporting limit (RL) is greater than the applicable regulatory limit for PFOS and PFOA in sample 21AKN-SW-04. However, the sample was analyzed at a dilution because these analytes were detected at high concentrations greater than the applicable regulatory limit. The results are not affected.
e. Data quality or usability affected?
The data quality/usability were not affected: see above

320-77653-1
Laboratory Report Date:
August 30, 2021
CS Site Name:
ADOT&PF King Salmon Airport Statewide PFAS
ADOT&IT King Samion Airport Statewide FTAS
6. QC Samples
a. Method Blank
i. One method blank reported per matrix, analysis and 20 samples?
Yes⊠ No□ N/A□ Comments:
ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?
$Yes \square No \boxtimes N/A \square$ Comments:
PFOS was detected in the MB associated with preparation batch 320-517458.
iii. If above LOQ or project specified objectives, what samples are affected? Comments:
The PFOS for project samples 21AKN-SW-02, 21AKN-SW-03, 21AKN-SW-04, 21AKN-SW-05, 21AKN-SW-105, 21AKN-SW-06, 21AKN-SW-07, 21AKN-SW-107, 21AKN-SW-08 are associated with the preparation batch 320-517458 and had PFOS results greater than ten times the result in the method blanks; therefore, results are not considered affected.
Samples 21AKN-SW-01 and 21AKN-SW-101 were re-extracted for PFOS. The associated method blank did not have detections for PFOS and are not affected.
iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
$Yes \square No \square N/A \boxtimes Comments:$
v. Data quality or usability affected? Comments:
The data quality and/or usability was not affected; see above.
b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 i. Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
$Yes \boxtimes No \square N/A \square$ Comments:

320-77653-1
Laboratory Report Date:
August 30, 2021
CS Site Name:
ADOT&PF King Salmon Airport Statewide PFAS
ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
$Yes \square No \square N/A \boxtimes Comments:$
Metals and/or inorganics were not analyzed as part of this work order.
 iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
Yes \boxtimes No \square N/A \square Comments:
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
Yes \boxtimes No \square N/A \square Comments:
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
N/A; analytical accuracy and precision were demonstrated to be within acceptable limits.
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
Yes□ No□ N/A⊠ Comments:
Qualification of the data was not required; see above.
vii. Data quality or usability affected? (Use comment box to explain.) Comments:
The data quality and/or usability was not affected; see above.

320-77653-1
Laboratory Report Date:
August 30, 2021
CS Site Name:
ADOT&PF King Salmon Airport Statewide PFAS
 c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project i. Organics – One MS/MSD reported per matrix, analysis and 20 samples?
Yes No N/A Comments: Insufficient sample volume was available to perform a MS/MSD with the associated preparatory batches. However, the laboratory analyzed an LCS and LCSD to assess laboratory accuracy and precision.
ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples?Yes□ No□ N/A⊠ Comments:
Metals and/or inorganics were not analyzed as part of this work order.
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?
Yes \square No \square N/A \boxtimes Comments:
MS and MSD samples were not analyzed for this work order.
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.
$Yes \square No \square N/A \boxtimes Comments:$
MS and MSD samples were not analyzed for this work order.
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
N/A; MS and MSD samples were not analyzed for this work order.
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
Yes□ No□ N/A⊠ Comments: MS and MSD samples were not analyzed for this work order.

320-77653-1
Laboratory Report Date:
August 30, 2021
CS Site Name:
ADOT&PF King Salmon Airport Statewide PFAS
vii. Data quality or usability affected? (Use comment box to explain.) Comments:
The data quality and/or usability was not affected; see above.
d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only
i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?
Yes⊠ No□ N/A□ Comments:
 ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages) Yes□ No⊠ N/A□ Comments:
The IDA percent recoveries for sample 21AKN-SW-07 were below acceptance criteria for d3-NMeFOSAA and 13C4 PFOS. However, PFOS and associated IDA 13C4 PFOS were analyzed at a dilution due to high concentrations of the target analyte. The PFOS results are not affected by the IDA recovery failure for this analyte.
The IDA percent recoveries for sample 21AKN-SW-08 were below acceptance criteria for all IDAs. However, PFOS and associated IDA 13C4 PFOS were analyzed at a dilution due to high concentrations of the target analyte. The PFOS results are not affected by the IDA recovery failure for this analyte.
iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?
Yes⊠ No□ N/A□ Comments:
The NMeFOSAA result for sample 21AKN-SW-07 is considered estimated, no direction of bias, and is flagged 'J*' in the analytical summary tables.
All analytical results, except PFOS, for sample 21AKN-SW-08 are considered estimated, no direction of bias, and are flagged 'J*' in the analytical summary tables.
iv. Data quality or usability affected? Comments:
The data quality and/or usability was not affected; see above.

320-77653-1
Laboratory Report Date:
August 30, 2021
CS Site Name:
ADOT&PF King Salmon Airport Statewide PFAS
e. Trip Blanks
 i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)
Yes \square No \square N/A \boxtimes Comments:
PFAS are not volatile compounds. A trip blank is not required for the requested analysis.
ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)
$Yes \square No \square N/A \boxtimes Comments:$
A trip blank is not required for the requested analysis.
iii. All results less than LOQ and project specified objectives?
Yes \square No \square N/A \boxtimes Comments:
A trip blank is not required for the requested analysis.
iv. If above LOQ or project specified objectives, what samples are affected? Comments:
N/A; a trip blank is not required for the requested analysis.
v. Data quality or usability affected? Comments:
The data quality and/or usability was not affected; see above.
f. Field Duplicate
i. One field duplicate submitted per matrix, analysis and 10 project samples?
Yes \boxtimes No \square N/A \square Comments:
ii. Submitted blind to lab?
Yes⊠ No□ N/A□ Comments:
Field duplicate pairs 21AKN-SW-01/21AKN-SW-101, 21AKN-SW-05/21AKN-SW-105, and 21AKN-SW-07/21AKN-SW-107 were submitted with this work order.

320-77653-1	
Laboratory Report Date:	
August 30, 2021	
CS Site Name:	
ADOT&PF King Salmon Airpor	t Statewide PFAS
7. Other Data Flags/Qualifiers (AC	OE, AFCEE, Lab Specific, etc.)
a. Defined and appropriate?	
Yes□ No□ N/A⊠	Comments:

There were no additional flags/qualifiers required for this work order.

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-77655-1 Client Project/Site: AKN PFAS

For:

Shannon & Wilson, Inc 2355 Hill Rd. Fairbanks, Alaska 99709-5244

Attn: Marcy Nadel

Jamil Oltim

Authorized for release by: 8/30/2021 11:11:38 AM

David Alltucker, Project Manager I (916)374-4383

David.Alltucker@Eurofinset.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

5

6

Q

9

1 1

12

13

14

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS Laboratory Job ID: 320-77655-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	6
Client Sample Results	11
Isotope Dilution Summary	43
QC Sample Results	46
QC Association Summary	55
Lab Chronicle	58
Certification Summary	68
Method Summary	69
Sample Summary	70
Chain of Custody	71
Receipt Checklists	74

A

5

7

_

10

12

1

Definitions/Glossary

Client: Shannon & Wilson, Inc Job ID: 320-77655-1

Project/Site: AKN PFAS

Qualifiers

		N/A	0
ш	U	V	J

Qualifier	Qualifier Description
*5-	Isotope dilution analyte is outside acceptance limits, low biased.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
F1	MS and/or MSD recovery exceeds control limits.
G	The reported quantitation limit has been raised due to an exhibited elevated noise or matrix interference
1	Value is EMPC (estimated maximum possible concentration).
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)

MQL NC

MPN

Not Calculated ND

NEG

Not Detected at the reporting limit (or MDL or EDL if shown) Negative / Absent

POS

Positive / Present

Most Probable Number

Method Quantitation Limit

PQL Practical Quantitation Limit

PRES Presumptive

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) TEQ

TNTC Too Numerous To Count

Case Narrative

Client: Shannon & Wilson, Inc Job ID: 320-77655-1
Project/Site: AKN PFAS

Job ID: 320-77655-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Job Narrative 320-77655-1

Receipt

The samples were received on 8/17/2021 10:32 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.5° C.

Receipt Exceptions

The container label for the following sample(s) did not match the information listed on the Chain-of-Custody (COC): Sample 21AKN-SS-04 (320-77655-11). container sample time lists 9:17, while COC lists 9:19. Sample time was logged in according to COC.

LCMS

Method EPA 537(Mod): The "I" qualifier means the transition mass ratio for the indicated analyte was outside of the established ratio limits. The qualitative identification of the analyte has some degree of uncertainty, and the reported value may have some high bias. However, analyst judgment was used to positively identify the analyte.

Method EPA 537(Mod): The low level continuing calibration verification (CCVL) associated with batch 320-518606 recovered above the upper control limit for Perfluorodecanoic acid (PFDA). The samples associated with this CCV were less than the reporting limit (RL) for the affected analyte. Additionally, the bracketing continuing calibration verifications (CCV) were within control limits for the analyte. There is no impact on the data; therefore the data have been reported.

Method EPA 537(Mod): The following samples exhibited matrix interferences for Perfluorooctanesulfonic acid (PFOS) causing elevation of the reporting limit (RL): 21AKN-SB-01 (0'-1') (320-77655-3) and 21AKN-SS-03 (320-77655-10). The RL for the affected analyte has been raised to be equal to the matrix interferences, and a "G" qualifier applied.

Method EPA 537(Mod): The following sample exhibited matrix interferences for Perfluorooctanesulfonic acid (PFOS) causing elevation of the reporting limit (RL): 21AKN-SS-18 (320-77655-27) . The RL for the affected analyte has been raised to be equal to the matrix interferences, and a "G" qualifier applied.

Method EPA 537(Mod): The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 320-517585 and analytical batch 320-518192 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method EPA 537(Mod): Due to the high concentration of Perfluorooctanesulfonic acid (PFOS), the matrix spike / matrix spike duplicate (MS/MSD) for preparation batch 320-517585 and analytical batch 320-518606 could not be evaluated for accuracy and precision. The associated laboratory control sample (LCS) met acceptance criteria.

Method EPA 537(Mod): Results for sample 21AKN-SB-03 (0'-1') (320-77655-6) were reported from the analysis of a diluted extract due to high concentration of the target analyte in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits

Method EPA 537(Mod): Results for samples 21AKN-SS-11 (320-77655-19) were reported from the analysis of a diluted extract due to sample matrix of the target analyte in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits.

Method EPA 537(Mod): Results for sample 21AKN-SS-14 (320-77655-22) were reported from the analysis of a diluted extract due to high concentration of the target analyte in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits.

Method EPA 537(Mod): Results for samples 21AKN-SS-15 (320-77655-23), 21AKN-SS-20 (320-77655-29), (320-77655-A-29-B MS) and (320-77655-A-29-C MSD) were reported from the analysis of a diluted extract due to high concentration of the target analyte in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within

4

5

6

8

11

4.0

14

Case Narrative

Client: Shannon & Wilson, Inc
Project/Site: AKN PFAS

Job ID: 320-77655-1

Job ID: 320-77655-1 (Continued)

Laboratory: Eurofins TestAmerica, Sacramento (Continued)

acceptance limits.

Method EPA 537(Mod): The Isotope Dilution Analyte (IDA) recovery associated with the following samples is below the method recommended limit: 21AKN-SB-03 (0'-1') (320-77655-6). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the samples.

Method EPA 537(Mod): The Isotope Dilution Analyte (IDA) recovery associated with the following samples is below the method recommended limit: 21AKN-SS-09 (320-77655-16), 21AKN-SS-11 (320-77655-19) and 21AKN-SS-12 (320-77655-20). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample(s).

Method EPA 537(Mod): The Isotope Dilution Analyte (IDA) recovery associated with the following samples is below the method recommended limit: 21AKN-SS-17 (320-77655-25), 21AKN-SS-117 (320-77655-26), 21AKN-SS-20 (320-77655-29), (320-77655-A-29-B MS) and (320-77655-A-29-C MSD). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the samples.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method SHAKE: The following samples were yellow after final volume/extraction: 21AKN-SS-13 (320-77655-21), 21AKN-SS-17 (320-77655-25), 21AKN-SS-117 (320-77655-26), 21AKN-SS-19 (320-77655-28), 21AKN-SS-20 (320-77655-29), (320-77655-A-29 MS) and (320-77655-A-29 MSD).

Method SHAKE: The following samples were yellow after extraction/final volume: 21AKN-SS-03 (320-77655-10), 21AKN-SS-11 (320-77655-19) and 21AKN-SS-12 (320-77655-20)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

9

1

5

7

0

1 N

11

12

1 A

Client: Shannon & Wilson, Inc
Project/Site: AKN PFAS

Job ID: 320-77655-1

Client Sample ID: 21AKN-SB-02 (0'-1')

Lab Sample ID: 320-77655-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanesulfonic acid (PFHxS)	0.050	J	0.20	0.029	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	0.35		0.20	0.043	ug/Kg	1	₩	EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-SB-02 (6'-7')

Lab Sample ID: 320-77655-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanesulfonic acid (PFHxS)	0.088	J	0.24	0.034	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	0.23	J	0.24	0.051	ug/Kg	1	₽	EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-SB-01 (0'-1')

ſ							
	Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
	Perfluorohexanesulfonic acid (PFHxS)	0.071 J	0.22	0.032 ug/Kg	1 ☆	EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-SB-01 (6.5'-7.5')

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Perfluorooctanesulfonic acid (PFOS)	0.091 J	0.23	0.050 ug/Kg	1 🌣 EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-SB-101 (6.5-7.5')

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanesulfonic acid (PFHxS)	0.032	J	0.22	0.032	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	0.11	J	0.22	0.047	ug/Kg	1	₩	EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-SB-03 (0'-1')

	,								
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	3.8		1.1	0.17	ug/Kg	5	₩	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.89	J	1.1	0.21	ug/Kg	5	₩	EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	1.9		1.1	0.29	ug/Kg	5	₽	EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	14		1.1	0.12	ug/Kg	5	₩	EPA 537(Mod)	Total/NA
Perfluorodecanoic acid (PFDA)	1.9		1.1	0.26	ug/Kg	5	₽	EPA 537(Mod)	Total/NA
Perfluoroundecanoic acid (PFUnA)	52		1.1	0.23	ug/Kg	5	₩	EPA 537(Mod)	Total/NA
Perfluorododecanoic acid (PFDoA)	0.38	J	1.1	0.16	ug/Kg	5	₩	EPA 537(Mod)	Total/NA
Perfluorotridecanoic acid (PFTriA)	4.3		1.1	0.11	ug/Kg	5	₽	EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.99	J	1.1	0.21	ug/Kg	5	₩	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	12		1.1	0.16	ug/Kg	5	₽	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS) - DL	340		11	2.4	ug/Kg	50	₩	EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-SB-03 (7.3'-7.8')

Analyte	Result C	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	1.6		0.24	0.037	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.43		0.24	0.045	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	1.2		0.24	0.063	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	2.5		0.24	0.026	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.28		0.24	0.045	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	7.5		0.24	0.034	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	17		0.24	0.051	ug/Kg	1	⊅	EPA 537(Mod)	Total/NA

This Detection Summary does not include radiochemical test results.

8/30/2021

Lab Sample ID: 320-77655-3

Lab Sample ID: 320-77655-4

Lab Sample ID: 320-77655-5

Lab Sample ID: 320-77655-6

Lab Sample ID: 320-77655-7

Job ID: 320-77655-1

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS

Client Sample ID: 21AKN-SS-01

Lab Sample ID: 320-77655-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	0.045	J	0.23	0.036	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	0.044	JI	0.23	0.025	ug/Kg	1	₽	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.059	J	0.23	0.033	ug/Kg	1	₽	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	0.16	JI	0.23	0.049	ug/Kg	1	₩	EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-SS-02

Lab Sample ID: 320-77655-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluoroheptanoic acid (PFHpA)	0.044	J	0.22	0.042	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	0.097	J	0.22	0.024	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	0.40	1	0.22	0.047	ug/Kg	1	₩	EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-SS-03

Lab Sample ID: 320-77655-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluoroundecanoic acid (PFUnA)	0.17	J	0.20	0.042	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorododecanoic acid (PFDoA)	0.071	J	0.20	0.030	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorotridecanoic acid (PFTriA)	0.18	J	0.20	0.021	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.14	JI	0.20	0.029	ug/Kg	1	₽	EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-SS-04

Lab Sample ID: 320-77655-11

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorooctanoic acid (PFOA)	0.17	J	0.20	0.054	ug/Kg		₩	EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	0.050	J	0.20	0.022	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.22		0.20	0.029	ug/Kg	1	₽	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	2.4		0.20	0.044	ug/Kg	1	⊅	EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-SS-05

Lab Sample ID: 320-77655-12

No Detections.

Client Sample ID: 21AKN-SS-06

Lab Sample ID: 320-77655-13

No Detections.

Client Sample ID: 21AKN-SS-07

Lab Sample ID: 320-77655-14

No Detections.

Client Sample ID: 21AKN-SS-08

Lab Sample ID: 320-77655-15

No Detections.

Client Sample ID: 21AKN-SS-09

Lab Sample ID: 320-77655-16

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluoroundecanoic acid (PFUnA)	0.17	J	0.22	0.045	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorododecanoic acid (PFDoA)	0.060	J	0.22	0.032	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorotridecanoic acid (PFTriA)	0.61		0.22	0.023	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorotetradecanoic acid (PFTeA)	0.046	J	0.22	0.040	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.10	J	0.22	0.031	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	1.4		0.22	0.046	ug/Kg	1	₽	EPA 537(Mod)	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Sacramento

8/30/2021

Page 7 of 74

Client: Shannon & Wilson, Inc
Project/Site: AKN PFAS

Job ID: 320-77655-1

Client Sample ID: 21AKN-SS-109

Lab Sample ID: 320-77655-17

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluoroundecanoic acid (PFUnA)	0.14	J	0.19	0.041	ug/Kg	1	≎	EPA 537(Mod)	Total/NA
Perfluorododecanoic acid (PFDoA)	0.061	J	0.19	0.029	ug/Kg	1	☼	EPA 537(Mod)	Total/NA
Perfluorotridecanoic acid (PFTriA)	0.51		0.19	0.020	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.11	J	0.19	0.028	ug/Kg	1	☼	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	1.0		0.19	0.042	ug/Kg	1	₩	EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-SS-10

Lab Sample ID: 320)-77655-18
--------------------	------------

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	0.23	0.22	0.034	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.046 J	0.22	0.042	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	0.030 J	0.22	0.024	ug/Kg	1	₽	EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-SS-11

Lab Sample ID: 320-77655-19

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorooctanoic acid (PFOA)	0.62	J	2.1	0.56	ug/Kg	10	₩	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	1.9	JI	2.1	0.46	ug/Kg	10	₩	EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-SS-12

Lab Sample ID: 320-77655-20

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	0.18	J	0.21	0.032	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.061	J	0.21	0.040	ug/Kg	1	₽	EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	2.4		0.21	0.055	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	0.054	JI	0.21	0.023	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluoroundecanoic acid (PFUnA)	0.11	J	0.21	0.044	ug/Kg	1	₽	EPA 537(Mod)	Total/NA
Perfluorotridecanoic acid (PFTriA)	0.054	J	0.21	0.022	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.6		0.21	0.030	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	3.3		0.21	0.045	ug/Kg	1	₩	EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-SS-13

Lab Sample ID: 320-77655-21

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	0.81		0.20	0.031	ug/Kg	1	⊅	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.35		0.20	0.038	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	13		0.20	0.053	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	0.039	J	0.20	0.022	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorododecanoic acid (PFDoA)	0.051	J	0.20	0.030	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.055	J	0.20	0.038	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	5.4		0.20	0.029	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	7.3		0.20	0.043	ug/Kg	1	₩	EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-SS-14

Lab Sample ID: 320-77655-22

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorooctanoic acid (PFOA)	0.060	J	0.23	0.060	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.10	J	0.23	0.033	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	2.0		0.23	0.049	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	0.56		0.23	0.026	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) - DL	23		1.1	0.27	ug/Kg	5	☼	EPA 537(Mod)	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Sacramento

8/30/2021

Page 8 of 74

2

3

_

8

11

12

14

Client: Shannon & Wilson, Inc
Project/Site: AKN PFAS

Job ID: 320-77655-1

Client Sample ID: 21AKN-SS-15

Lab Sample ID: 320-77655-23

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	0.49	J	0.55	0.085	ug/Kg		₩	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.40	J	0.55	0.10	ug/Kg	1	₽	EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	5.8		0.55	0.15	ug/Kg	1	₽	EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	1.0		0.55	0.061	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorodecanoic acid (PFDA)	0.18	J	0.55	0.13	ug/Kg	1	₽	EPA 537(Mod)	Total/NA
Perfluoroundecanoic acid (PFUnA)	1.1		0.55	0.12	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorododecanoic acid (PFDoA)	0.20	J	0.55	0.083	ug/Kg	1	⊅	EPA 537(Mod)	Total/NA
Perfluorotridecanoic acid (PFTriA)	0.45	J	0.55	0.058	ug/Kg	1	₽	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	3.6		0.55	0.080	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS) - DL	100		5.5	1.2	ug/Kg	10	₩	EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-SS-16

Lab Sample ID: 320-77655-24

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluoroundecanoic acid (PFUnA)	0.14	J	0.23	0.048	ug/Kg	1	☼	EPA 537(Mod)	Total/NA
Perfluorododecanoic acid (PFDoA)	0.080	J	0.23	0.034	ug/Kg	1	☼	EPA 537(Mod)	Total/NA
Perfluorotridecanoic acid (PFTriA)	0.11	J	0.23	0.024	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorotetradecanoic acid (PFTeA)	0.074	J	0.23	0.042	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.048	JI	0.23	0.033	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	0.034	J	0.23	0.026	ug/Kg	1	₩	EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-SS-17

Lab Sample ID: 320-77655-25

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluoroundecanoic acid (PFUnA)	0.13	J	0.22	0.047	ug/Kg		₩	EPA 537(Mod)	Total/NA
Perfluorododecanoic acid (PFDoA)	0.070	J	0.22	0.034	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorotridecanoic acid (PFTriA)	0.065	J	0.22	0.024	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorotetradecanoic acid (PFTeA)	0.041	J	0.22	0.041	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.14	J	0.22	0.032	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	2.5		0.22	0.048	ug/Kg	1	₽	EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-SS-117

Lab Sample ID: 320-77655-26

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluoroundecanoic acid (PFUnA)	0.11	J	0.23	0.048	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorododecanoic acid (PFDoA)	0.077	J	0.23	0.034	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorotridecanoic acid (PFTriA)	0.053	J	0.23	0.024	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorotetradecanoic acid (PFTeA)	0.058	J	0.23	0.042	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.13	J	0.23	0.033	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	2.3		0.23	0.049	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	0.78		0.23	0.055	ug/Kg	1	₩	EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-SS-18

Lab Sample ID: 320-77655-27

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorooctanoic acid (PFOA)	0.061	J	0.22	0.058	ug/Kg		₩	EPA 537(Mod)	Total/NA
Perfluorodecanoic acid (PFDA)	0.063	J	0.22	0.052	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluoroundecanoic acid (PFUnA)	0.061	J	0.22	0.046	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorododecanoic acid (PFDoA)	0.078	J	0.22	0.033	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorotridecanoic acid (PFTriA)	0.033	J	0.22	0.023	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorotetradecanoic acid (PFTeA)	0.043	J	0.22	0.040	ug/Kg	1	₽	EPA 537(Mod)	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Sacramento

Page 9 of 74 8/30/2021

2

4

5

9

10

11

-

Job ID: 320-77655-1

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS

Client Sample ID: 21AKN-SS-19

Lab Sample ID: 320-77655-28

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	0.46		0.24	0.037	ug/Kg	1	₽	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.18	J	0.24	0.046	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	0.19	J	0.24	0.064	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	0.24		0.24	0.026	ug/Kg	1	₽	EPA 537(Mod)	Total/NA
Perfluorodecanoic acid (PFDA)	0.32		0.24	0.058	ug/Kg	1	₽	EPA 537(Mod)	Total/NA
Perfluoroundecanoic acid (PFUnA)	10		0.24	0.051	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorododecanoic acid (PFDoA)	0.20	J	0.24	0.036	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorotridecanoic acid (PFTriA)	0.55		0.24	0.025	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorotetradecanoic acid (PFTeA)	0.065	J	0.24	0.045	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.079	J	0.24	0.046	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	2.0	1	0.24	0.035	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	15	1	0.24	0.052	ug/Kg	1	₩	EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-SS-20

Lab Sample ID: 320-77655-29

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	0.43	I	0.19	0.030	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.084	J	0.19	0.037	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	2.6		0.19	0.051	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	0.19		0.19	0.021	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorodecanoic acid (PFDA)	0.25		0.19	0.047	ug/Kg	1	₽	EPA 537(Mod)	Total/NA
Perfluoroundecanoic acid (PFUnA)	1.1		0.19	0.041	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorododecanoic acid (PFDoA)	0.047	J	0.19	0.029	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorotridecanoic acid (PFTriA)	0.11	J	0.19	0.020	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.049	J	0.19	0.037	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	5.5	F1	0.19	0.028	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	0.14	JIF1	0.19	0.022	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	0.13	J	0.19	0.047	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS) - DL	28		0.97	0.21	ug/Kg	5	₩	EPA 537(Mod)	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Shannon & Wilson, Inc Job ID: 320-77655-1

Project/Site: AKN PFAS

Client Sample ID: 21AKN-SB-02 (0'-1') Lab Sample ID: 320-77655-1

Date Collected: 08/14/21 09:40 **Matrix: Solid** Date Received: 08/17/21 10:32 Percent Solids: 93.7

Analyte	Result	Qualifier	RL _	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		0.20	0.031	ug/Kg	☼	08/18/21 18:34	08/22/21 05:45	•
Perfluoroheptanoic acid (PFHpA)	ND		0.20	0.038	ug/Kg	₩	08/18/21 18:34	08/22/21 05:45	
Perfluorooctanoic acid (PFOA)	ND		0.20	0.053	ug/Kg	☼	08/18/21 18:34	08/22/21 05:45	•
Perfluorononanoic acid (PFNA)	ND		0.20	0.022	ug/Kg	≎	08/18/21 18:34	08/22/21 05:45	1
Perfluorodecanoic acid (PFDA)	ND		0.20	0.048	ug/Kg	≎	08/18/21 18:34	08/22/21 05:45	1
Perfluoroundecanoic acid (PFUnA)	ND		0.20	0.042	ug/Kg	≎	08/18/21 18:34	08/22/21 05:45	1
Perfluorododecanoic acid (PFDoA)	ND		0.20	0.030	ug/Kg	₽	08/18/21 18:34	08/22/21 05:45	1
Perfluorotridecanoic acid (PFTriA)	ND		0.20	0.021	ug/Kg	≎	08/18/21 18:34	08/22/21 05:45	1
Perfluorotetradecanoic acid (PFTeA)	ND		0.20	0.037	ug/Kg	₩	08/18/21 18:34	08/22/21 05:45	1
Perfluorobutanesulfonic acid (PFBS)	ND		0.20	0.038	ug/Kg	₩	08/18/21 18:34	08/22/21 05:45	1
Perfluorohexanesulfonic acid (PFHxS)	0.050	J	0.20	0.029	ug/Kg	₩	08/18/21 18:34	08/22/21 05:45	1
Perfluorooctanesulfonic acid (PFOS)	0.35		0.20	0.043	ug/Kg	₩	08/18/21 18:34	08/22/21 05:45	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.20		ug/Kg			08/22/21 05:45	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.20	0.048	ug/Kg			08/22/21 05:45	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		0.20		ug/Kg		08/18/21 18:34	08/22/21 05:45	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.20	0.041	ug/Kg	₩	08/18/21 18:34	08/22/21 05:45	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		0.20	0.031	ug/Kg	₩	08/18/21 18:34	08/22/21 05:45	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.20	0.039	ug/Kg	₩	08/18/21 18:34	08/22/21 05:45	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	59		50 - 150				08/18/21 18:34	08/22/21 05:45	1
13C4 PFHpA	78		50 - 150				08/18/21 18:34	08/22/21 05:45	1
13C4 PFOA	75		50 - 150				08/18/21 18:34	08/22/21 05:45	1
13C5 PFNA	61		50 - 150				08/18/21 18:34	08/22/21 05:45	1
13C2 PFDA	76		50 - 150				08/18/21 18:34	08/22/21 05:45	1
13C2 PFUnA	73		50 - 150				08/18/21 18:34	08/22/21 05:45	1
13C2 PFDoA	67		50 - 150				08/18/21 18:34	08/22/21 05:45	1
13C2 PFTeDA	80		50 ₋ 150				08/18/21 18:34	08/22/21 05:45	1
13C3 PFBS	60		50 ₋ 150				08/18/21 18:34	08/22/21 05:45	1
18O2 PFHxS	67		50 - 150				08/18/21 18:34	08/22/21 05:45	1
13C4 PFOS	61		50 ₋ 150					08/22/21 05:45	1
d3-NMeFOSAA	73		50 - 150					08/22/21 05:45	1
d5-NEtFOSAA	85		50 - 150					08/22/21 05:45	
13C3 HFPO-DA	58		50 - 150					08/22/21 05:45	1
General Chemistry						_			 -
Analyte		Qualifier	RL _		Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	6.3		0.1	0.1				08/18/21 15:17	1
Percent Solids	93.7		0.1	0.1	%			08/18/21 15:17	1

Client: Shannon & Wilson, Inc Job ID: 320-77655-1

Project/Site: AKN PFAS

Client Sample ID: 21AKN-SB-02 (6'-7')

Lab Sample ID: 320-77655-2 Date Collected: 08/14/21 10:00 **Matrix: Solid** Date Received: 08/17/21 10:32

Percent Solids: 79.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perfluorohexanoic acid (PFHxA)	ND		0.24	0.036	ug/Kg	☼	08/18/21 18:34	08/22/21 06:12	
Perfluoroheptanoic acid (PFHpA)	ND		0.24	0.045	ug/Kg	₩	08/18/21 18:34	08/22/21 06:12	
Perfluorooctanoic acid (PFOA)	ND		0.24	0.062	ug/Kg	☼	08/18/21 18:34	08/22/21 06:12	
Perfluorononanoic acid (PFNA)	ND		0.24	0.026	ug/Kg	≎	08/18/21 18:34	08/22/21 06:12	
Perfluorodecanoic acid (PFDA)	ND		0.24	0.056	ug/Kg	≎	08/18/21 18:34	08/22/21 06:12	•
Perfluoroundecanoic acid (PFUnA)	ND		0.24	0.049	ug/Kg	₩	08/18/21 18:34	08/22/21 06:12	
Perfluorododecanoic acid (PFDoA)	ND		0.24	0.035	ug/Kg	₩	08/18/21 18:34	08/22/21 06:12	
Perfluorotridecanoic acid (PFTriA)	ND		0.24	0.025	ug/Kg	₩	08/18/21 18:34	08/22/21 06:12	•
Perfluorotetradecanoic acid (PFTeA)	ND		0.24	0.044	ug/Kg	₩	08/18/21 18:34	08/22/21 06:12	1
Perfluorobutanesulfonic acid (PFBS)	ND		0.24	0.045	ug/Kg	≎	08/18/21 18:34	08/22/21 06:12	1
Perfluorohexanesulfonic acid (PFHxS)	0.088	J	0.24	0.034	ug/Kg	₩	08/18/21 18:34	08/22/21 06:12	1
Perfluorooctanesulfonic acid (PFOS)	0.23	J	0.24	0.051	ug/Kg	₩	08/18/21 18:34	08/22/21 06:12	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.24		ug/Kg			08/22/21 06:12	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.24	0.056	ug/Kg			08/22/21 06:12	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		0.24		ug/Kg			08/22/21 06:12	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.24		ug/Kg	₩		08/22/21 06:12	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		0.24		ug/Kg	₩	08/18/21 18:34	08/22/21 06:12	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.24	0.046	ug/Kg	☼	08/18/21 18:34	08/22/21 06:12	1
lsotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	56		50 - 150				08/18/21 18:34	08/22/21 06:12	1
13C4 PFHpA	68		50 - 150				08/18/21 18:34	08/22/21 06:12	1
13C4 PFOA	68		50 - 150				08/18/21 18:34	08/22/21 06:12	1
13C5 PFNA	76		50 - 150				08/18/21 18:34	08/22/21 06:12	1
13C2 PFDA	75		50 - 150				08/18/21 18:34	08/22/21 06:12	1
13C2 PFUnA	66		50 - 150				08/18/21 18:34	08/22/21 06:12	1
13C2 PFDoA	67		50 - 150				08/18/21 18:34	08/22/21 06:12	
13C2 PFTeDA	78		50 ₋ 150				08/18/21 18:34	08/22/21 06:12	1
13C3 PFBS	57		50 ₋ 150				08/18/21 18:34	08/22/21 06:12	1
1802 PFHxS	69		50 ₋ 150				08/18/21 18:34	08/22/21 06:12	
13C4 PFOS	63		50 ₋ 150					08/22/21 06:12	1
d3-NMeFOSAA	55		50 - 150					08/22/21 06:12	1
d5-NEtFOSAA	75		50 - 150					08/22/21 06:12	
13C3 HFPO-DA	54		50 - 150					08/22/21 06:12	1
General Chemistry						_	_		
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	20.9		0.1	0.1				08/18/21 15:17	1
Percent Solids	79.1		0.1	0.1	%			08/18/21 15:17	1

Client: Shannon & Wilson, Inc Job ID: 320-77655-1

Project/Site: AKN PFAS

Percent Solids

Client Sample ID: 21AKN-SB-01 (0'-1')

Lab Sample ID: 320-77655-3 Date Collected: 08/14/21 11:50 **Matrix: Solid** Date Received: 08/17/21 10:32 Percent Solids: 88.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perfluorohexanoic acid (PFHxA)	ND		0.22	0.034	ug/Kg	— <u></u>	08/18/21 18:34	08/22/21 06:21	
Perfluoroheptanoic acid (PFHpA)	ND		0.22	0.042	ug/Kg	☼	08/18/21 18:34	08/22/21 06:21	
Perfluorooctanoic acid (PFOA)	ND		0.22	0.058	ug/Kg	₩	08/18/21 18:34	08/22/21 06:21	
Perfluorononanoic acid (PFNA)	ND		0.22	0.024	ug/Kg	₩	08/18/21 18:34	08/22/21 06:21	
Perfluorodecanoic acid (PFDA)	ND		0.22	0.053	ug/Kg	₩	08/18/21 18:34	08/22/21 06:21	
Perfluoroundecanoic acid (PFUnA)	ND		0.22	0.046	ug/Kg	☼	08/18/21 18:34	08/22/21 06:21	
Perfluorododecanoic acid (PFDoA)	ND		0.22	0.033	ug/Kg	≎	08/18/21 18:34	08/22/21 06:21	
Perfluorotridecanoic acid (PFTriA)	ND		0.22	0.023	ug/Kg	₩	08/18/21 18:34	08/22/21 06:21	
Perfluorotetradecanoic acid (PFTeA)	ND		0.22	0.041	ug/Kg	₩	08/18/21 18:34	08/22/21 06:21	
Perfluorobutanesulfonic acid (PFBS)	ND		0.22	0.042	ug/Kg	₩	08/18/21 18:34	08/22/21 06:21	
Perfluorohexanesulfonic acid (PFHxS)	0.071	J	0.22	0.032	ug/Kg	₩	08/18/21 18:34	08/22/21 06:21	
Perfluorooctanesulfonic acid (PFOS)	ND	G	0.95	0.95	ug/Kg	₽	08/18/21 18:34	08/22/21 06:21	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.22	0.025	ug/Kg	₩	08/18/21 18:34	08/22/21 06:21	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.22		ug/Kg	₩	08/18/21 18:34	08/22/21 06:21	
-Chlorohexadecafluoro-3-oxanonan -1-sulfonic acid	ND		0.22		ug/Kg			08/22/21 06:21	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.22		ug/Kg	₩	08/18/21 18:34		
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		0.22		ug/Kg	₩	08/18/21 18:34		
I,8-Dioxa-3H-perfluorononanoic acid ADONA)	ND		0.22	0.043	ug/Kg	₩	08/18/21 18:34	08/22/21 06:21	
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C2 PFHxA	62		50 - 150				08/18/21 18:34	08/22/21 06:21	
13C4 PFHpA	64		50 - 150				08/18/21 18:34	08/22/21 06:21	
13C4 PFOA	71		50 - 150				08/18/21 18:34	08/22/21 06:21	
13C5 PFNA	66		50 - 150				08/18/21 18:34	08/22/21 06:21	
13C2 PFDA	68		50 - 150				08/18/21 18:34	08/22/21 06:21	
13C2 PFUnA	63		50 - 150				08/18/21 18:34	08/22/21 06:21	
13C2 PFDoA	56		50 - 150				08/18/21 18:34	08/22/21 06:21	
13C2 PFTeDA	64		50 - 150				08/18/21 18:34	08/22/21 06:21	
13C3 PFBS	58		50 - 150				08/18/21 18:34	08/22/21 06:21	
1802 PFHxS	63		50 - 150				08/18/21 18:34	08/22/21 06:21	
13C4 PFOS	59		50 - 150				08/18/21 18:34	08/22/21 06:21	
13-NMeFOSAA	71		50 - 150				08/18/21 18:34	08/22/21 06:21	
15-NEtFOSAA	76		50 - 150				08/18/21 18:34	08/22/21 06:21	
13C3 HFPO-DA	54		50 - 150				08/18/21 18:34	08/22/21 06:21	
General Chemistry							_		
Analyte		Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil Fa
Percent Moisture	11.5		0.1	0.1	%			08/18/21 15:17	

Eurofins TestAmerica, Sacramento

08/18/21 15:17

0.1

88.5

0.1 %

Client: Shannon & Wilson, Inc Job ID: 320-77655-1 Project/Site: AKN PFAS

Client Sample ID: 21AKN-SB-01 (6.5'-7.5')

Percent Moisture

Percent Solids

Lab Sample ID: 320-77655-4 Date Collected: 08/14/21 12:05 **Matrix: Solid** Date Received: 08/17/21 10:32 Percent Solids: 86.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		0.23	0.036	ug/Kg	<u></u>	08/18/21 18:34	08/22/21 06:30	
Perfluoroheptanoic acid (PFHpA)	ND		0.23	0.044	ug/Kg	₩	08/18/21 18:34	08/22/21 06:30	•
Perfluorooctanoic acid (PFOA)	ND		0.23	0.061	ug/Kg	₩	08/18/21 18:34	08/22/21 06:30	•
Perfluorononanoic acid (PFNA)	ND		0.23	0.025	ug/Kg	₩	08/18/21 18:34	08/22/21 06:30	
Perfluorodecanoic acid (PFDA)	ND		0.23	0.055	ug/Kg	₩	08/18/21 18:34	08/22/21 06:30	
Perfluoroundecanoic acid (PFUnA)	ND		0.23	0.049	ug/Kg	₩	08/18/21 18:34	08/22/21 06:30	
Perfluorododecanoic acid (PFDoA)	ND		0.23	0.035	ug/Kg	₩	08/18/21 18:34	08/22/21 06:30	
Perfluorotridecanoic acid (PFTriA)	ND		0.23	0.024	ug/Kg	₩	08/18/21 18:34	08/22/21 06:30	
Perfluorotetradecanoic acid (PFTeA)	ND		0.23	0.043	ug/Kg	₩	08/18/21 18:34	08/22/21 06:30	
Perfluorobutanesulfonic acid (PFBS)	ND		0.23	0.044	ug/Kg	₽	08/18/21 18:34	08/22/21 06:30	
Perfluorohexanesulfonic acid (PFHxS)	ND		0.23	0.034	ug/Kg	₩	08/18/21 18:34	08/22/21 06:30	
Perfluorooctanesulfonic acid (PFOS)	0.091	J	0.23	0.050	ug/Kg	₽	08/18/21 18:34	08/22/21 06:30	,
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.23	0.027	ug/Kg	≎	08/18/21 18:34	08/22/21 06:30	,
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.23	0.055	ug/Kg	≎	08/18/21 18:34	08/22/21 06:30	•
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		0.23	0.040	ug/Kg	₩	08/18/21 18:34	08/22/21 06:30	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.23	0.047	ug/Kg	₩	08/18/21 18:34	08/22/21 06:30	
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		0.23	0.036	ug/Kg	₩	08/18/21 18:34	08/22/21 06:30	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.23	0.045	ug/Kg	₽	08/18/21 18:34	08/22/21 06:30	
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C2 PFHxA	54		50 - 150				08/18/21 18:34	08/22/21 06:30	
13C4 PFHpA	59		50 - 150				08/18/21 18:34	08/22/21 06:30	
13C4 PFOA	63		50 - 150				08/18/21 18:34	08/22/21 06:30	
13C5 PFNA	62		50 - 150				08/18/21 18:34	08/22/21 06:30	
13C2 PFDA	64		50 - 150				08/18/21 18:34	08/22/21 06:30	
13C2 PFUnA	62		50 - 150				08/18/21 18:34	08/22/21 06:30	
13C2 PFDoA	70		50 - 150				08/18/21 18:34	08/22/21 06:30	
13C2 PFTeDA	71		50 - 150				08/18/21 18:34	08/22/21 06:30	
13C3 PFBS	57		50 - 150				08/18/21 18:34	08/22/21 06:30	
1802 PFHxS	64		50 - 150				08/18/21 18:34	08/22/21 06:30	
13C4 PFOS	56		50 - 150				08/18/21 18:34	08/22/21 06:30	
d3-NMeFOSAA	59		50 - 150				08/18/21 18:34	08/22/21 06:30	
d5-NEtFOSAA	79		50 - 150				08/18/21 18:34	08/22/21 06:30	
13C3 HFPO-DA	53		50 - 150				08/18/21 18:34	08/22/21 06:30	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins TestAmerica, Sacramento

08/18/21 15:17

08/18/21 15:17

0.1

0.1

14.0

86.0

0.1 %

0.1 %

Client: Shannon & Wilson, Inc Job ID: 320-77655-1

Project/Site: AKN PFAS

Client Sample ID: 21AKN-SB-101 (6.5-7.5')

Lab Sample ID: 320-77655-5 Date Collected: 08/14/21 11:55 **Matrix: Solid** Date Received: 08/17/21 10:32 Percent Solids: 85.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perfluorohexanoic acid (PFHxA)	ND		0.22	0.034	ug/Kg	<u></u>	08/18/21 18:34	08/22/21 06:40	
Perfluoroheptanoic acid (PFHpA)	ND		0.22	0.042	ug/Kg	₩	08/18/21 18:34	08/22/21 06:40	
Perfluorooctanoic acid (PFOA)	ND		0.22	0.059	ug/Kg	₩	08/18/21 18:34	08/22/21 06:40	
Perfluorononanoic acid (PFNA)	ND		0.22	0.024	ug/Kg	₽	08/18/21 18:34	08/22/21 06:40	
Perfluorodecanoic acid (PFDA)	ND		0.22	0.053	ug/Kg	₩	08/18/21 18:34	08/22/21 06:40	
Perfluoroundecanoic acid (PFUnA)	ND		0.22	0.046	ug/Kg	₩	08/18/21 18:34	08/22/21 06:40	
Perfluorododecanoic acid (PFDoA)	ND		0.22	0.033	ug/Kg	₽	08/18/21 18:34	08/22/21 06:40	
Perfluorotridecanoic acid (PFTriA)	ND		0.22	0.023	ug/Kg	₩	08/18/21 18:34	08/22/21 06:40	
Perfluorotetradecanoic acid (PFTeA)	ND		0.22	0.041	ug/Kg	₩	08/18/21 18:34	08/22/21 06:40	
Perfluorobutanesulfonic acid (PFBS)	ND		0.22	0.042	ug/Kg	₩	08/18/21 18:34	08/22/21 06:40	
Perfluorohexanesulfonic acid (PFHxS)	0.032	J	0.22	0.032	ug/Kg	₽	08/18/21 18:34	08/22/21 06:40	
Perfluorooctanesulfonic acid (PFOS)	0.11	J	0.22		ug/Kg		08/18/21 18:34	08/22/21 06:40	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.22		ug/Kg	₩		08/22/21 06:40	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.22		ug/Kg	₽		08/22/21 06:40	
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		0.22		ug/Kg			08/22/21 06:40	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.22		ug/Kg	₽		08/22/21 06:40	
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		0.22		ug/Kg	₽		08/22/21 06:40	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.22	0.043	ug/Kg	₩	08/18/21 18:34	08/22/21 06:40	
lsotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C2 PFHxA	59		50 - 150				08/18/21 18:34	08/22/21 06:40	
13C4 PFHpA	72		50 - 150				08/18/21 18:34	08/22/21 06:40	
13C4 PFOA	68		50 - 150				08/18/21 18:34	08/22/21 06:40	
13C5 PFNA	57		50 - 150				08/18/21 18:34	08/22/21 06:40	
13C2 PFDA	76		50 - 150				08/18/21 18:34	08/22/21 06:40	
13C2 PFUnA	59		50 - 150				08/18/21 18:34	08/22/21 06:40	
13C2 PFDoA	66		50 - 150				08/18/21 18:34	08/22/21 06:40	
13C2 PFTeDA	75		50 - 150				08/18/21 18:34	08/22/21 06:40	
13C3 PFBS	58		50 - 150				08/18/21 18:34	08/22/21 06:40	
1802 PFHxS	70		50 - 150				08/18/21 18:34	08/22/21 06:40	
13C4 PFOS	59		50 - 150				08/18/21 18:34	08/22/21 06:40	
d3-NMeFOSAA	61		50 - 150				08/18/21 18:34	08/22/21 06:40	
d5-NEtFOSAA	66		50 - 150				08/18/21 18:34	08/22/21 06:40	
13C3 HFPO-DA	55		50 - 150				08/18/21 18:34	08/22/21 06:40	
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Percent Moisture	14.6		0.1	0.1				08/18/21 15:17	
Percent Solids	85.4		0.1	0.1	%			08/18/21 15:17	

Eurofins TestAmerica, Sacramento

Client: Shannon & Wilson, Inc Job ID: 320-77655-1 Project/Site: AKN PFAS

Analyte

Percent Moisture

Client Sample ID: 21AKN-SB-03 (0'-1') Lab Sample ID: 320-77655-6

Date Collected: 08/14/21 13:40 **Matrix: Solid** Date Received: 08/17/21 10:32 Percent Solids: 88.4

Method: EPA 537(Mod) - PFAS Analyte		Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil F
Perfluorohexanoic acid (PFHxA)	3.8	- Guainion	1.1		ug/Kg		08/18/21 18:34		
Perfluoroheptanoic acid (PFHpA)	0.89		1.1		ug/Kg		08/18/21 18:34		
Perfluorooctanoic acid (PFOA)	1.9	•	1.1		ug/Kg	Ť	08/18/21 18:34		
Perfluorononanoic acid (PFNA)	14				ug/Kg		08/18/21 18:34		
	1.9		1.1		ug/Kg ug/Kg	₩	08/18/21 18:34		
Perfluorodecanoic acid (PFDA) Perfluoroundecanoic acid	52		1.1		ug/Kg ug/Kg	₩	08/18/21 18:34		
PFUnA)	52		1.1	0.23	ug/ixg	747	00/10/21 10.34	00/20/21 01.21	
Perfluorododecanoic acid	0.38		1.1	0.16	ug/Kg		08/18/21 18:34	08/26/21 01:21	
PFDoA)					5 5				
Perfluorotridecanoic acid (PFTriA)	4.3		1.1	0.11	ug/Kg	₽	08/18/21 18:34	08/26/21 01:21	
Perfluorotetradecanoic acid (PFTeA)	ND		1.1	0.20	ug/Kg	₩	08/18/21 18:34	08/26/21 01:21	
Perfluorobutanesulfonic acid	0.99	J	1.1	0.21	ug/Kg		08/18/21 18:34	08/26/21 01:21	
PFBS)									
Perfluorohexanesulfonic acid	12		1.1	0.16	ug/Kg	₩	08/18/21 18:34	08/26/21 01:21	
PFHxS)									
I-methylperfluorooctanesulfonamidoa	ND		1.1	0.13	ug/Kg	₩	08/18/21 18:34	08/26/21 01:21	
etic acid (NMeFOSAA)			1.1	0.26	ua/Va		00/10/21 10:24	09/26/24 04:24	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.1	0.26	ug/Kg	1,2	08/18/21 18:34	06/26/21 01:21	
-Chlorohexadecafluoro-3-oxanonan	ND		1.1	0 19	ug/Kg	≎	08/18/21 18:34	08/26/21 01:21	
-1-sulfonic acid	112			0.10	ug/11g	<i>T</i>	00/10/21 10:01	00/20/21 01:21	
lexafluoropropylene Oxide Dimer	ND		1.1	0.22	ug/Kg	₩	08/18/21 18:34	08/26/21 01:21	
cid (HFPO-DA)					0 0				
1-Chloroeicosafluoro-3-oxaundecan	ND		1.1	0.17	ug/Kg	₽	08/18/21 18:34	08/26/21 01:21	
-1-sulfonic acid									
,8-Dioxa-3H-perfluorononanoic acid	ND		1.1	0.21	ug/Kg	₩	08/18/21 18:34	08/26/21 01:21	
ADONA)									
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil
3C2 PFHxA	56		50 - 150					08/26/21 01:21	
3C4 PFHpA	62		50 - 150					08/26/21 01:21	
3C4 PFOA	62		50 - 150					08/26/21 01:21	
3C5 PFNA	61		50 - 150					08/26/21 01:21	
3C2 PFDA	68		50 - 150				08/18/21 18:34	08/26/21 01:21	
3C2 PFUnA	67		50 - 150				08/18/21 18:34	08/26/21 01:21	
3C2 PFDoA	63		50 - 150				08/18/21 18:34	08/26/21 01:21	
3C2 PFTeDA	68		50 - 150				08/18/21 18:34	08/26/21 01:21	
3C3 PFBS	59		50 - 150				08/18/21 18:34	08/26/21 01:21	
8O2 PFHxS	66		50 - 150				08/18/21 18:34	08/26/21 01:21	
3-NMeFOSAA	71		50 - 150				08/18/21 18:34	08/26/21 01:21	
5-NEtFOSAA	88		50 - 150				08/18/21 18:34	08/26/21 01:21	
3C3 HFPO-DA	51		50 - 150				08/18/21 18:34	08/26/21 01:21	
Method: EPA 537(Mod) - PFAS	for QSM 5.	3, Table B	-15 - DL						
nalyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
erfluorooctanesulfonic acid PFOS)	340		11	2.4	ug/Kg	₩	08/18/21 18:34	08/26/21 01:12	
atana Dilutian	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil l
sotope Dilution	/01 (CCCC F C1 F								

Eurofins TestAmerica, Sacramento

Analyzed

08/18/21 15:17

Prepared

RL

0.1

0.1 %

Result Qualifier

11.6

8/30/2021

Dil Fac

Client: Shannon & Wilson, Inc Job ID: 320-77655-1

Project/Site: AKN PFAS

Client Sample ID: 21AKN-SB-03 (0'-1')

Lab Sample ID: 320-77655-6

Date Collected: 08/14/21 13:40

Matrix: Solid

Date Received: 08/17/21 10:32 Percent Solids: 88.4

General Chemistry (Continued)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	88.4	0.1	0.1	%			08/18/21 15:17	1

2

4

6

0

10

13

14

Client: Shannon & Wilson, Inc Job ID: 320-77655-1

Project/Site: AKN PFAS

Percent Solids

Client Sample ID: 21AKN-SB-03 (7.3'-7.8') Lab Sample ID: 320-77655-7

Date Collected: 08/14/21 13:55 **Matrix: Solid** Date Received: 08/17/21 10:32 Percent Solids: 80.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perfluorohexanoic acid (PFHxA)	1.6		0.24	0.037	ug/Kg	<u></u>	08/18/21 18:34	08/22/21 06:49	
Perfluoroheptanoic acid (PFHpA)	0.43		0.24	0.045	ug/Kg	₩	08/18/21 18:34	08/22/21 06:49	1
Perfluorooctanoic acid (PFOA)	1.2		0.24	0.063	ug/Kg	₩	08/18/21 18:34	08/22/21 06:49	1
Perfluorononanoic acid (PFNA)	2.5		0.24	0.026	ug/Kg	₩	08/18/21 18:34	08/22/21 06:49	1
Perfluorodecanoic acid (PFDA)	ND		0.24	0.057	ug/Kg	₩	08/18/21 18:34	08/22/21 06:49	1
Perfluoroundecanoic acid (PFUnA)	ND		0.24	0.050	ug/Kg	₩	08/18/21 18:34	08/22/21 06:49	1
Perfluorododecanoic acid (PFDoA)	ND		0.24	0.035	ug/Kg	₩	08/18/21 18:34	08/22/21 06:49	1
Perfluorotridecanoic acid (PFTriA)	ND		0.24	0.025	ug/Kg	₩	08/18/21 18:34	08/22/21 06:49	1
Perfluorotetradecanoic acid (PFTeA)	ND		0.24	0.044	ug/Kg	₩	08/18/21 18:34	08/22/21 06:49	1
Perfluorobutanesulfonic acid	0.28		0.24	0.045	ug/Kg		08/18/21 18:34	08/22/21 06:49	1
(PFBS)									
Perfluorohexanesulfonic acid (PFHxS)	7.5		0.24	0.034	ug/Kg	₩	08/18/21 18:34	08/22/21 06:49	1
Perfluorooctanesulfonic acid (PFOS)	17		0.24	0.051	ug/Kg	.⇔	08/18/21 18:34	08/22/21 06:49	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.24		ug/Kg			08/22/21 06:49	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.24	0.057	ug/Kg	₽	08/18/21 18:34	08/22/21 06:49	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		0.24	0.041	ug/Kg	₩	08/18/21 18:34	08/22/21 06:49	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.24		ug/Kg	₽	08/18/21 18:34	08/22/21 06:49	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		0.24		ug/Kg	₩	08/18/21 18:34	08/22/21 06:49	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.24	0.046	ug/Kg	₽	08/18/21 18:34	08/22/21 06:49	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	71		50 - 150				08/18/21 18:34	08/22/21 06:49	
13C4 PFHpA	72		50 - 150				08/18/21 18:34	08/22/21 06:49	1
13C4 PFOA	73		50 - 150				08/18/21 18:34	08/22/21 06:49	1
13C5 PFNA	75		50 - 150				08/18/21 18:34	08/22/21 06:49	1
13C2 PFDA	88		50 - 150				08/18/21 18:34	08/22/21 06:49	1
13C2 PFUnA	84		50 - 150				08/18/21 18:34	08/22/21 06:49	1
13C2 PFDoA	77		50 ₋ 150				08/18/21 18:34	08/22/21 06:49	
13C2 PFTeDA	75		50 ₋ 150				08/18/21 18:34	08/22/21 06:49	
13C3 PFBS	79		50 ₋ 150				08/18/21 18:34	08/22/21 06:49	
1802 PFHxS	88		50 - 150					08/22/21 06:49	
13C4 PFOS	75		50 - 150					08/22/21 06:49	
d3-NMeFOSAA	84		50 ₋ 150					08/22/21 06:49	
d5-NEtFOSAA	95		50 - 150					08/22/21 06:49	
13C3 HFPO-DA	64		50 - 150					08/22/21 06:49	•
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	19.1		0.1	0.1	0/			08/18/21 15:17	1

Eurofins TestAmerica, Sacramento

0.1

0.1 %

80.9

08/18/21 15:17

Client: Shannon & Wilson, Inc Job ID: 320-77655-1 Project/Site: AKN PFAS

Client Sample ID: 21AKN-SS-01

Lab Sample ID: 320-77655-8 Date Collected: 08/15/21 08:49 **Matrix: Solid**

Percent Solids: 78.0 Date Received: 08/17/21 10:32

Method: EPA 537(Mod) - PFAS Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	0.045		0.23		ug/Kg	— <u>=</u>		08/22/21 07:07	1
Perfluoroheptanoic acid (PFHpA)	ND.	•	0.23		ug/Kg	Ť Ť		08/22/21 07:07	1
Perfluorooctanoic acid (PFOA)	ND		0.23		ug/Kg	-ti-		08/22/21 07:07	1
Perfluorononanoic acid (PFNA)	0.044		0.23		ug/Kg			08/22/21 07:07	1
Perfluorodecanoic acid (PFDA)	ND	• •	0.23		ug/Kg	Ď.		08/22/21 07:07	1
Perfluoroundecanoic acid (PFUnA)	ND		0.23	0.048		Ď.		08/22/21 07:07	1
Perfluorododecanoic acid (PFDoA)	ND		0.23		ug/Kg			08/22/21 07:07	
Perfluorotridecanoic acid (PFTriA)	ND		0.23	0.024		*		08/22/21 07:07	1
Perfluorotetradecanoic acid (PFTeA)	ND		0.23	0.042		*		08/22/21 07:07	1
Perfluorobutanesulfonic acid (PFBS)	ND		0.23		ug/Kg	- -		08/22/21 07:07	' 1
Perfluorohexanesulfonic acid					0 0	** **			1
(PFHxS)	0.059	J	0.23	0.033	ug/Kg	₽	00/10/21 10:34	08/22/21 07:07	I
Perfluorooctanesulfonic acid (PFOS)	0.16	JI	0.23	0.049	ug/Kg	₩	08/18/21 18:34	08/22/21 07:07	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.23	0.026	ug/Kg	₩	08/18/21 18:34	08/22/21 07:07	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.23	0.055	ug/Kg	₩	08/18/21 18:34	08/22/21 07:07	1
9-Chlorohexadecafluoro-3-oxanonan	ND		0.23	0.040	ug/Kg	≎	08/18/21 18:34	08/22/21 07:07	1
e-1-sulfonic acid									
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.23	0.047	ug/Kg	₩	08/18/21 18:34	08/22/21 07:07	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		0.23	0.036	ug/Kg	☼	08/18/21 18:34	08/22/21 07:07	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.23	0.045	ug/Kg	₩	08/18/21 18:34	08/22/21 07:07	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	61		50 - 150				08/18/21 18:34	08/22/21 07:07	1
13C4 PFHpA	67		50 - 150				08/18/21 18:34	08/22/21 07:07	1
13C4 PFOA	74		50 - 150				08/18/21 18:34	08/22/21 07:07	1
13C5 PFNA	68		50 - 150				08/18/21 18:34	08/22/21 07:07	1
13C2 PFDA	76		50 - 150				08/18/21 18:34	08/22/21 07:07	1
13C2 PFUnA	65		50 - 150				08/18/21 18:34	08/22/21 07:07	1
13C2 PFDoA	64		50 - 150				08/18/21 18:34	08/22/21 07:07	1
13C2 PFTeDA	61		50 ₋ 150				08/18/21 18:34	08/22/21 07:07	1
13C3 PFBS	60		50 ₋ 150				08/18/21 18:34	08/22/21 07:07	1
1802 PFHxS	57		50 - 150				08/18/21 18:34	08/22/21 07:07	1
13C4 PFOS	66		50 ₋ 150					08/22/21 07:07	1
d3-NMeFOSAA	75		50 - 150					08/22/21 07:07	1
d5-NEtFOSAA	81		50 - 150					08/22/21 07:07	
13C3 HFPO-DA	53		50 - 150					08/22/21 07:07	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	22.0		0.1	0.1	%			08/18/21 15:17	1

Page 19 of 74

Client: Shannon & Wilson, Inc
Project/Site: AKN PFAS

Job ID: 320-77655-1

Client Sample ID: 21AKN-SS-02

Date Collected: 08/15/21 09:00

Date Received: 08/17/21 10:32

Lab Sample ID: 320-77655-9

Matrix: Solid

Percent Solids: 88.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		0.22	0.034	ug/Kg	<u></u>	08/18/21 18:34	08/22/21 07:16	1
Perfluoroheptanoic acid (PFHpA)	0.044	J	0.22	0.042	ug/Kg	☼	08/18/21 18:34	08/22/21 07:16	1
Perfluorooctanoic acid (PFOA)	ND		0.22	0.058	ug/Kg	☼	08/18/21 18:34	08/22/21 07:16	1
Perfluorononanoic acid (PFNA)	0.097	J	0.22	0.024	ug/Kg	₩	08/18/21 18:34	08/22/21 07:16	1
Perfluorodecanoic acid (PFDA)	ND		0.22	0.053	ug/Kg	☼	08/18/21 18:34	08/22/21 07:16	1
Perfluoroundecanoic acid (PFUnA)	ND		0.22	0.046	ug/Kg	☼	08/18/21 18:34	08/22/21 07:16	1
Perfluorododecanoic acid (PFDoA)	ND		0.22	0.033	ug/Kg	₩	08/18/21 18:34	08/22/21 07:16	1
Perfluorotridecanoic acid (PFTriA)	ND		0.22	0.023	ug/Kg	₩	08/18/21 18:34	08/22/21 07:16	1
Perfluorotetradecanoic acid (PFTeA)	ND		0.22	0.041	ug/Kg	☼	08/18/21 18:34	08/22/21 07:16	1
Perfluorobutanesulfonic acid (PFBS)	ND		0.22	0.042	ug/Kg	₩	08/18/21 18:34	08/22/21 07:16	1
Perfluorohexanesulfonic acid (PFHxS)	ND		0.22	0.032	ug/Kg	☼	08/18/21 18:34	08/22/21 07:16	1
Perfluorooctanesulfonic acid (PFOS)	0.40	I	0.22	0.047	ug/Kg	₩	08/18/21 18:34	08/22/21 07:16	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.22	0.025	ug/Kg	₩	08/18/21 18:34	08/22/21 07:16	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.22	0.053	ug/Kg	₩	08/18/21 18:34	08/22/21 07:16	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		0.22	0.038	ug/Kg	₩	08/18/21 18:34	08/22/21 07:16	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.22	0.045	ug/Kg	₩	08/18/21 18:34	08/22/21 07:16	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		0.22	0.034	ug/Kg	₩	08/18/21 18:34	08/22/21 07:16	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.22	0.043	ug/Kg	₩	08/18/21 18:34	08/22/21 07:16	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	63		50 - 150				08/18/21 18:34	08/22/21 07:16	1
13C4 PFHpA	56		50 ₋ 150				08/18/21 18:34	08/22/21 07:16	1

(ABOIVI)					
Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	63	50 - 150	08/18/21 18:34	08/22/21 07:16	1
13C4 PFHpA	56	50 - 150	08/18/21 18:34	08/22/21 07:16	1
13C4 PFOA	69	50 - 150	08/18/21 18:34	08/22/21 07:16	1
13C5 PFNA	60	50 - 150	08/18/21 18:34	08/22/21 07:16	1
13C2 PFDA	70	50 - 150	08/18/21 18:34	08/22/21 07:16	1
13C2 PFUnA	63	50 - 150	08/18/21 18:34	08/22/21 07:16	1
13C2 PFDoA	62	50 - 150	08/18/21 18:34	08/22/21 07:16	1
13C2 PFTeDA	62	50 - 150	08/18/21 18:34	08/22/21 07:16	1
13C3 PFBS	61	50 - 150	08/18/21 18:34	08/22/21 07:16	1
1802 PFHxS	66	50 - 150	08/18/21 18:34	08/22/21 07:16	1
13C4 PFOS	66	50 - 150	08/18/21 18:34	08/22/21 07:16	1
d3-NMeFOSAA	65	50 - 150	08/18/21 18:34	08/22/21 07:16	1
d5-NEtFOSAA	73	50 - 150	08/18/21 18:34	08/22/21 07:16	1
13C3 HFPO-DA	53	50 - 150	08/18/21 18:34	08/22/21 07:16	1

General Chemistry									
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	11.5		0.1	0.1	%			08/18/21 15:17	1
Percent Solids	88.5		0.1	0.1	%			08/18/21 15:17	1

Eurofins TestAmerica, Sacramento

2

5

9

11

13

14

Client: Shannon & Wilson, Inc Job ID: 320-77655-1

Project/Site: AKN PFAS

13C3 HFPO-DA

Client Sample ID: 21AKN-SS-03 Lab Sample ID: 320-77655-10

Date Collected: 08/15/21 08:08

Matrix: Solid
Date Received: 08/17/21 10:32

Matrix: Solid
Percent Solids: 92.2

Method: EPA 537(Mod) - PFAS Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		0.20	0.031	ug/Kg	— <u></u>	08/18/21 18:34	08/22/21 07:25	1
Perfluoroheptanoic acid (PFHpA)	ND		0.20	0.038	ug/Kg	≎	08/18/21 18:34	08/22/21 07:25	1
Perfluorooctanoic acid (PFOA)	ND		0.20	0.053	ug/Kg	≎	08/18/21 18:34	08/22/21 07:25	1
Perfluorononanoic acid (PFNA)	ND		0.20	0.022	ug/Kg	₩	08/18/21 18:34	08/22/21 07:25	1
Perfluorodecanoic acid (PFDA)	ND		0.20	0.048	ug/Kg	₽	08/18/21 18:34	08/22/21 07:25	1
Perfluoroundecanoic acid (PFUnA)	0.17	J	0.20	0.042	ug/Kg	₩	08/18/21 18:34	08/22/21 07:25	1
Perfluorododecanoic acid (PFDoA)	0.071	J	0.20	0.030	ug/Kg	₩	08/18/21 18:34	08/22/21 07:25	1
Perfluorotridecanoic acid (PFTriA)	0.18	J	0.20	0.021	ug/Kg	≎	08/18/21 18:34	08/22/21 07:25	1
Perfluorotetradecanoic acid (PFTeA)	ND		0.20	0.037	ug/Kg	₩	08/18/21 18:34	08/22/21 07:25	1
Perfluorobutanesulfonic acid (PFBS)	ND		0.20	0.038	ug/Kg	₩	08/18/21 18:34	08/22/21 07:25	1
Perfluorohexanesulfonic acid (PFHxS)	0.14	JI	0.20	0.029	ug/Kg	₩	08/18/21 18:34	08/22/21 07:25	1
Perfluorooctanesulfonic acid (PFOS)	ND	G	0.42	0.42	ug/Kg	₽	08/18/21 18:34	08/22/21 07:25	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.20	0.023	ug/Kg	₩	08/18/21 18:34	08/22/21 07:25	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.20	0.048	ug/Kg	₩	08/18/21 18:34	08/22/21 07:25	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		0.20	0.035	ug/Kg	₽	08/18/21 18:34	08/22/21 07:25	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.20	0.041	ug/Kg	₽	08/18/21 18:34	08/22/21 07:25	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		0.20	0.031	ug/Kg	₽	08/18/21 18:34	08/22/21 07:25	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.20	0.039	ug/Kg	₩	08/18/21 18:34	08/22/21 07:25	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	67		50 - 150				08/18/21 18:34	08/22/21 07:25	1
13C4 PFHpA	64		50 - 150				08/18/21 18:34	08/22/21 07:25	1
13C4 PFOA	76		50 - 150				08/18/21 18:34	08/22/21 07:25	1
13C5 PFNA	65		50 - 150				08/18/21 18:34	08/22/21 07:25	1
13C2 PFDA	66		50 - 150				08/18/21 18:34	08/22/21 07:25	1
13C2 PFUnA	76		50 - 150				08/18/21 18:34	08/22/21 07:25	1
13C2 PFDoA	57		50 - 150				08/18/21 18:34	08/22/21 07:25	1
13C2 PFTeDA	56		50 - 150				08/18/21 18:34	08/22/21 07:25	1
13C3 PFBS	69		50 - 150				08/18/21 18:34	08/22/21 07:25	1
1802 PFHxS	67		50 - 150				08/18/21 18:34	08/22/21 07:25	1
13C4 PFOS	69		50 - 150				08/18/21 18:34	08/22/21 07:25	1
d3-NMeFOSAA	60		50 ₋ 150				08/18/21 18:34	08/22/21 07:25	1
d5-NEtFOSAA	65		50 - 150				08/18/21 18:34	08/22/21 07:25	1

General Chemistry Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	7.8	0.1	0.1	%			08/18/21 15:17	1
Percent Solids	92.2	0.1	0.1	%			08/18/21 15:17	1

50 - 150

Eurofins TestAmerica, Sacramento

08/18/21 18:34 08/22/21 07:25

3

5

8

10

12

14

Client: Shannon & Wilson, Inc Job ID: 320-77655-1

Project/Site: AKN PFAS

Client Sample ID: 21AKN-SS-04 Lab Sample ID: 320-77655-11

Date Collected: 08/15/21 09:19 **Matrix: Solid** Date Received: 08/17/21 10:32 Percent Solids: 93.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perfluorohexanoic acid (PFHxA)	ND		0.20	0.032	ug/Kg	☼	08/18/21 18:34	08/22/21 07:34	
Perfluoroheptanoic acid (PFHpA)	ND		0.20	0.039	ug/Kg	☼	08/18/21 18:34	08/22/21 07:34	
Perfluorooctanoic acid (PFOA)	0.17	J	0.20	0.054	ug/Kg	☼	08/18/21 18:34	08/22/21 07:34	
Perfluorononanoic acid (PFNA)	0.050	J	0.20	0.022	ug/Kg	₩	08/18/21 18:34	08/22/21 07:34	
Perfluorodecanoic acid (PFDA)	ND		0.20	0.049	ug/Kg	☼	08/18/21 18:34	08/22/21 07:34	
Perfluoroundecanoic acid (PFUnA)	ND		0.20	0.043	ug/Kg	₩	08/18/21 18:34	08/22/21 07:34	
Perfluorododecanoic acid (PFDoA)	ND		0.20	0.030	ug/Kg	☼	08/18/21 18:34	08/22/21 07:34	
Perfluorotridecanoic acid (PFTriA)	ND		0.20	0.021	ug/Kg	☼	08/18/21 18:34	08/22/21 07:34	
Perfluorotetradecanoic acid (PFTeA)	ND		0.20	0.038	ug/Kg	☼	08/18/21 18:34	08/22/21 07:34	
Perfluorobutanesulfonic acid (PFBS)	ND		0.20	0.039	ug/Kg	₩	08/18/21 18:34	08/22/21 07:34	
Perfluorohexanesulfonic acid	0.22		0.20	0.029	ug/Kg	☼	08/18/21 18:34	08/22/21 07:34	
(PFHxS)					0 0				
Perfluorooctanesulfonic acid	2.4		0.20	0.044	ug/Kg	☼	08/18/21 18:34	08/22/21 07:34	•
(PFOS)									
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.20	0.023	ug/Kg	₽	08/18/21 18:34	08/22/21 07:34	,
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.20	0.049	ug/Kg	₽	08/18/21 18:34	08/22/21 07:34	,
9-Chlorohexadecafluoro-3-oxanonan	ND		0.20	0.036	ug/Kg	₩	08/18/21 18:34	08/22/21 07:34	•
e-1-sulfonic acid									
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.20	0.042	ug/Kg	₩	08/18/21 18:34	08/22/21 07:34	•
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		0.20	0.032	ug/Kg	₽	08/18/21 18:34	08/22/21 07:34	•
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.20	0.040	ug/Kg	₩	08/18/21 18:34	08/22/21 07:34	,
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C2 PFHxA	58		50 - 150				08/18/21 18:34	08/22/21 07:34	-
13C4 PFHpA	63		50 - 150				08/18/21 18:34	08/22/21 07:34	
13C4 PFOA	70		50 - 150				08/18/21 18:34	08/22/21 07:34	
13C5 PFNA	62		50 - 150				08/18/21 18:34	08/22/21 07:34	
13C2 PFDA	74		50 ₋ 150				08/18/21 18:34	08/22/21 07:34	
13C2 PFUnA	63		50 ₋ 150				08/18/21 18:34	08/22/21 07:34	
13C2 PFDoA	56		50 - 150				08/18/21 18:34	08/22/21 07:34	
13C2 PFTeDA	60		50 ₋ 150					08/22/21 07:34	
13C3 PFBS	63		50 - 150					08/22/21 07:34	
1802 PFHxS	67		50 ₋ 150					08/22/21 07:34	
13C4 PFOS	69		50 - 150					08/22/21 07:34	
	68							08/22/21 07:34	
d3-NMeFOSAA d5-NEtFOSAA	66		50 - 150 50 - 150					08/22/21 07:34	
13C3 HFPO-DA	55		50 - 150					08/22/21 07:34	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Percent Moisture	6.8		0.1	0.1	%			08/18/21 15:17	•
Percent Solids	93.2		0.1	0.1	0/			08/18/21 15:17	

Client: Shannon & Wilson, Inc Job ID: 320-77655-1

Project/Site: AKN PFAS

Percent Solids

Client Sample ID: 21AKN-SS-05 Lab Sample ID: 320-77655-12

Date Collected: 08/15/21 09:53 **Matrix: Solid** Date Received: 08/17/21 10:32 Percent Solids: 93.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		0.20	0.031	ug/Kg	₩	08/18/21 18:34	08/22/21 07:43	
Perfluoroheptanoic acid (PFHpA)	ND		0.20	0.038	ug/Kg	₩	08/18/21 18:34	08/22/21 07:43	•
Perfluorooctanoic acid (PFOA)	ND		0.20	0.053	ug/Kg	₩	08/18/21 18:34	08/22/21 07:43	•
Perfluorononanoic acid (PFNA)	ND		0.20	0.022	ug/Kg	≎	08/18/21 18:34	08/22/21 07:43	
Perfluorodecanoic acid (PFDA)	ND		0.20	0.048	ug/Kg	₩	08/18/21 18:34	08/22/21 07:43	•
Perfluoroundecanoic acid (PFUnA)	ND		0.20	0.042	ug/Kg	≎	08/18/21 18:34	08/22/21 07:43	•
Perfluorododecanoic acid (PFDoA)	ND		0.20	0.030	ug/Kg	≎	08/18/21 18:34	08/22/21 07:43	
Perfluorotridecanoic acid (PFTriA)	ND		0.20	0.021	ug/Kg	≎	08/18/21 18:34	08/22/21 07:43	•
Perfluorotetradecanoic acid (PFTeA)	ND		0.20	0.037	ug/Kg	≎	08/18/21 18:34	08/22/21 07:43	•
Perfluorobutanesulfonic acid (PFBS)	ND		0.20	0.038	ug/Kg	₽	08/18/21 18:34	08/22/21 07:43	
Perfluorohexanesulfonic acid (PFHxS)	ND		0.20	0.029	ug/Kg	₩	08/18/21 18:34	08/22/21 07:43	•
Perfluorooctanesulfonic acid (PFOS)	ND		0.20	0.043	ug/Kg	≎	08/18/21 18:34	08/22/21 07:43	•
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.20	0.023	ug/Kg	₽	08/18/21 18:34	08/22/21 07:43	,
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.20	0.048	ug/Kg	₩	08/18/21 18:34	08/22/21 07:43	•
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		0.20		ug/Kg	₩	08/18/21 18:34	08/22/21 07:43	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.20	0.041	ug/Kg	₩	08/18/21 18:34	08/22/21 07:43	
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		0.20	0.031	ug/Kg	₩	08/18/21 18:34	08/22/21 07:43	•
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.20	0.039	ug/Kg	₩	08/18/21 18:34	08/22/21 07:43	•
lsotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C2 PFHxA	62		50 - 150				08/18/21 18:34	08/22/21 07:43	-
13C4 PFHpA	71		50 - 150				08/18/21 18:34	08/22/21 07:43	
13C4 PFOA	76		50 - 150				08/18/21 18:34	08/22/21 07:43	1
13C5 PFNA	76		50 - 150				08/18/21 18:34	08/22/21 07:43	:
13C2 PFDA	71		50 - 150				08/18/21 18:34	08/22/21 07:43	-
13C2 PFUnA	77		50 - 150				08/18/21 18:34	08/22/21 07:43	-
13C2 PFDoA	72		50 - 150				08/18/21 18:34	08/22/21 07:43	:
13C2 PFTeDA	75		50 - 150				08/18/21 18:34	08/22/21 07:43	
13C3 PFBS	55		50 - 150				08/18/21 18:34	08/22/21 07:43	
1802 PFHxS	66		50 - 150				08/18/21 18:34	08/22/21 07:43	
13C4 PFOS	60		50 ₋ 150				08/18/21 18:34	08/22/21 07:43	
d3-NMeFOSAA	72		50 - 150				08/18/21 18:34	08/22/21 07:43	
d5-NEtFOSAA	92		50 - 150				08/18/21 18:34	08/22/21 07:43	
13C3 HFPO-DA	56		50 - 150				08/18/21 18:34	08/22/21 07:43	•
General Chemistry	B P	O1187	Б.		1114	-	D	Amaliana	D:: -
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	7.0		0.1	0.1	%			08/18/21 15:17	•

0.1

0.1 %

93.0

08/18/21 15:17

Client: Shannon & Wilson, Inc Job ID: 320-77655-1

Project/Site: AKN PFAS

Client Sample ID: 21AKN-SS-06 Lab Sample ID: 320-77655-13

Date Collected: 08/15/21 10:04 **Matrix: Solid** Date Received: 08/17/21 10:32 Percent Solids: 92.4

Perfluorohexanoic acid (PFHxA) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA) Perfluorodecanoic acid (PFDA) Perfluoroundecanoic acid (PFUnA) Perfluorododecanoic acid (PFDoA) Perfluorotridecanoic acid (PFTriA) Perfluorotetradecanoic acid (PFTeA) Perfluorobutanesulfonic acid (PFBS) Perfluorobutanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) 9-Chlorohexadecafluoro-3-oxanonan	ND ND ND ND ND ND ND ND ND ND ND ND ND N		0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21	0.040 0.055 0.023 0.050 0.044 0.031 0.022 0.039 0.040 0.030	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		08/18/21 18:34 08/18/21 18:34 08/18/21 18:34 08/18/21 18:34 08/18/21 18:34 08/18/21 18:34 08/18/21 18:34 08/18/21 18:34 08/18/21 18:34 08/18/21 18:34	08/22/21 07:52 08/22/21 07:52	1 1 1 1 1 1 1 1 1 1
Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA) Perfluorodecanoic acid (PFDA) Perfluorododecanoic acid (PFDoA) Perfluorotridecanoic acid (PFTriA) Perfluorotetradecanoic acid (PFTriA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluoroctanesulfonic acid (PFOS) N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND ND ND ND ND ND ND ND ND ND ND ND ND N		0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21	0.055 0.023 0.050 0.044 0.031 0.022 0.039 0.040 0.030 0.045	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	***************************************	08/18/21 18:34 08/18/21 18:34 08/18/21 18:34 08/18/21 18:34 08/18/21 18:34 08/18/21 18:34 08/18/21 18:34 08/18/21 18:34 08/18/21 18:34	08/22/21 07:52 08/22/21 07:52 08/22/21 07:52 08/22/21 07:52 08/22/21 07:52 08/22/21 07:52 08/22/21 07:52 08/22/21 07:52 08/22/21 07:52 08/22/21 07:52	1 1 1 1 1 1 1
Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA) Perfluoroundecanoic acid (PFUnA) Perfluorododecanoic acid (PFDoA) Perfluorotridecanoic acid (PFTriA) Perfluorotetradecanoic acid (PFTeA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluoroctanesulfonic acid (PFOS) N-methylperfluoroctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluoroctanesulfonamidoac etic acid (NEtFOSAA)	ND ND ND ND ND ND ND ND ND ND ND ND ND N		0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21	0.023 0.050 0.044 0.031 0.022 0.039 0.040 0.030 0.045	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	08/18/21 18:34 08/18/21 18:34 08/18/21 18:34 08/18/21 18:34 08/18/21 18:34 08/18/21 18:34 08/18/21 18:34 08/18/21 18:34	08/22/21 07:52 08/22/21 07:52 08/22/21 07:52 08/22/21 07:52 08/22/21 07:52 08/22/21 07:52 08/22/21 07:52 08/22/21 07:52 08/22/21 07:52	1 1 1 1 1 1
Perfluorodecanoic acid (PFDA) Perfluoroundecanoic acid (PFUnA) Perfluorododecanoic acid (PFDoA) Perfluorotridecanoic acid (PFTriA) Perfluorotetradecanoic acid (PFTeA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND ND ND ND ND ND ND ND ND ND ND ND ND		0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21	0.050 0.044 0.031 0.022 0.039 0.040 0.030 0.045	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	***************************************	08/18/21 18:34 08/18/21 18:34 08/18/21 18:34 08/18/21 18:34 08/18/21 18:34 08/18/21 18:34 08/18/21 18:34	08/22/21 07:52 08/22/21 07:52 08/22/21 07:52 08/22/21 07:52 08/22/21 07:52 08/22/21 07:52 08/22/21 07:52 08/22/21 07:52	1 1 1 1 1 1
Perfluoroundecanoic acid (PFUnA) Perfluorododecanoic acid (PFDoA) Perfluorotridecanoic acid (PFTriA) Perfluorotetradecanoic acid (PFTeA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND ND ND ND ND ND ND ND ND ND ND		0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21	0.044 0.031 0.022 0.039 0.040 0.030 0.045	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	08/18/21 18:34 08/18/21 18:34 08/18/21 18:34 08/18/21 18:34 08/18/21 18:34 08/18/21 18:34	08/22/21 07:52 08/22/21 07:52 08/22/21 07:52 08/22/21 07:52 08/22/21 07:52 08/22/21 07:52 08/22/21 07:52	1 1 1 1 1
Perfluorododecanoic acid (PFDoA) Perfluorotridecanoic acid (PFTriA) Perfluorotetradecanoic acid (PFTeA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND ND ND ND ND ND		0.21 0.21 0.21 0.21 0.21 0.21 0.21	0.031 0.022 0.039 0.040 0.030 0.045 0.024	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$ \$	08/18/21 18:34 08/18/21 18:34 08/18/21 18:34 08/18/21 18:34 08/18/21 18:34 08/18/21 18:34	08/22/21 07:52 08/22/21 07:52 08/22/21 07:52 08/22/21 07:52 08/22/21 07:52 08/22/21 07:52	1 1 1 1 1
Perfluorotridecanoic acid (PFTriA) Perfluorotetradecanoic acid (PFTeA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND ND ND ND ND ND		0.21 0.21 0.21 0.21 0.21 0.21	0.022 0.039 0.040 0.030 0.045 0.024	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$	08/18/21 18:34 08/18/21 18:34 08/18/21 18:34 08/18/21 18:34 08/18/21 18:34	08/22/21 07:52 08/22/21 07:52 08/22/21 07:52 08/22/21 07:52 08/22/21 07:52	1 1 1 1
Perfluorotetradecanoic acid (PFTeA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND ND ND ND ND		0.21 0.21 0.21 0.21 0.21	0.039 0.040 0.030 0.045 0.024	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$	08/18/21 18:34 08/18/21 18:34 08/18/21 18:34 08/18/21 18:34	08/22/21 07:52 08/22/21 07:52 08/22/21 07:52 08/22/21 07:52	1 1 1
Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND ND ND ND		0.21 0.21 0.21 0.21 0.21	0.040 0.030 0.045 0.024	ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$	08/18/21 18:34 08/18/21 18:34 08/18/21 18:34	08/22/21 07:52 08/22/21 07:52 08/22/21 07:52	1 1
Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND ND ND		0.21 0.21 0.21 0.21	0.030 0.045 0.024	ug/Kg ug/Kg ug/Kg	\$ \$ \$	08/18/21 18:34 08/18/21 18:34	08/22/21 07:52 08/22/21 07:52	1
Perfluorooctanesulfonic acid (PFOS) N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND ND ND		0.21 0.21 0.21	0.045 0.024	ug/Kg ug/Kg	‡	08/18/21 18:34	08/22/21 07:52	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND ND		0.21 0.21	0.024	ug/Kg				
cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.21		0 0		08/18/21 18:34	08/22/21 07:52	1
etic acid (NEtFOSAA)				0.050					
9-Chlorohevadecafluoro-3-ovanonan	ND				ug/Kg	≎	08/18/21 18:34	08/22/21 07:52	1
e-1-sulfonic acid			0.21		ug/Kg		08/18/21 18:34	08/22/21 07:52	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.21		ug/Kg	₩	08/18/21 18:34	08/22/21 07:52	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		0.21		ug/Kg	₩	08/18/21 18:34	08/22/21 07:52	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.21	0.041	ug/Kg	₩	08/18/21 18:34	08/22/21 07:52	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	70		50 - 150				08/18/21 18:34	08/22/21 07:52	1
13C4 PFHpA	65		50 - 150				08/18/21 18:34	08/22/21 07:52	1
13C4 PFOA	77		50 - 150				08/18/21 18:34	08/22/21 07:52	1
13C5 PFNA	66		50 - 150				08/18/21 18:34	08/22/21 07:52	1
13C2 PFDA	79		50 - 150				08/18/21 18:34	08/22/21 07:52	1
13C2 PFUnA	69		50 - 150				08/18/21 18:34	08/22/21 07:52	1
13C2 PFDoA	79		50 - 150				08/18/21 18:34	08/22/21 07:52	1
13C2 PFTeDA	72		50 - 150				08/18/21 18:34	08/22/21 07:52	1
13C3 PFBS	62		50 - 150				08/18/21 18:34	08/22/21 07:52	1
18O2 PFHxS	69		50 - 150				08/18/21 18:34	08/22/21 07:52	1
13C4 PFOS	65		50 - 150				08/18/21 18:34	08/22/21 07:52	1
d3-NMeFOSAA	80		50 - 150				08/18/21 18:34	08/22/21 07:52	1
d5-NEtFOSAA	80		50 - 150				08/18/21 18:34	08/22/21 07:52	1
13C3 HFPO-DA	57		50 - 150				08/18/21 18:34	08/22/21 07:52	1
General Chemistry	D M	Our life : :	51		1114	_	Duan - · · · · ·	Amal:	D:: =
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture Percent Solids	7.6 92.4		0.1 0.1	0.1 0.1				08/18/21 15:17 08/18/21 15:17	1

Client: Shannon & Wilson, Inc Job ID: 320-77655-1 Project/Site: AKN PFAS

Client Sample ID: 21AKN-SS-07

Lab Sample ID: 320-77655-14 Date Collected: 08/15/21 10:31 **Matrix: Solid**

Date Received: 08/17/21 10:32 Percent Solids: 91.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		0.21	0.033	ug/Kg	— <u></u>	08/18/21 18:34	08/22/21 08:02	1
Perfluoroheptanoic acid (PFHpA)	ND		0.21	0.041	ug/Kg	₩	08/18/21 18:34	08/22/21 08:02	1
Perfluorooctanoic acid (PFOA)	ND		0.21	0.057	ug/Kg	₽	08/18/21 18:34	08/22/21 08:02	1
Perfluorononanoic acid (PFNA)	ND		0.21	0.024	ug/Kg	₽	08/18/21 18:34	08/22/21 08:02	1
Perfluorodecanoic acid (PFDA)	ND		0.21	0.051	ug/Kg	₽	08/18/21 18:34	08/22/21 08:02	1
Perfluoroundecanoic acid (PFUnA)	ND		0.21	0.045	ug/Kg	₩	08/18/21 18:34	08/22/21 08:02	1
Perfluorododecanoic acid (PFDoA)	ND		0.21	0.032	ug/Kg	₩	08/18/21 18:34	08/22/21 08:02	1
Perfluorotridecanoic acid (PFTriA)	ND		0.21	0.022	ug/Kg	₩	08/18/21 18:34	08/22/21 08:02	1
Perfluorotetradecanoic acid (PFTeA)	ND		0.21	0.040	ug/Kg	₩	08/18/21 18:34	08/22/21 08:02	1
Perfluorobutanesulfonic acid (PFBS)	ND		0.21	0.041	ug/Kg	₩	08/18/21 18:34	08/22/21 08:02	1
Perfluorohexanesulfonic acid (PFHxS)	ND		0.21	0.031	ug/Kg	₽	08/18/21 18:34	08/22/21 08:02	1
Perfluorooctanesulfonic acid (PFOS)	ND		0.21	0.046	ug/Kg	₽	08/18/21 18:34	08/22/21 08:02	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.21	0.025	ug/Kg		08/18/21 18:34	08/22/21 08:02	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.21		ug/Kg	₩	08/18/21 18:34	08/22/21 08:02	1
9-Chlorohexadecafluoro-3-oxanonan	ND		0.21	0.037	ug/Kg	₩	08/18/21 18:34	08/22/21 08:02	1
e-1-sulfonic acid Hexafluoropropylene Oxide Dimer	ND		0.21	0.044	ug/Kg		08/18/21 18:34	08/22/21 08:02	1
Acid (HFPO-DA)	N.D.		0.04	0.000			00/40/04 40 04	00/00/04 00 00	
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		0.21		ug/Kg		08/18/21 18:34		1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.21	0.042	ug/Kg	₽	08/18/21 18:34	08/22/21 08:02	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	68		50 - 150				08/18/21 18:34	08/22/21 08:02	1
13C4 PFHpA	73		50 - 150				08/18/21 18:34	08/22/21 08:02	1
13C4 PFOA	76		50 - 150				08/18/21 18:34	08/22/21 08:02	1
13C5 PFNA	76		50 - 150				08/18/21 18:34	08/22/21 08:02	1
13C2 PFDA	73		50 - 150				08/18/21 18:34	08/22/21 08:02	1
13C2 PFUnA	76		50 - 150				08/18/21 18:34	08/22/21 08:02	1
13C2 PFDoA	75		50 - 150				08/18/21 18:34	08/22/21 08:02	1
13C2 PFTeDA	74		50 - 150				08/18/21 18:34	08/22/21 08:02	1
13C3 PFBS	65		50 - 150				08/18/21 18:34	08/22/21 08:02	1
1802 PFHxS	64		50 ₋ 150				08/18/21 18:34	08/22/21 08:02	1
13C4 PFOS	62		50 ₋ 150				08/18/21 18:34	08/22/21 08:02	1
d3-NMeFOSAA	83		50 - 150				08/18/21 18:34	08/22/21 08:02	1
d5-NEtFOSAA	88		50 ₋ 150				08/18/21 18:34	08/22/21 08:02	1
13C3 HFPO-DA	57		50 - 150					08/22/21 08:02	1
General Chemistry									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Percent Moisture	8.3		0.1	0.1	%			08/18/21 15:17	1
Percent Solids	91.7		0.1	0.1	%			08/18/21 15:17	1

Client: Shannon & Wilson, Inc Job ID: 320-77655-1 Project/Site: AKN PFAS

Client Sample ID: 21AKN-SS-08

Lab Sample ID: 320-77655-15 Date Collected: 08/15/21 10:43 **Matrix: Solid**

Date Received: 08/17/21 10:32 Percent Solids: 92.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		0.20	0.031	ug/Kg	<u></u>	08/18/21 18:34	08/22/21 08:11	1
Perfluoroheptanoic acid (PFHpA)	ND		0.20	0.038	ug/Kg	₩	08/18/21 18:34	08/22/21 08:11	1
Perfluorooctanoic acid (PFOA)	ND		0.20	0.054	ug/Kg	₩	08/18/21 18:34	08/22/21 08:11	1
Perfluorononanoic acid (PFNA)	ND		0.20	0.022	ug/Kg	₩	08/18/21 18:34	08/22/21 08:11	1
Perfluorodecanoic acid (PFDA)	ND		0.20	0.049	ug/Kg	₩	08/18/21 18:34	08/22/21 08:11	1
Perfluoroundecanoic acid (PFUnA)	ND		0.20	0.042	ug/Kg	₩	08/18/21 18:34	08/22/21 08:11	1
Perfluorododecanoic acid (PFDoA)	ND		0.20	0.030	ug/Kg	₩	08/18/21 18:34	08/22/21 08:11	1
Perfluorotridecanoic acid (PFTriA)	ND		0.20	0.021	ug/Kg	₩	08/18/21 18:34	08/22/21 08:11	1
Perfluorotetradecanoic acid (PFTeA)	ND		0.20	0.037	ug/Kg	≎	08/18/21 18:34	08/22/21 08:11	1
Perfluorobutanesulfonic acid (PFBS)	ND		0.20	0.038	ug/Kg	≎	08/18/21 18:34	08/22/21 08:11	1
Perfluorohexanesulfonic acid (PFHxS)	ND		0.20	0.029	ug/Kg	₽	08/18/21 18:34	08/22/21 08:11	1
Perfluorooctanesulfonic acid (PFOS)	ND		0.20		ug/Kg	₽	08/18/21 18:34	08/22/21 08:11	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.20	0.023	ug/Kg		08/18/21 18:34	08/22/21 08:11	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.20	0.049	ug/Kg	₩	08/18/21 18:34	08/22/21 08:11	1
9-Chlorohexadecafluoro-3-oxanonan	ND		0.20	0.035	ug/Kg	₽	08/18/21 18:34	08/22/21 08:11	1
e-1-sulfonic acid									
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.20		ug/Kg		08/18/21 18:34		1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		0.20		ug/Kg		08/18/21 18:34		1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.20	0.039	ug/Kg	₽	08/18/21 18:34	08/22/21 08:11	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	53		50 - 150				08/18/21 18:34	08/22/21 08:11	1
13C4 PFHpA	63		50 - 150				08/18/21 18:34	08/22/21 08:11	1
13C4 PFOA	75		50 - 150				08/18/21 18:34	08/22/21 08:11	1
13C5 PFNA	66		50 - 150				08/18/21 18:34	08/22/21 08:11	1
13C2 PFDA	71		50 - 150				08/18/21 18:34	08/22/21 08:11	1
13C2 PFUnA	62		50 - 150				08/18/21 18:34	08/22/21 08:11	1
13C2 PFDoA	59		50 - 150				08/18/21 18:34	08/22/21 08:11	1
13C2 PFTeDA	70		50 - 150				08/18/21 18:34	08/22/21 08:11	1
13C3 PFBS	56		50 - 150				08/18/21 18:34	08/22/21 08:11	1
1802 PFHxS	57		50 - 150				08/18/21 18:34	08/22/21 08:11	1
13C4 PFOS	52		50 - 150				08/18/21 18:34	08/22/21 08:11	1
d3-NMeFOSAA	66		50 - 150				08/18/21 18:34	08/22/21 08:11	1
d5-NEtFOSAA	78		50 - 150				08/18/21 18:34	08/22/21 08:11	1
13C3 HFPO-DA	55		50 - 150				08/18/21 18:34	08/22/21 08:11	1
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	7.6		0.1	0.1				08/18/21 15:17	1
Percent Solids	92.4		0.1	0.1	%			08/18/21 15:17	1

Client: Shannon & Wilson, Inc Job ID: 320-77655-1 Project/Site: AKN PFAS

Client Sample ID: 21AKN-SS-09

Date Received: 08/17/21 10:32

Lab Sample ID: 320-77655-16 Date Collected: 08/15/21 10:55 Matrix: Solid

Percent Solids: 91.5

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 Analyte Result Qualifier **MDL** Unit RL D Prepared Analyzed Dil Fac Perfluorohexanoic acid (PFHxA) ND 0.22 0.033 ug/Kg 08/18/21 18:34 08/22/21 08:20 Perfluoroheptanoic acid (PFHpA) ND 0.22 © 08/18/21 18:34 08/22/21 08:20 0.041 ug/Kg Perfluorooctanoic acid (PFOA) ND 0.22 0.057 ug/Kg © 08/18/21 18:34 08/22/21 08:20 Perfluorononanoic acid (PFNA) ND 0.22 0.024 ug/Kg 08/18/21 18:34 08/22/21 08:20 Perfluorodecanoic acid (PFDA) ND 0.22 0.052 ug/Kg 08/18/21 18:34 08/22/21 08:20 Perfluoroundecanoic acid 0.17 J 0.22 0.045 ug/Kg © 08/18/21 18:34 08/22/21 08:20 (PFUnA) Perfluorododecanoic acid 0.060 J 0.22 0.032 ug/Kg © 08/18/21 18:34 08/22/21 08:20 (PFDoA) 0.22 0.023 ug/Kg 08/18/21 18:34 08/22/21 08:20 Perfluorotridecanoic acid (PFTriA) 0.61 Perfluorotetradecanoic acid 0.22 0.040 ug/Kg 08/18/21 18:34 08/22/21 08:20 0.046 J (PFTeA) Perfluorobutanesulfonic acid (PFBS) ND 0.22 0.041 ug/Kg 08/18/21 18:34 08/22/21 08:20 Perfluorohexanesulfonic acid 0.10 J 0.22 0.031 ug/Kg 08/18/21 18:34 08/22/21 08:20 (PFHxS) 0.22 © 08/18/21 18:34 08/22/21 08:20 Perfluorooctanesulfonic acid 0.046 ug/Kg 1.4 (PFOS) ND N-methylperfluorooctanesulfonamidoa 0.22 0.025 ug/Kg © 08/18/21 18:34 08/22/21 08:20 cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac ND 0.22 0.052 ug/Kg © 08/18/21 18:34 08/22/21 08:20 etic acid (NEtFOSAA) 9-Chlorohexadecafluoro-3-oxanonan 0.22 0.038 ug/Kg © 08/18/21 18:34 08/22/21 08:20 ND e-1-sulfonic acid Hexafluoropropylene Oxide Dimer ND 0.22 0.044 ug/Kg © 08/18/21 18:34 08/22/21 08:20 Acid (HFPO-DA) 0.033 ug/Kg 11-Chloroeicosafluoro-3-oxaundecan ND 0.22 © 08/18/21 18:34 08/22/21 08:20 e-1-sulfonic acid 4.8-Dioxa-3H-perfluorononanoic acid ND 0.22 © 08/18/21 18:34 08/22/21 08:20 0.042 ug/Kg (ADONA)

(ADONA)						
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	54		50 - 150	08/18/21 18:34	08/22/21 08:20	1
13C4 PFHpA	56		50 - 150	08/18/21 18:34	08/22/21 08:20	1
13C4 PFOA	65		50 - 150	08/18/21 18:34	08/22/21 08:20	1
13C5 PFNA	58		50 - 150	08/18/21 18:34	08/22/21 08:20	1
13C2 PFDA	70		50 - 150	08/18/21 18:34	08/22/21 08:20	1
13C2 PFUnA	61		50 - 150	08/18/21 18:34	08/22/21 08:20	1
13C2 PFDoA	57		50 - 150	08/18/21 18:34	08/22/21 08:20	1
13C2 PFTeDA	47	*5-	50 - 150	08/18/21 18:34	08/22/21 08:20	1
13C3 PFBS	60		50 - 150	08/18/21 18:34	08/22/21 08:20	1
1802 PFHxS	65		50 - 150	08/18/21 18:34	08/22/21 08:20	1
13C4 PFOS	57		50 - 150	08/18/21 18:34	08/22/21 08:20	1
d3-NMeFOSAA	59		50 - 150	08/18/21 18:34	08/22/21 08:20	1
d5-NEtFOSAA	61		50 - 150	08/18/21 18:34	08/22/21 08:20	1
13C3 HFPO-DA	55		50 - 150	08/18/21 18:34	08/22/21 08:20	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	8.5		0.1	0.1	%			08/18/21 15:17	1
Percent Solids	91.5		0.1	0.1	%			08/18/21 15:17	1

Eurofins TestAmerica, Sacramento

Page 27 of 74

Client: Shannon & Wilson, Inc Job ID: 320-77655-1 Project/Site: AKN PFAS

Client Sample ID: 21AKN-SS-109

Lab Sample ID: 320-77655-17 Date Collected: 08/15/21 10:45 **Matrix: Solid** Percent Solids: 92.3 Date Received: 08/17/21 10:32

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perfluorohexanoic acid (PFHxA)	ND		0.19	0.030	ug/Kg	☼	08/18/21 18:34	08/22/21 08:29	
Perfluoroheptanoic acid (PFHpA)	ND		0.19	0.037	ug/Kg	≎	08/18/21 18:34	08/22/21 08:29	
Perfluorooctanoic acid (PFOA)	ND		0.19	0.052	ug/Kg	☼	08/18/21 18:34	08/22/21 08:29	
Perfluorononanoic acid (PFNA)	ND		0.19	0.021	ug/Kg	₽	08/18/21 18:34	08/22/21 08:29	
Perfluorodecanoic acid (PFDA)	ND		0.19	0.047	ug/Kg	☼	08/18/21 18:34	08/22/21 08:29	
Perfluoroundecanoic acid (PFUnA)	0.14	J	0.19	0.041	ug/Kg	₩	08/18/21 18:34	08/22/21 08:29	,
Perfluorododecanoic acid (PFDoA)	0.061	J	0.19	0.029	ug/Kg	₩	08/18/21 18:34	08/22/21 08:29	
Perfluorotridecanoic acid (PFTriA)	0.51		0.19	0.020	ug/Kg	₩	08/18/21 18:34	08/22/21 08:29	
Perfluorotetradecanoic acid (PFTeA)	ND		0.19		ug/Kg	☆	08/18/21 18:34	08/22/21 08:29	
Perfluorobutanesulfonic acid (PFBS)	ND		0.19		ug/Kg			08/22/21 08:29	· · · · · · · .
Perfluorohexanesulfonic acid	0.11	4	0.19		ug/Kg	Ď.		08/22/21 08:29	
(PFHxS) Perfluorooctanesulfonic acid	1.0	3	0.19		ug/Kg			08/22/21 08:29	,
(PFOS)	1.0		0.19	0.042	ug/ixg	¥	00/10/21 10.34	00/22/21 00.29	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.19	0.022	ug/Kg		08/18/21 18:34	08/22/21 08:29	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.19	0.047	ug/Kg	₩	08/18/21 18:34	08/22/21 08:29	,
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		0.19	0.034	ug/Kg	₩	08/18/21 18:34	08/22/21 08:29	,
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.19	0.040	ug/Kg	₩	08/18/21 18:34	08/22/21 08:29	,
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		0.19	0.030	ug/Kg	₩	08/18/21 18:34	08/22/21 08:29	,
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.19	0.038	ug/Kg	₩	08/18/21 18:34	08/22/21 08:29	,
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C2 PFHxA	70		50 - 150				08/18/21 18:34	08/22/21 08:29	
13C4 PFHpA	69		50 - 150				08/18/21 18:34	08/22/21 08:29	
13C4 PFOA	77		50 ₋ 150				08/18/21 18:34	08/22/21 08:29	
13C5 PFNA	72		50 - 150				08/18/21 18:34	08/22/21 08:29	
13C2 PFDA	89		50 ₋ 150				08/18/21 18:34	08/22/21 08:29	
13C2 PFUnA	80		50 ₋ 150				08/18/21 18:34	08/22/21 08:29	
13C2 PFDoA	64		50 - 150					08/22/21 08:29	
13C2 PFTeDA	62		50 - 150					08/22/21 08:29	
13C3 PFBS	75		50 - 150					08/22/21 08:29	
1802 PFHxS	70		50 - 150					08/22/21 08:29	
13C4 PFOS	70 78		50 - 150 50 - 150					08/22/21 08:29	
d3-NMeFOSAA	76 74		50 - 150 50 - 150					08/22/21 08:29	•
d5-NEtFOSAA								08/22/21 08:29	
13C3 HFPO-DA	80 68		50 - 150 50 - 150					08/22/21 08:29	•
General Chemistry									
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Percent Moisture	7.7		0.1	0.1	%	_		08/18/21 15:17	
Percent Solids	92.3		0.1	0.1	%			08/18/21 15:17	

Eurofins TestAmerica, Sacramento

8/30/2021

Client: Shannon & Wilson, Inc Job ID: 320-77655-1

Project/Site: AKN PFAS

Client Sample ID: 21AKN-SS-10 Lab Sample ID: 320-77655-18

Date Collected: 08/15/21 11:10 **Matrix: Solid** Date Received: 08/17/21 10:32 Percent Solids: 89.5

13C2 PFHxA 59 50 . 150 08/18/21 18:34 08 13C4 PFHpA 71 50 . 150 08/18/21 18:34 08 13C4 PFDA 67 50 . 150 08/18/21 18:34 08 13C5 PFNA 67 50 . 150 08/18/21 18:34 08 13C2 PFDA 67 50 . 150 08/18/21 18:34 08 13C2 PFDA 67 50 . 150 08/18/21 18:34 08 13C2 PFDA 68 50 . 150 08/18/21 18:34 08 13C2 PFDA 68 50 . 150 08/18/21 18:34 08 13C2 PFDA 69 50 . 150 08/18/21 18:34 08 13C2 PFDA 69 50 . 150 08/18/21 18:34 08 13C2 PFTeDA 77 50 . 150 08/18/21 18:34 08 13C3 PFBS 54 50 . 150 08/18/21 18:34 08 13C4 PFOS 59 50 . 150 08/18/21 18:34 08 13C4 PFOS 59 50 . 150 08/18/21 18:34 08 13C3 HFPO-DA 50 . 150 08/18/21 18:34 08 13C3 HFPO-DA 50 .	Analyzed	Dil Fa
Perfluorooctanoic acid (PFOA)	08/22/21 08:47	
Perfluorononanoic acid (PFNA)	08/22/21 08:47	
Perfluorodecanoic acid (PFDA) ND 0.22 0.053 ug/Kg 0.8/18/21 18:34 08 Perfluoroundecanoic acid (PFUnA) ND 0.22 0.046 ug/Kg 0.8/18/21 18:34 08 Perfluorotodecanoic acid (PFDA) ND 0.22 0.033 ug/Kg 0.8/18/21 18:34 08 Perfluorototridecanoic acid (PFTA) ND 0.22 0.023 ug/Kg 0.8/18/21 18:34 08 Perfluorototridecanoic acid (PFTA) ND 0.22 0.041 ug/Kg 0.8/18/21 18:34 08 Perfluorototridecanoic acid (PFTA) ND 0.22 0.042 ug/Kg 0.8/18/21 18:34 08 Perfluorototridecanoic acid (PFTA) ND 0.22 0.042 ug/Kg 0.8/18/21 18:34 08 Perfluorototanesulfonic acid (PFDS) ND 0.22 0.032 ug/Kg 0.8/18/21 18:34 08 Perfluorotocanesulfonic acid (PFOS) ND 0.22 0.047 ug/Kg 0.8/18/21 18:34 08 Perfluorotocanesulfonic acid (PFOS) ND 0.22 0.047 ug/Kg 0.8/18/21 18:34 08 Perfluorotocanesulfonic acid (PFOS) ND 0.22 0.053 ug/Kg 0.8/18/21 18:34 08 Perfluorotocanesulfonic acid (NMEFOSAA) N-ethylperfluorocanesulfonamidoac ND 0.22 0.053 ug/Kg 0.8/18/21 18:34 08 Perfluorotocanesulfonic acid ND 0.22 0.045 ug/Kg 0.8/18/21 18:34 08 Perfluorotocanesulfonic acid ND 0.22 0.045 ug/Kg 0.8/18/21 18:34 08 Perfluorotocanesulfonic acid ND 0.22 0.045 ug/Kg 0.8/18/21 18:34 08 Perfluorotocanesulfonic acid ND 0.22 0.045 ug/Kg 0.8/18/21 18:34 08 Perfluorotocanesulfonic acid ND 0.22 0.045 ug/Kg 0.8/18/21 18:34 08 Perfluorotocanesulfonic acid ND 0.22 0.045 ug/Kg 0.8/18/21 18:34 08 Perfluorotocanesulfonic acid ND 0.22 0.045 ug/Kg 0.8/18/21 18:34 08 Perfluorotocanesulfonic acid ND 0.22 0.045 ug/Kg 0.8/18/21 18:34 08 Perfluorotocanesulfonic acid ND 0.22 0.045 ug/Kg 0.8/18/21 18:34 08 Perfluorotocanesulfonic acid ND 0.22 0.045 ug/Kg 0.8/18/21 18:34 08 Perfluorotocanesulfonic acid ND 0.22 0.045 ug/Kg 0.8/18/21 18:34 08 Perfluorotocanesulfonic acid ND 0.22 0.045	08/22/21 08:47	
Perfluoroundecanoic acid (PFUnA) ND 0.22 0.046 ug/Kg 0 08/18/21 18:34 08	08/22/21 08:47	
Perfluorododecanoic acid (PFDoA) ND 0.22 0.033 ug/Kg 0.08/18/21 18:34 0.08	08/22/21 08:47	
Perfluorotridecanoic acid (PFTriA) ND 0.22 0.023 ug/Kg 0.08/18/21 18:34 0.08	08/22/21 08:47	
Perfluorotetradecanoic acid (PFTeA) ND 0.22 0.041 ug/Kg 0 88/18/21 18:34 08	08/22/21 08:47	
Perfluorobutanesulfonic acid (PFBS) ND 0.22 0.042 ug/Kg 0.08/18/21 18:34 08	08/22/21 08:47	
Perfluorohexanesulfonic acid (PFHxS) ND 0.22 0.032 ug/Kg 0.08/18/21 18:34 0.08	08/22/21 08:47	
Perfluorooctanesulfonic acid (PFOS) ND 0.22 0.047 ug/Kg 0.08/18/21 18:34 0.08	08/22/21 08:47	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac ND 0.22 0.053 ug/Kg 08/18/21 18:34 08 etic acid (NMeFOSAA) 9-Chlorohexadecafluoro-3-oxanonan ND 0.22 0.039 ug/Kg 08/18/21 18:34 08 e-1-sulfonic acid Hexafluoropropylene Oxide Dimer ND 0.22 0.045 ug/Kg 08/18/21 18:34 08 Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid 4.8-Dioxa-3H-perfluorononanoic acid (ADONA) Isotope Dilution 8/Recovery Qualifier Limits 13C2 PFHxA 59 50-150 08/18/21 18:34 08 13C4 PFOA 67 50-150 08/18/21 18:34 08 13C4 PFDA 67 50-150 08/18/21 18:34 08 13C2 PFDA 67 50-150 08/18/21 18:34 08 13C2 PFDA 68 50-150 08/18/21 18:34 08 13C2 PFDA 69 50-150 08/18/21 18:34 08 13C2 PFDA 69 50-150 08/18/21 18:34 08 13C2 PFDA 69 50-150 08/18/21 18:34 08 13C2 PFDA 69 50-150 08/18/21 18:34 08 13C2 PFDA 69 50-150 08/18/21 18:34 08 13C3 PFBS 54 50-150 08/18/21 18:34 08 13C3 PFBS 54 50-150 08/18/21 18:34 08 13C4 PFOSAA 74 50-150 08/18/21 18:34 08 13C5 PFNA 59 50-150 08/18/21 18:34 08 13C4 PFOSAA 74 50-150 08/18/21 18:34 08 13C4 PFOSAA 74 50-150 08/18/21 18:34 08 13C5 PFDOS 59 50-150 08/18/21 18:34 08 13C6 PFNA 50-150 08/18/21 18:34 08 13C6 PFNA 50-150 08/18/21 18:34 08 13C6 PFDOS 59 50-150 08/18/21 18:34 08 13C6 PFDOS 59 50-150 08/18/21 18:34 08 13C6 PFNA 50-150 08/18/21 18:34 08 13C6 PFDOS 59 50-150 08/18/21 18:34 08 13C6 PFDOS 59 50-150 08/18/21 18:34 08 13C6 PFDOS 59 50-150 08/18/21 18:34 08 13C6 PFNOS 59 50-150 08/18/21 18:34 08	08/22/21 08:47	
cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEFOSAA) 9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid Hexafluoropropylene Oxide Dimer Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) Sotope Dilution Security Se	08/22/21 08:47	
etic acid (NEtFOSAA) 9-Chlorohexadecafluoro-3-oxanonan 9-Chlorohexadecafluoro-3-oxanonan 9-Chlorohexadecafluoro-3-oxanonan 9-Chlorohexadecafluoro-3-oxanonan 9-Chlorohexadecafluoro-3-oxanonan 9-Chlorohexadecafluoro-3-oxanonan ND 0.22 0.045 0g/Kg 08/18/21 18:34 08 0	08/22/21 08:47	
e-1-sulfonic acid Hexafluoropropylene Oxide Dimer ND 0.22 0.045 ug/Kg 08/18/21 18:34 08 Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaundecan ND 0.22 0.034 ug/Kg 08/18/21 18:34 08 Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaundecan ND 0.22 0.034 ug/Kg 08/18/21 18:34 08 Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaundecan ND 0.22 0.043 ug/Kg 08/18/21 18:34 08 Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaundecan ND 0.22 0.043 ug/Kg 08/18/21 18:34 08 Acid (HFPO-DA) 10-22 0.034 ug/Kg 08/18/21 18:34 08 Acid (HFPO-DA) 10-22 0.03	08/22/21 08:47	
Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaundecan e1-sulfonic acid 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) Isotope Dilution	08/22/21 08:47	
e-1-sulfonic acid 4,8-Dioxa-3H-perfluorononanoic acid ND 0.22 0.043 ug/Kg 08/18/21 18:34 08	08/22/21 08:47	
Solution Section Sec	08/22/21 08:47	
13C2 PFHxA 59 50 - 150 08/18/21 18:34 08 13C4 PFHpA 71 50 - 150 08/18/21 18:34 08 13C4 PFOA 67 50 - 150 08/18/21 18:34 08 13C5 PFNA 67 50 - 150 08/18/21 18:34 08 13C2 PFDA 67 50 - 150 08/18/21 18:34 08 13C2 PFDA 67 50 - 150 08/18/21 18:34 08 13C2 PFUnA 68 50 - 150 08/18/21 18:34 08 13C2 PFDOA 69 50 - 150 08/18/21 18:34 08 13C2 PFTeDA 77 50 - 150 08/18/21 18:34 08 13C3 PFBS 54 50 - 150 08/18/21 18:34 08 13C3 PFBS 54 50 - 150 08/18/21 18:34 08 13C4 PFOS 66 50 - 150 08/18/21 18:34 08 13C4 PFOS 59 50 - 150 08/18/21 18:34 08 13C4 PFOS 59 50 - 150 08/18/21 18:34 08 13C5 PFIFOSAA 74 50 - 150 08/18/21 18:34 08 13C6 PFIFOSAA 74 50 - 150 08/18/21 18:34 08 13C6 PFIFOSAA 74 50 - 150 08/18/21 18:34 08 13C6 PFIFOSAA 74 50 - 150 08/18/21 18:34 08 13C6 PFIFOSAA 74 50 - 150 08/18/21 18:34 08 13C6 PFIFOSAA 74 50 - 150 08/18/21 18:34 08 13C6 PFIFOSAA 74 50 - 150 08/18/21 18:34 08 13C6 PFIFOSAA 74 50 - 150 08/18/21 18:34 08	08/22/21 08:47	
13C4 PFHpA 71 50 - 150 08/18/21 18:34 08 13C4 PFOA 67 50 - 150 08/18/21 18:34 08 13C5 PFNA 67 50 - 150 08/18/21 18:34 08 13C2 PFDA 67 50 - 150 08/18/21 18:34 08 13C2 PFUnA 68 50 - 150 08/18/21 18:34 08 13C2 PFDOA 69 50 - 150 08/18/21 18:34 08 13C2 PFTEDA 77 50 - 150 08/18/21 18:34 08 13C3 PFBS 54 50 - 150 08/18/21 18:34 08 18O2 PFHxS 66 50 - 150 08/18/21 18:34 08 13C4 PFOS 59 50 - 150 08/18/21 18:34 08 d5-NEtFOSAA 74 50 - 150 08/18/21 18:34 08 13C3 HFPO-DA 59 50 - 150 08/18/21 18:34 08 General Chemistry Analyte Result Qualifier RL MDL Unit D Prepared	Analyzed	Dil Fa
13C4 PFOA 67 50 - 150 08/18/21 18:34 08 08/18/21 18:34 08 13C5 PFNA 67 50 - 150 08/18/21 18:34 08 08 13C2 PFDA 67 50 - 150 08/18/21 18:34 08 08 13C2 PFUnA 68 50 - 150 08/18/21 18:34 08 08 13C2 PFDOA 69 50 - 150 08/18/21 18:34 08 08 13C3 PFBDA 77 50 - 150 08/18/21 18:34 08 08 13C3 PFBS 54 50 - 150 08/18/21 18:34 08 08 18O2 PFHXS 66 50 - 150 08/18/21 18:34 08 08 13C4 PFOS 59 50 - 150 08/18/21 18:34 08 08 d5-NEtFOSAA 57 50 - 150 08/18/21 18:34 08 08 d5-NEtFOSAA 74 50 - 150 08/18/21 18:34 08 08 General Chemistry Analyte Result Qualifier RL MDL Unit D Prepared	08/22/21 08:47	
13C5 PFNA 67 50 - 150 08/18/21 18:34 08 13C2 PFDA 67 50 - 150 08/18/21 18:34 08 13C2 PFUnA 68 50 - 150 08/18/21 18:34 08 13C2 PFDoA 69 50 - 150 08/18/21 18:34 08 13C2 PFTeDA 77 50 - 150 08/18/21 18:34 08 13C3 PFBS 54 50 - 150 08/18/21 18:34 08 18O2 PFHxS 66 50 - 150 08/18/21 18:34 08 13C4 PFOS 59 50 - 150 08/18/21 18:34 08 d3-NMeFOSAA 57 50 - 150 08/18/21 18:34 08 d5-NEtFOSAA 74 50 - 150 08/18/21 18:34 08 13C3 HFPO-DA 59 50 - 150 08/18/21 18:34 08 General Chemistry Analyte Result Qualifier RL MDL Unit D Prepared	08/22/21 08:47	
13C2 PFDA 67 50 - 150 08/18/21 18:34 08 08 13C2 PFUnA 68 50 - 150 08/18/21 18:34 08 08 13C2 PFDOA 69 50 - 150 08/18/21 18:34 08 08 13C3 PFBDA 77 50 - 150 08/18/21 18:34 08 08 13C3 PFBS 54 50 - 150 08/18/21 18:34 08 08 18O2 PFHxS 66 50 - 150 08/18/21 18:34 08 08 13C4 PFOS 59 50 - 150 08/18/21 18:34 08 08 d3-NMeFOSAA 57 50 - 150 08/18/21 18:34 08 08 d5-NEtFOSAA 74 50 - 150 08/18/21 18:34 08 08 13C3 HFPO-DA 59 50 - 150 08/18/21 18:34 08 08 General Chemistry Analyte Result Qualifier RL MDL Unit D Prepared	08/22/21 08:47	
13C2 PFUnA 68 50 - 150 08/18/21 18:34 08 13C2 PFDoA 69 50 - 150 08/18/21 18:34 08 13C2 PFTeDA 77 50 - 150 08/18/21 18:34 08 13C3 PFBS 54 50 - 150 08/18/21 18:34 08 18O2 PFHxS 66 50 - 150 08/18/21 18:34 08 13C4 PFOS 59 50 - 150 08/18/21 18:34 08 d3-NMeFOSAA 57 50 - 150 08/18/21 18:34 08 d5-NEtFOSAA 74 50 - 150 08/18/21 18:34 08 13C3 HFPO-DA 59 50 - 150 08/18/21 18:34 08 General Chemistry Analyte Result Qualifier RL MDL Unit D Prepared	08/22/21 08:47	
13C2 PFDoA 69 50 - 150 08/18/21 18:34 08 13C2 PFTeDA 77 50 - 150 08/18/21 18:34 08 13C3 PFBS 54 50 - 150 08/18/21 18:34 08 18O2 PFHxS 66 50 - 150 08/18/21 18:34 08 13C4 PFOS 59 50 - 150 08/18/21 18:34 08 d3-NMeFOSAA 57 50 - 150 08/18/21 18:34 08 d5-NEtFOSAA 74 50 - 150 08/18/21 18:34 08 13C3 HFPO-DA 59 50 - 150 08/18/21 18:34 08 General Chemistry Analyte Result Qualifier RL MDL Unit D Prepared	08/22/21 08:47	
13C2 PFTeDA 77 50 - 150 08/18/21 18:34 08 13C3 PFBS 54 50 - 150 08/18/21 18:34 08 18O2 PFHxS 66 50 - 150 08/18/21 18:34 08 13C4 PFOS 59 50 - 150 08/18/21 18:34 08 d3-NMeFOSAA 57 50 - 150 08/18/21 18:34 08 d5-NEtFOSAA 74 50 - 150 08/18/21 18:34 08 13C3 HFPO-DA 59 50 - 150 08/18/21 18:34 08 General Chemistry Analyte Result Qualifier RL MDL Unit D Prepared	08/22/21 08:47	
13C3 PFBS 54 50 - 150 08/18/21 18:34 08 18O2 PFHxS 66 50 - 150 08/18/21 18:34 08 13C4 PFOS 59 50 - 150 08/18/21 18:34 08 d3-NMeFOSAA 57 50 - 150 08/18/21 18:34 08 d5-NEtFOSAA 74 50 - 150 08/18/21 18:34 08 13C3 HFPO-DA 59 50 - 150 08/18/21 18:34 08 General Chemistry Analyte Result Qualifier RL MDL Unit D Prepared	08/22/21 08:47	
1802 PFHxS 66 50 - 150 08/18/21 18:34 08 13C4 PFOS 59 50 - 150 08/18/21 18:34 08 d3-NMeFOSAA 57 50 - 150 08/18/21 18:34 08 d5-NEtFOSAA 74 50 - 150 08/18/21 18:34 08 13C3 HFPO-DA 59 50 - 150 08/18/21 18:34 08 General Chemistry Analyte Result Qualifier RL MDL Unit D Prepared	08/22/21 08:47	
13C4 PFOS 59 50 - 150 08/18/21 18:34 08 08 d3-NMeFOSAA 57 50 - 150 08/18/21 18:34 08 08 d5-NEtFOSAA 74 50 - 150 08/18/21 18:34 08 08 13C3 HFPO-DA 59 50 - 150 08/18/21 18:34 08 General Chemistry Analyte Result Qualifier RL MDL Unit D Prepared	08/22/21 08:47	
d3-NMeFOSAA 57 50 - 150 08/18/21 18:34 08 d5-NEtFOSAA 74 50 - 150 08/18/21 18:34 08 13C3 HFPO-DA 59 50 - 150 08/18/21 18:34 08 General Chemistry Analyte Result Qualifier RL MDL Unit D Prepared	08/22/21 08:47	
d5-NEtFOSAA 74 50 - 150 08/18/21 18:34 08 13C3 HFPO-DA 59 50 - 150 08/18/21 18:34 08 General Chemistry Analyte Result Qualifier RL MDL Unit D Prepared	08/22/21 08:47	
13C3 HFPO-DA 59 50 - 150 08/18/21 18:34 08 General Chemistry Analyte Result Qualifier RL MDL Unit D Prepared	08/22/21 08:47	
13C3 HFPO-DA 59 50 - 150 08/18/21 18:34 08 General Chemistry Analyte Result Qualifier RL MDL Unit D Prepared	08/22/21 08:47	
Analyte Result Qualifier RL MDL Unit D Prepared	08/22/21 08:47	
`		
Percent Meieture 10.5 0.1 0.1 %	Analyzed	Dil Fa
	08/18/21 15:17 08/18/21 15:17	

Client: Shannon & Wilson, Inc

Job ID: 320-77655-1

Project/Site: AKN PFAS

Client Sample ID: 21AKN-SS-11

Date Collected: 08/15/21 11:18

Date Received: 08/17/21 10:32

Percent Moisture

Percent Solids

Lab Sample ID: 320-77655-19

Matrix: Solid

Matrix: Solid Percent Solids: 93.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		2.1	0.33	ug/Kg	<u></u>	08/18/21 18:34	08/22/21 08:56	10
Perfluoroheptanoic acid (PFHpA)	ND		2.1	0.40	ug/Kg	☼	08/18/21 18:34	08/22/21 08:56	10
Perfluorooctanoic acid (PFOA)	0.62	J	2.1	0.56	ug/Kg	≎	08/18/21 18:34	08/22/21 08:56	10
Perfluorononanoic acid (PFNA)	ND		2.1	0.23	ug/Kg	₽	08/18/21 18:34	08/22/21 08:56	10
Perfluorodecanoic acid (PFDA)	ND		2.1	0.51	ug/Kg	☼	08/18/21 18:34	08/22/21 08:56	10
Perfluoroundecanoic acid (PFUnA)	ND		2.1	0.45	ug/Kg	₽	08/18/21 18:34	08/22/21 08:56	10
Perfluorododecanoic acid (PFDoA)	ND		2.1	0.32	ug/Kg	₽	08/18/21 18:34	08/22/21 08:56	10
Perfluorotridecanoic acid (PFTriA)	ND		2.1	0.22	ug/Kg	☼	08/18/21 18:34	08/22/21 08:56	10
Perfluorotetradecanoic acid (PFTeA)	ND		2.1	0.39	ug/Kg	₽	08/18/21 18:34	08/22/21 08:56	10
Perfluorobutanesulfonic acid (PFBS)	ND		2.1	0.40	ug/Kg	₽	08/18/21 18:34	08/22/21 08:56	10
Perfluorohexanesulfonic acid (PFHxS)	ND		2.1	0.31	ug/Kg	≎	08/18/21 18:34	08/22/21 08:56	10
Perfluorooctanesulfonic acid (PFOS)	1.9	JI	2.1	0.46	ug/Kg	₽	08/18/21 18:34	08/22/21 08:56	10
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		2.1	0.25	ug/Kg	₽	08/18/21 18:34	08/22/21 08:56	10
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		2.1	0.51	ug/Kg	₩	08/18/21 18:34	08/22/21 08:56	10
9-Chlorohexadecafluoro-3-oxanonan	ND		2.1	0.37	ug/Kg	☼	08/18/21 18:34	08/22/21 08:56	10
e-1-sulfonic acid							- 1 1 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2		
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		2.1		ug/Kg	₽		08/22/21 08:56	10
11-Chloroeicosafluoro-3-oxaundecan	ND		2.1	0.33	ug/Kg	☼	08/18/21 18:34	08/22/21 08:56	10
e-1-sulfonic acid 4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.1	0.42	ug/Kg	₽	08/18/21 18:34	08/22/21 08:56	10
(ADONA) Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C2 PFHxA	49	*5-	50 - 150					08/22/21 08:56	10
13C4 PFHpA	61	J	50 - 150 50 - 150					08/22/21 08:56	10
13C4 PFOA	68		50 - 150					08/22/21 08:56	10
13C5 PFNA	63		50 - 150					08/22/21 08:56	10
13C2 PFDA	62		50 - 150					08/22/21 08:56	10
13C2 PFUnA	54		50 - 150					08/22/21 08:56	10
13C2 PFDoA	54		50 - 150					08/22/21 08:56	10
13C2 PFTeDA	61		50 - 150					08/22/21 08:56	10
13C3 PFBS	52		50 - 150					08/22/21 08:56	10
1802 PFHxS	55		50 ₋ 150					08/22/21 08:56	10
13C4 PFOS	50		50 - 150 50 - 150					08/22/21 08:56	10
d3-NMeFOSAA	58		50 - 150 50 - 150					08/22/21 08:56	10
d5-NEtFOSAA	72		50 - 150 50 - 150					08/22/21 08:56	10
13C3 HFPO-DA	45	*5-	50 - 150					08/22/21 08:56	1
General Chemistry									

Eurofins TestAmerica, Sacramento

08/18/21 15:17

08/18/21 15:17

0.1

0.1

6.7

93.3

0.1 %

0.1 %

9

4 4

12

1 /

13

8/30/2021

Client: Shannon & Wilson, Inc Job ID: 320-77655-1

Project/Site: AKN PFAS

Client Sample ID: 21AKN-SS-12 Lab Sample ID: 320-77655-20

Date Collected: 08/15/21 11:33 **Matrix: Solid** Date Received: 08/17/21 10:32 Percent Solids: 94.6

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Perfluorohexanoic acid (PFHxA)	0.18	J	0.21	0.032	ug/Kg	<u></u>	08/18/21 18:34	08/22/21 09:24	
Perfluoroheptanoic acid (PFHpA)	0.061	J	0.21	0.040	ug/Kg	₩	08/18/21 18:34	08/22/21 09:24	
Perfluorooctanoic acid (PFOA)	2.4		0.21	0.055	ug/Kg	≎	08/18/21 18:34	08/22/21 09:24	
Perfluorononanoic acid (PFNA)	0.054	JI	0.21	0.023	ug/Kg	₽	08/18/21 18:34	08/22/21 09:24	
Perfluorodecanoic acid (PFDA)	ND		0.21	0.050	ug/Kg	₽	08/18/21 18:34	08/22/21 09:24	
Perfluoroundecanoic acid (PFUnA)	0.11	J	0.21	0.044	ug/Kg	₩	08/18/21 18:34	08/22/21 09:24	
Perfluorododecanoic acid (PFDoA)	ND		0.21	0.031	ug/Kg	₩	08/18/21 18:34	08/22/21 09:24	
Perfluorotridecanoic acid (PFTriA)	0.054	J	0.21	0.022	ug/Kg	₩	08/18/21 18:34	08/22/21 09:24	
Perfluorotetradecanoic acid (PFTeA)	ND		0.21	0.039	ug/Kg	₩	08/18/21 18:34	08/22/21 09:24	
Perfluorobutanesulfonic acid (PFBS)	ND		0.21	0.040	ug/Kg	≎	08/18/21 18:34	08/22/21 09:24	
Perfluorohexanesulfonic acid (PFHxS)	1.6		0.21	0.030	ug/Kg	₩	08/18/21 18:34	08/22/21 09:24	
Perfluorooctanesulfonic acid	3.3		0.21	0.045	ug/Kg	₩	08/18/21 18:34	08/22/21 09:24	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.21	0.024	ug/Kg	₽	08/18/21 18:34	08/22/21 09:24	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.21	0.050	ug/Kg	₩	08/18/21 18:34	08/22/21 09:24	
9-Chlorohexadecafluoro-3-oxanonan 9-1-sulfonic acid	ND		0.21	0.036	ug/Kg	₩	08/18/21 18:34	08/22/21 09:24	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.21	0.043	ug/Kg	₩	08/18/21 18:34	08/22/21 09:24	
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		0.21		ug/Kg			08/22/21 09:24	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.21	0.041	ug/Kg	₩	08/18/21 18:34	08/22/21 09:24	
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
13C2 PFHxA	74		50 - 150				08/18/21 18:34	08/22/21 09:24	
13C4 PFHpA	66		50 - 150				08/18/21 18:34	08/22/21 09:24	
13C4 PFOA	80		50 - 150				08/18/21 18:34	08/22/21 09:24	
13C5 PFNA	72		50 - 150				08/18/21 18:34	08/22/21 09:24	
13C2 PFDA	76		50 ₋ 150				08/18/21 18:34	08/22/21 09:24	
13C2 PFUnA	64		50 - 150				08/18/21 18:34	08/22/21 09:24	
13C2 PFDoA	54		50 ₋ 150				08/18/21 18:34	08/22/21 09:24	
13C2 PFTeDA	51		50 ₋ 150					08/22/21 09:24	
13C3 PFBS	88		50 ₋ 150					08/22/21 09:24	
1802 PFHxS	81		50 - 150					08/22/21 09:24	
13C4 PFOS	79		50 - 150					08/22/21 09:24	
	60		50 ₋ 150					08/22/21 09:24	
d3-NMeFOSAA									
d3-NMeFOSAA d5-NEtFOSAA	60		50 - 150				08/18/21 18:34	08/22/21 09:24	

Analyte		lt Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	e 5	.4	0.1	0.1	%			08/18/21 15:17	1
Percent Solids	94	.6	0.1	0.1	%			08/18/21 15:17	1

Client: Shannon & Wilson, Inc Job ID: 320-77655-1

Project/Site: AKN PFAS

Client Sample ID: 21AKN-SS-13 Lab Sample ID: 320-77655-21

Date Collected: 08/15/21 11:41

Date Received: 08/17/21 10:32

Matrix: Solid
Percent Solids: 95.4

Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFNA) Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA) Perfluorodecanoic acid (PFUnA) Perfluorododecanoic acid (PFUnA) Perfluorotetradecanoic acid (PFTriA) Perfluorotetradecanoic acid (PFTriA) Perfluorobutanesulfonic acid (PFBS) Perfluorobutanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFNXS) Perfluorooctanesulfonic acid (PFOS) N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) 9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid Hexafluoropropylene Oxide Dimer Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid 4,8-Dioxa-3H-perfluoronnanoic acid (ADONA)	.81 .35 .13 .39 .ND .ND .051 .ND .ND .055 	J	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	0.038 0.053 0.022 0.048 0.042 0.030 0.021 0.037 0.038 0.029 0.043 0.023	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		08/18/21 19:44 08/18/21 19:44	08/20/21 11:09 08/20/21 11:09	
Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA) Perfluoroundecanoic acid (PFUnA) Perfluorododecanoic acid (PFUnA) Perfluorotridecanoic acid (PFTriA) Perfluorotetradecanoic acid (PFTriA) Perfluorobutanesulfonic acid (PFBS) Perfluorobutanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoacetic acid (NEFOSAA) P-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid Hexafluoropropylene Oxide Dimer Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) Isotope Dilution 13C2 PFHxA 13C4 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C3 PFBS 18O2 PFHxS	13 139 ND ND 151 ND ND 155 5.4 7.3 ND ND ND ND ND ND ND ND ND ND	J	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	0.053 0.022 0.048 0.042 0.030 0.021 0.037 0.038 0.029 0.043 0.023 0.048	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		08/18/21 19:44 08/18/21 19:44	08/20/21 11:09 08/20/21 11:09	
Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA) Perfluoroundecanoic acid (PFUnA) Perfluorododecanoic acid (PFUnA) Perfluorotridecanoic acid (PFTriA) Perfluorotetradecanoic acid (PFTriA) Perfluorobutanesulfonic acid (PFBS) Perfluorobexanesulfonic acid (PFHxS) Perfluoroctanesulfonic acid (PFNS) Perfluoroctanesulfonic acid (PFOS) N-methylperfluoroctanesulfonamidoacetic acid (NMeFOSAA) N-ethylperfluoroctanesulfonamidoacetic acid (NEtFOSAA) 9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid Hexafluoropropylene Oxide Dimer Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) Isotope Dilution 13C2 PFHxA 13C4 PFHpA 13C4 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C3 PFBS 18O2 PFHxS	ND ND ND ND ND ND ND ND ND ND ND ND ND N	J	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	0.022 0.048 0.042 0.030 0.021 0.037 0.038 0.029 0.043 0.023 0.048	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	***	08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 08/18/21 19:44	08/20/21 11:09 08/20/21 11:09	
Perfluorodecanoic acid (PFDA) Perfluoroundecanoic acid (PFUnA) Perfluorododecanoic acid (PFUnA) Perfluorotridecanoic acid (PFTriA) Perfluorotridecanoic acid (PFTriA) Perfluorotetradecanoic acid (PFTeA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEFOSAA) 9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid Hexafluoropropylene Oxide Dimer Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (ADONA) Isotope Dilution 13C2 PFHxA 13C4 PFHpA 13C4 PFHpA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C3 PFBS 18O2 PFHxS	ND ND 951 ND ND 955 5.4 7.3 ND ND ND	J	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	0.048 0.042 0.030 0.021 0.037 0.038 0.029 0.043 0.023	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	***	08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 08/18/21 19:44	08/20/21 11:09 08/20/21 11:09 08/20/21 11:09 08/20/21 11:09 08/20/21 11:09 08/20/21 11:09 08/20/21 11:09 08/20/21 11:09 08/20/21 11:09 08/20/21 11:09	
Perfluoroundecanoic acid (PFUnA) Perfluorododecanoic acid (PFDoA) Perfluorotridecanoic acid (PFTriA) Perfluorotetradecanoic acid (PFTeA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEFOSAA) 9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid Hexafluoropropylene Oxide Dimer Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (ADONA) Isotope Dilution 13C2 PFHxA 13C4 PFHpA 13C4 PFHpA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C3 PFBS 18O2 PFHxS	ND		0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	0.042 0.030 0.021 0.037 0.038 0.029 0.043 0.023 0.048	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	***	08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 08/18/21 19:44	08/20/21 11:09 08/20/21 11:09 08/20/21 11:09 08/20/21 11:09 08/20/21 11:09 08/20/21 11:09 08/20/21 11:09 08/20/21 11:09	
Perfluorododecanoic acid (PFDoA) Perfluorotridecanoic acid (PFTriA) Perfluorotetradecanoic acid (PFTeA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) N-methylperfluorooctanesulfonamidoac cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) 9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid Hexafluoropropylene Oxide Dimer Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) Isotope Dilution 13C2 PFHxA 13C4 PFDA 13C5 PFNA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C3 PFBS 18O2 PFHxS	ND ND ND ND ND ND ND ND ND ND		0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	0.030 0.021 0.037 0.038 0.029 0.043 0.023 0.048	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	* * * * * * * * * * * * * * * * * * * *	08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 08/18/21 19:44	08/20/21 11:09 08/20/21 11:09 08/20/21 11:09 08/20/21 11:09 08/20/21 11:09 08/20/21 11:09 08/20/21 11:09	
(PFDoA) Perfluorotridecanoic acid (PFTriA) Perfluorobutanesulfonic acid (PFTeA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) 9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid Hexafluoropropylene Oxide Dimer Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) Isotope Dilution // Reco 13C2 PFHxA 13C4 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFTeDA 13C3 PFBS 18O2 PFHxS	ND ND 955 5.4 7.3 ND ND		0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	0.021 0.037 0.038 0.029 0.043 0.023 0.048	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	***	08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 08/18/21 19:44	08/20/21 11:09 08/20/21 11:09 08/20/21 11:09 08/20/21 11:09 08/20/21 11:09 08/20/21 11:09	
Perfluorobutanesulfonic acid (PFTeA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) N-methylperfluorooctanesulfonamidoac cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) 9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid Hexafluoropropylene Oxide Dimer Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (ADONA) Isotope Dilution 13C2 PFHxA 13C4 PFDA 13C5 PFNA 13C2 PFDA 13C2 PFDA 13C2 PFDOA 13C3 PFBS 18O2 PFHxS	ND 955 5.4 7.3 ND ND ND	J	0.20 0.20 0.20 0.20 0.20 0.20 0.20	0.037 0.038 0.029 0.043 0.023 0.048	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	* * *	08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 08/18/21 19:44	08/20/21 11:09 08/20/21 11:09 08/20/21 11:09 08/20/21 11:09 08/20/21 11:09 08/20/21 11:09	
Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) 9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid Hexafluoropropylene Oxide Dimer Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) Isotope Dilution 3C2 PFHxA 13C4 PFDA 13C5 PFNA 13C2 PFDA 13C2 PFTeDA 13C3 PFBS 18O2 PFHxS	955 5.4 7.3 ND ND ND	J	0.20 0.20 0.20 0.20 0.20 0.20	0.038 0.029 0.043 0.023 0.048 0.035	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	* * *	08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 08/18/21 19:44	08/20/21 11:09 08/20/21 11:09 08/20/21 11:09 08/20/21 11:09 08/20/21 11:09	
Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid (PFOS) N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) 9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid Hexafluoropropylene Oxide Dimer Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) Isotope Dilution 13C2 PFHxA 13C4 PFHpA 13C4 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFTDA 13C3 PFBS 18O2 PFHxS	7.3 ND ND ND		0.20 0.20 0.20 0.20 0.20	0.029 0.043 0.023 0.048 0.035	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	**	08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 08/18/21 19:44	08/20/21 11:09 08/20/21 11:09 08/20/21 11:09 08/20/21 11:09	
Perfluorooctanesulfonic acid (PFOS) N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) 9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid Hexafluoropropylene Oxide Dimer Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) Isotope Dilution 13C2 PFHxA 13C4 PFHpA 13C4 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFTeDA 13C3 PFBS 18O2 PFHxS	7.3 ND ND ND		0.20 0.20 0.20 0.20 0.20	0.043 0.023 0.048 0.035	ug/Kg ug/Kg ug/Kg ug/Kg	* * *	08/18/21 19:44 08/18/21 19:44 08/18/21 19:44	08/20/21 11:09 08/20/21 11:09 08/20/21 11:09	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) P-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid Hexafluoropropylene Oxide Dimer Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) Isotope Dilution 13C2 PFHxA 13C4 PFDA 13C5 PFNA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C3 PFBS 18O2 PFHxS	ND ND ND		0.20 0.20 0.20 0.20	0.023 0.048 0.035	ug/Kg ug/Kg ug/Kg	\$ \$	08/18/21 19:44 08/18/21 19:44	08/20/21 11:09 08/20/21 11:09	
cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) 9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid Hexafluoropropylene Oxide Dimer Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) Isotope Dilution 73C2 PFHxA 13C4 PFDA 13C5 PFNA 13C2 PFDA 13C2 PFDA 13C2 PFTeDA 13C3 PFBS 18O2 PFHxS	ND ND ND		0.20 0.20 0.20	0.048	ug/Kg ug/Kg	*	08/18/21 19:44	08/20/21 11:09	
etic acid (NEtFOSAA) 9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid Hexafluoropropylene Oxide Dimer Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) Isotope Dilution 3C2 PFHxA 13C4 PFHpA 13C4 PFOA 13C5 PFNA 13C2 PFDA 13C2 PFDA 13C2 PFTeDA 13C3 PFBS 18O2 PFHxS	ND ND		0.20	0.035	ug/Kg				
e-1-sulfonic acid Hexafluoropropylene Oxide Dimer Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) Isotope Dilution 13C2 PFHxA 13C4 PFHpA 13C5 PFNA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C3 PFBS 18O2 PFHxS	ND		0.20				08/18/21 19:44	08/20/21 11:09	
Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) Isotope Dilution 13C2 PFHxA 13C4 PFDA 13C5 PFNA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C3 PFBS 18O2 PFHxS				0.041	ug/Kg	-₩			
e-1-sulfonic acid 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) Isotope Dilution 13C2 PFHxA 13C4 PFHpA 13C5 PFNA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C3 PFBS 18O2 PFHxS	ND		0.20			~		08/20/21 11:09	
(ADONA) Isotope Dilution					ug/Kg	☼		08/20/21 11:09	
13C2 PFHxA 13C4 PFHpA 13C4 PFOA 13C5 PFNA 13C2 PFDA 13C2 PFUnA 13C2 PFDoA 13C2 PFTeDA 13C3 PFBS 18O2 PFHxS	ND		0.20	0.039	ug/Kg	₩	08/18/21 19:44	08/20/21 11:09	
13C4 PFHpA 13C4 PFOA 13C5 PFNA 13C2 PFDA 13C2 PFUnA 13C2 PFDoA 13C2 PFTeDA 13C3 PFBS 18O2 PFHxS	ery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C4 PFOA 13C5 PFNA 13C2 PFDA 13C2 PFUnA 13C2 PFDOA 13C2 PFTeDA 13C3 PFBS 18O2 PFHxS	77		50 - 150				08/18/21 19:44	08/20/21 11:09	
13C5 PFNA 13C2 PFDA 13C2 PFUnA 13C2 PFDoA 13C2 PFTeDA 13C3 PFBS 18O2 PFHxS	73		50 - 150				08/18/21 19:44	08/20/21 11:09	
13C2 PFDA 13C2 PFUnA 13C2 PFDoA 13C2 PFTeDA 13C3 PFBS 18O2 PFHxS	84		50 - 150				08/18/21 19:44	08/20/21 11:09	
13C2 PFUnA 13C2 PFDoA 13C2 PFTeDA 13C3 PFBS 18O2 PFHxS	66		50 - 150				08/18/21 19:44	08/20/21 11:09	
13C2 PFDoA 13C2 PFTeDA 13C3 PFBS 18O2 PFHxS	79		50 - 150				08/18/21 19:44	08/20/21 11:09	
13C2 PFTeDA 13C3 PFBS 18O2 PFHxS	82		50 - 150				08/18/21 19:44	08/20/21 11:09	
13C3 PFBS 18O2 PFHxS	68		50 - 150				08/18/21 19:44	08/20/21 11:09	
1802 PFHxS	63		50 - 150				08/18/21 19:44	08/20/21 11:09	
	93		50 - 150				08/18/21 19:44	08/20/21 11:09	
13C4 PFOS	65		50 - 150				08/18/21 19:44	08/20/21 11:09	
	76		50 - 150				08/18/21 19:44	08/20/21 11:09	
d3-NMeFOSAA	69		50 - 150				08/18/21 19:44	08/20/21 11:09	
d5-NEtFOSAA	83		50 - 150				08/18/21 19:44	08/20/21 11:09	
13C3 HFPO-DA	77		50 - 150				08/18/21 19:44	08/20/21 11:09	
General Chemistry		Overlight :	ъ.		11-4	_	Dues	Analissa	Dir F
		Qualifier	RL _		Unit	D	Prepared	Analyzed	Dil Fa
Percent Moisture Percent Solids	ult 4.6		0.1 0.1	0.1	% %			08/18/21 15:17 08/18/21 15:17	

Eurofins TestAmerica, Sacramento

2

3

5

9

11

13

14

Project/Site: AKN PFAS

Date Collected: 08/15/21 11:52

Date Received: 08/17/21 10:32

Percent Moisture

Percent Solids

Client: Shannon & Wilson, Inc Job ID: 320-77655-1

Client Sample ID: 21AKN-SS-14

Lab Sample ID: 320-77655-22

Matrix: Solid

Percent Solids: 87.8

Analyte		Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil F
Perfluorohexanoic acid (PFHxA)	ND		0.23	0.035	ug/Kg	☼	08/18/21 19:44	08/20/21 11:18	
Perfluoroheptanoic acid (PFHpA)	ND		0.23	0.043		₩	08/18/21 19:44	08/20/21 11:18	
Perfluorooctanoic acid (PFOA)	0.060	J	0.23	0.060	ug/Kg	₽	08/18/21 19:44	08/20/21 11:18	
Perfluorononanoic acid (PFNA)	ND		0.23	0.025	ug/Kg	₩	08/18/21 19:44	08/20/21 11:18	
Perfluorodecanoic acid (PFDA)	ND		0.23	0.055	ug/Kg	≎	08/18/21 19:44	08/20/21 11:18	
Perfluoroundecanoic acid (PFUnA)	ND		0.23	0.048	ug/Kg	₩	08/18/21 19:44	08/20/21 11:18	
Perfluorododecanoic acid (PFDoA)	ND		0.23	0.034	ug/Kg	⊅	08/18/21 19:44	08/20/21 11:18	
Perfluorotridecanoic acid (PFTriA)	ND		0.23	0.024	ug/Kg	₽	08/18/21 19:44	08/20/21 11:18	
Perfluorotetradecanoic acid (PFTeA)	ND		0.23	0.042	ug/Kg	₩	08/18/21 19:44	08/20/21 11:18	
Perfluorobutanesulfonic acid (PFBS)	ND		0.23		ug/Kg		08/18/21 19:44	08/20/21 11:18	
Perfluorohexanesulfonic acid (PFHxS)	0.10	J	0.23	0.033		₩		08/20/21 11:18	
Perfluorooctanesulfonic acid (PFOS)	2.0		0.23	0.049	ug/Kg	₩	08/18/21 19:44	08/20/21 11:18	
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	0.56		0.23	0.026	ug/Kg	ಘ	08/18/21 19:44	08/20/21 11:18	
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		0.23	0.040	ug/Kg	₩	08/18/21 19:44	08/20/21 11:18	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.23	0.047	ug/Kg	₩	08/18/21 19:44	08/20/21 11:18	
1-Chloroeicosafluoro-3-oxaundecan -1-sulfonic acid	ND		0.23	0.035	ug/Kg	₩	08/18/21 19:44	08/20/21 11:18	
,8-Dioxa-3H-perfluorononanoic acid ADONA)	ND		0.23	0.044	ug/Kg	₩	08/18/21 19:44	08/20/21 11:18	
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil
3C2 PFHxA	75		50 - 150				08/18/21 19:44	08/20/21 11:18	
3C4 PFHpA	76		50 - 150				08/18/21 19:44	08/20/21 11:18	
3C4 PFOA	87		50 - 150				08/18/21 19:44	08/20/21 11:18	
3C5 PFNA	87		50 - 150				08/18/21 19:44	08/20/21 11:18	
3C2 PFDA	86		50 ₋ 150				08/18/21 19:44	08/20/21 11:18	
3C2 PFUnA	74		50 ₋ 150				08/18/21 19:44	08/20/21 11:18	
3C2 PFDoA	75		50 - 150					08/20/21 11:18	
3C2 PFTeDA	62		50 ₋ 150					08/20/21 11:18	
3C3 PFBS	90		50 ₋ 150					08/20/21 11:18	
802 PFHxS	84		50 - 150					08/20/21 11:18	
3C4 PFOS	88		50 - 150					08/20/21 11:18	
I3-NMeFOSAA	76		50 - 150					08/20/21 11:18	
I5-NEtFOSAA	83		50 - 150					08/20/21 11:18	
3C3 HFPO-DA Nethod: EPA 537(Mod) - PFAS	77	2 Table P	50 - 150				08/18/21 19:44	08/20/21 11:18	
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil
I-ethylperfluorooctanesulfonami loacetic acid (NEtFOSAA)	23		1.1		ug/Kg	— -		08/27/21 20:20	
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil
15-NEtFOSAA	117	4====	50 - 150					08/27/21 20:20	
General Chemistry									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil

Eurofins TestAmerica, Sacramento

08/18/21 15:17

08/18/21 15:17

0.1

0.1

12.2

87.8

0.1 %

0.1 %

Client: Shannon & Wilson, Inc Job ID: 320-77655-1 Project/Site: AKN PFAS

Client Sample ID: 21AKN-SS-15

Lab Sample ID: 320-77655-23 Date Collected: 08/15/21 12:17

Matrix: Solid

Date Received: 08/17/21 10:32 Percent Solids: 35.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	0.49	J	0.55	0.085	ug/Kg	— <u></u>	08/18/21 19:44	08/20/21 11:27	
Perfluoroheptanoic acid (PFHpA)	0.40		0.55	0.10	ug/Kg	⇔	08/18/21 19:44	08/20/21 11:27	
Perfluorooctanoic acid (PFOA)	5.8		0.55	0.15	ug/Kg	⇔	08/18/21 19:44	08/20/21 11:27	
Perfluorononanoic acid (PFNA)	1.0		0.55		ug/Kg		08/18/21 19:44	08/20/21 11:27	,
Perfluorodecanoic acid (PFDA)	0.18	J	0.55		ug/Kg	₩	08/18/21 19:44	08/20/21 11:27	
Perfluoroundecanoic acid	1.1		0.55		ug/Kg	*	08/18/21 19:44		
(PFUnA)					5 5				
Perfluorododecanoic acid	0.20	J	0.55	0.083	ug/Kg	₽	08/18/21 19:44	08/20/21 11:27	
(PFDoA)									
Perfluorotridecanoic acid (PFTriA)	0.45	J	0.55		ug/Kg	₩	08/18/21 19:44	08/20/21 11:27	,
Perfluorotetradecanoic acid (PFTeA)	ND		0.55	0.10	ug/Kg	₩	08/18/21 19:44	08/20/21 11:27	•
Perfluorobutanesulfonic acid (PFBS)	ND		0.55	0.10	ug/Kg	₩	08/18/21 19:44	08/20/21 11:27	
Perfluorohexanesulfonic acid (PFHxS)	3.6		0.55	0.080	ug/Kg	₩	08/18/21 19:44	08/20/21 11:27	,
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.55	0.063	ug/Kg	₩	08/18/21 19:44	08/20/21 11:27	•
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.55		ug/Kg	₩	08/18/21 19:44	08/20/21 11:27	,
9-Chloronexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		0.55	0.096	ug/Kg	₩	08/18/21 19:44	08/20/21 11:27	•
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.55		ug/Kg		08/18/21 19:44		
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		0.55	0.085	ug/Kg	₩	08/18/21 19:44	08/20/21 11:27	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.55	0.11	ug/Kg	₩	08/18/21 19:44	08/20/21 11:27	
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C2 PFHxA	62		50 - 150				08/18/21 19:44	08/20/21 11:27	-
13C4 PFHpA	64		50 - 150				08/18/21 19:44	08/20/21 11:27	
13C4 PFOA	67		50 - 150				08/18/21 19:44	08/20/21 11:27	
13C5 PFNA	58		50 - 150				08/18/21 19:44	08/20/21 11:27	
13C2 PFDA	81		50 - 150				08/18/21 19:44	08/20/21 11:27	
13C2 PFUnA	67		50 ₋ 150				08/18/21 19:44	08/20/21 11:27	
13C2 PFDoA	58		50 - 150				08/18/21 19:44	08/20/21 11:27	
13C2 PFTeDA	55		50 ₋ 150				08/18/21 19:44	08/20/21 11:27	
13C3 PFBS	69		50 ₋ 150				08/18/21 19:44	08/20/21 11:27	
			50 - 150					08/20/21 11:27	
18O2 PFHxS	68		JU = 1 JU						
	68 64						08/18/21 19:44	08/20/21 11:27	
13C4 PFOS	64		50 - 150					08/20/21 11:27 08/20/21 11:27	
13C4 PFOS d3-NMeFOSAA	64 75		50 - 150 50 - 150				08/18/21 19:44	08/20/21 11:27	
13C4 PFOS d3-NMeFOSAA d5-NEtFOSAA	64 75 79		50 - 150 50 - 150 50 - 150				08/18/21 19:44 08/18/21 19:44	08/20/21 11:27 08/20/21 11:27	
13C4 PFOS d3-NMeFOSAA d5-NEtFOSAA 13C3 HFPO-DA Method: EPA 537(Mod) - PFAS Analyte	64 75 79 57 for QSM 5 .		50 - 150 50 - 150 50 - 150 50 - 150		Unit		08/18/21 19:44 08/18/21 19:44	08/20/21 11:27 08/20/21 11:27 08/20/21 11:27 Analyzed	Dil Fa
13C4 PFOS d3-NMeFOSAA d5-NEtFOSAA 13C3 HFPO-DA Method: EPA 537(Mod) - PFAS Analyte Perfluorooctanesulfonic acid	64 75 79 57 for QSM 5 Result	.3, Table B	50 - 150 50 - 150 50 - 150 50 - 150 -15 - DL RL				08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 Prepared	08/20/21 11:27 08/20/21 11:27 08/20/21 11:27 Analyzed	Dil Fa
13C4 PFOS d3-NMeFOSAA d5-NEtFOSAA 13C3 HFPO-DA Method: EPA 537(Mod) - PFAS Analyte Perfluorooctanesulfonic acid (PFOS)	64 75 79 57 for QSM 5. Result 100	.3, Table B Qualifier	50 - 150 50 - 150 50 - 150 50 - 150 -15 - DL RL				08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 Prepared	08/20/21 11:27 08/20/21 11:27 08/20/21 11:27 Analyzed	Dil Fa
13C4 PFOS d3-NMeFOSAA d5-NEtFOSAA 13C3 HFPO-DA Method: EPA 537(Mod) - PFAS Analyte Perfluorooctanesulfonic acid (PFOS) Isotope Dilution	64 75 79 57 for QSM 5 Result	.3, Table B Qualifier	50 - 150 50 - 150 50 - 150 50 - 150 -15 - DL RL 5.5				08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 Prepared 08/18/21 19:44 Prepared	08/20/21 11:27 08/20/21 11:27 08/20/21 11:27 Analyzed 08/22/21 03:55	Dil Fa
1802 PFHxS 13C4 PFOS d3-NMeFOSAA d5-NEtFOSAA 13C3 HFPO-DA Method: EPA 537(Mod) - PFAS Analyte Perfluorooctanesulfonic acid (PFOS) Isotope Dilution 13C4 PFOS General Chemistry Analyte	64 75 79 57 for QSM 5 Result 100 %Recovery	.3, Table B Qualifier	50 - 150 50 - 150 50 - 150 50 - 150 -15 - DL RL 5.5	1.2			08/18/21 19:44 08/18/21 19:44 08/18/21 19:44 Prepared 08/18/21 19:44 Prepared	08/20/21 11:27 08/20/21 11:27 08/20/21 11:27 Analyzed 08/22/21 03:55 Analyzed	Dil Fac

Eurofins TestAmerica, Sacramento

Page 34 of 74

8/30/2021

Client: Shannon & Wilson, Inc Job ID: 320-77655-1

Project/Site: AKN PFAS

Client Sample ID: 21AKN-SS-15 Lab Sample ID: 320-77655-23

Date Collected: 08/15/21 12:17

Matrix: Solid

Date Received: 08/17/21 10:32 Percent Solids: 35.2

General Chemistry (Continued))								
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	35.2		0.1	0.1	%			08/18/21 15:17	1

-

5

9

11

13

14

Client: Shannon & Wilson, Inc Job ID: 320-77655-1

Project/Site: AKN PFAS

Client Sample ID: 21AKN-SS-16 Lab Sample ID: 320-77655-24

Date Collected: 08/15/21 12:37 **Matrix: Solid** Date Received: 08/17/21 10:32 Percent Solids: 86.6

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		0.23	0.035	ug/Kg	-	08/18/21 19:44	08/20/21 11:37	1
Perfluoroheptanoic acid (PFHpA)	ND		0.23	0.043	ug/Kg	☼	08/18/21 19:44	08/20/21 11:37	1
Perfluorooctanoic acid (PFOA)	ND		0.23	0.061	ug/Kg	☼	08/18/21 19:44	08/20/21 11:37	1
Perfluorononanoic acid (PFNA)	ND		0.23	0.025	ug/Kg	₩	08/18/21 19:44	08/20/21 11:37	1
Perfluorodecanoic acid (PFDA)	ND		0.23	0.055	ug/Kg	₽	08/18/21 19:44	08/20/21 11:37	1
Perfluoroundecanoic acid	0.14	J	0.23	0.048	ug/Kg	☆	08/18/21 19:44	08/20/21 11:37	1
(PFUnA)					0 0				
Perfluorododecanoic acid	0.080	J	0.23	0.034	ug/Kg	₽	08/18/21 19:44	08/20/21 11:37	1
(PFDoA)									
Perfluorotridecanoic acid (PFTriA)	0.11		0.23		ug/Kg	≎		08/20/21 11:37	1
Perfluorotetradecanoic acid (PFTeA)	0.074	J	0.23	0.042	ug/Kg		08/18/21 19:44	08/20/21 11:37	
Perfluorobutanesulfonic acid (PFBS)	ND		0.23		ug/Kg	☼	08/18/21 19:44	08/20/21 11:37	1
Perfluorohexanesulfonic acid (PFHxS)	0.048	JI	0.23	0.033	ug/Kg	₩	08/18/21 19:44	08/20/21 11:37	1
Perfluorooctanesulfonic acid (PFOS)	ND		0.23	0.049	ug/Kg	≎	08/18/21 19:44	08/20/21 11:37	1
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	0.034	J	0.23	0.026	ug/Kg	₩	08/18/21 19:44	08/20/21 11:37	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.23	0.055	ug/Kg	₩	08/18/21 19:44	08/20/21 11:37	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		0.23	0.040	ug/Kg	₩	08/18/21 19:44	08/20/21 11:37	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.23	0.047	ug/Kg		08/18/21 19:44	08/20/21 11:37	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		0.23	0.035	ug/Kg	₩	08/18/21 19:44	08/20/21 11:37	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.23	0.045	ug/Kg	₩	08/18/21 19:44	08/20/21 11:37	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	65		50 - 150				08/18/21 19:44	08/20/21 11:37	1
13C4 PFHpA	78		50 - 150				08/18/21 19:44	08/20/21 11:37	1
13C4 PFOA	86		50 ₋ 150				08/18/21 19:44	08/20/21 11:37	1
13C5 PFNA	75		50 - 150				08/18/21 19:44	08/20/21 11:37	1
13C2 PFDA	78		50 ₋ 150				08/18/21 19:44	08/20/21 11:37	1
13C2 PFUnA	77		50 ₋ 150				08/18/21 19:44	08/20/21 11:37	1
13C2 PFDoA	74		50 - 150				08/18/21 19:44	08/20/21 11:37	1
13C2 PFTeDA	86		50 - 150					08/20/21 11:37	1
13C3 PFBS	72		50 ₋ 150					08/20/21 11:37	1
1802 PFHxS	70		50 - 150					08/20/21 11:37	
13C4 PFOS	74		50 ₋ 150					08/20/21 11:37	
d3-NMeFOSAA	77		50 - 150					08/20/21 11:37	1
d5-NEtFOSAA	83		50 - 150 50 - 150					08/20/21 11:37	
13C3 HFPO-DA	64		50 - 150					08/20/21 11:37	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Percent Moisture	13.4		0.1	0.1	%			08/18/21 15:17	1
Percent Solids	86.6		0.1	0.1	0/			08/18/21 15:17	1

8/30/2021

Client: Shannon & Wilson, Inc Job ID: 320-77655-1 Project/Site: AKN PFAS

Client Sample ID: 21AKN-SS-17

Analyte

Percent Moisture

Percent Solids

Lab Sample ID: 320-77655-25 Date Collected: 08/15/21 12:52

Matrix: Solid

Date Received: 08/17/21 10:32 Percent Solids: 85.7

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Perfluorohexanoic acid (PFHxA)	ND		0.22	0.035	ug/Kg	₩	08/18/21 19:44	08/20/21 11:46	
Perfluoroheptanoic acid (PFHpA)	ND		0.22	0.043	ug/Kg	₩	08/18/21 19:44	08/20/21 11:46	
Perfluorooctanoic acid (PFOA)	ND		0.22	0.059	ug/Kg	₩	08/18/21 19:44	08/20/21 11:46	
Perfluorononanoic acid (PFNA)	ND		0.22	0.025	ug/Kg	₩	08/18/21 19:44	08/20/21 11:46	
Perfluorodecanoic acid (PFDA)	ND		0.22	0.054	ug/Kg	₽	08/18/21 19:44	08/20/21 11:46	
Perfluoroundecanoic acid PFUnA)	0.13	J	0.22	0.047	ug/Kg	₩	08/18/21 19:44	08/20/21 11:46	
Perfluorododecanoic acid PFDoA)	0.070	J	0.22	0.034	ug/Kg	₽	08/18/21 19:44	08/20/21 11:46	
Perfluorotridecanoic acid (PFTriA)	0.065	J	0.22		ug/Kg	₩	08/18/21 19:44	08/20/21 11:46	
Perfluorotetradecanoic acid PFTeA)	0.041	J	0.22	0.041	ug/Kg	₩	08/18/21 19:44	08/20/21 11:46	
Perfluorobutanesulfonic acid (PFBS)	ND		0.22	0.043	ug/Kg	₩	08/18/21 19:44	08/20/21 11:46	
Perfluorohexanesulfonic acid PFHxS)	0.14	J	0.22	0.032	ug/Kg	≎	08/18/21 19:44	08/20/21 11:46	
Perfluorooctanesulfonic acid PFOS)	2.5		0.22	0.048	ug/Kg	₩	08/18/21 19:44	08/20/21 11:46	
N-methylperfluorooctanesulfonamidoa etic acid (NMeFOSAA)	ND		0.22		ug/Kg	₩	08/18/21 19:44	08/20/21 11:46	
I-ethylperfluorooctanesulfonamidoac tic acid (NEtFOSAA)	ND		0.22		ug/Kg	₩	08/18/21 19:44	08/20/21 11:46	
-Chlorohexadecafluoro-3-oxanonan -1-sulfonic acid	ND		0.22	0.039	ug/Kg	.	08/18/21 19:44	08/20/21 11:46	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.22	0.046	ug/Kg	₩	08/18/21 19:44	08/20/21 11:46	
1-Chloroeicosafluoro-3-oxaundecan	ND		0.22	0.035	ug/Kg	₩	08/18/21 19:44	08/20/21 11:46	
-1-sulfonic acid ,8-Dioxa-3H-perfluorononanoic acid ADONA)	ND		0.22	0.044	ug/Kg	₩	08/18/21 19:44	08/20/21 11:46	
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
3C2 PFHxA	80		50 - 150					08/20/21 11:46	
3C4 PFHpA	70		50 ₋ 150					08/20/21 11:46	
3C4 PFOA	80		50 ₋ 150					08/20/21 11:46	
3C5 PFNA	79		50 - 150					08/20/21 11:46	
3C2 PFDA	79		50 ₋ 150					08/20/21 11:46	
3C2 PFUnA	69		50 - 150					08/20/21 11:46	
3C2 PFDoA	57		50 - 150					08/20/21 11:46	
3C2 PFTeDA	52		50 - 150 50 - 150					08/20/21 11:46	
BC3 PFBS	97		50 - 150					08/20/21 11:46	
802 PFHxS	85		50 ₋ 150					08/20/21 11:46	
3C4 PFOS	72		50 - 150					08/20/21 11:46	
3-NMeFOSAA	60		50 - 150					08/20/21 11:46	
E NETECCAA	62		50 - 150				08/18/21 19:44	08/20/21 11:46	
I5-NEtFOSAA 3C3 HFPO-DA								08/20/21 11:46	

Eurofins TestAmerica, Sacramento

Analyzed

08/18/21 15:17

08/18/21 15:17

Prepared

RL

0.1

0.1

MDL Unit

0.1 %

0.1 %

Result Qualifier

14.3

85.7

Dil Fac

Job ID: 320-77655-1

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS

Percent Solids

Client Sample ID: 21AKN-SS-117

Date Collected: 08/15/21 12:42
Date Received: 08/17/21 10:32

Lab Sample ID: 320-77655-26 Matrix: Solid Percent Solids: 85.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		0.23	0.035	ug/Kg	<u></u>	08/18/21 19:44	08/20/21 11:55	
Perfluoroheptanoic acid (PFHpA)	ND		0.23	0.043	ug/Kg	₽	08/18/21 19:44	08/20/21 11:55	
Perfluorooctanoic acid (PFOA)	ND		0.23	0.060	ug/Kg	₽	08/18/21 19:44	08/20/21 11:55	
Perfluorononanoic acid (PFNA)	ND		0.23	0.025	ug/Kg	₽	08/18/21 19:44	08/20/21 11:55	
Perfluorodecanoic acid (PFDA)	ND		0.23	0.055	ug/Kg	₩	08/18/21 19:44	08/20/21 11:55	
Perfluoroundecanoic acid (PFUnA)	0.11	J	0.23	0.048	ug/Kg	₩	08/18/21 19:44	08/20/21 11:55	
Perfluorododecanoic acid (PFDoA)	0.077	J	0.23	0.034	ug/Kg	₩	08/18/21 19:44	08/20/21 11:55	
Perfluorotridecanoic acid (PFTriA)	0.053	J	0.23	0.024	ug/Kg	₩	08/18/21 19:44	08/20/21 11:55	
Perfluorotetradecanoic acid (PFTeA)	0.058	J	0.23	0.042	ug/Kg	₩	08/18/21 19:44	08/20/21 11:55	
Perfluorobutanesulfonic acid (PFBS)	ND		0.23	0.043	ug/Kg	₩	08/18/21 19:44	08/20/21 11:55	
Perfluorohexanesulfonic acid (PFHxS)	0.13	J	0.23	0.033	ug/Kg	₩	08/18/21 19:44	08/20/21 11:55	•
Perfluorooctanesulfonic acid (PFOS)	2.3		0.23		ug/Kg		08/18/21 19:44	08/20/21 11:55	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.23		ug/Kg			08/20/21 11:55	,
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	0.78		0.23		ug/Kg			08/20/21 11:55	•
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		0.23		ug/Kg			08/20/21 11:55	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.23		ug/Kg	₩	08/18/21 19:44	08/20/21 11:55	
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		0.23		ug/Kg	₩	08/18/21 19:44	08/20/21 11:55	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.23	0.044	ug/Kg	₩	08/18/21 19:44	08/20/21 11:55	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C2 PFHxA	85		50 - 150				08/18/21 19:44	08/20/21 11:55	
13C4 PFHpA	82		50 - 150				08/18/21 19:44	08/20/21 11:55	
13C4 PFOA	87		50 - 150				08/18/21 19:44	08/20/21 11:55	
13C5 PFNA	80		50 - 150				08/18/21 19:44	08/20/21 11:55	
13C2 PFDA	80		50 - 150				08/18/21 19:44	08/20/21 11:55	
13C2 PFUnA	71		50 - 150				08/18/21 19:44	08/20/21 11:55	
13C2 PFDoA	65		50 - 150				08/18/21 19:44	08/20/21 11:55	
13C2 PFTeDA	53		50 - 150				08/18/21 19:44	08/20/21 11:55	
13C3 PFBS	92		50 - 150				08/18/21 19:44	08/20/21 11:55	
1802 PFHxS	88		50 - 150				08/18/21 19:44	08/20/21 11:55	
13C4 PFOS	92		50 - 150				08/18/21 19:44	08/20/21 11:55	
d3-NMeFOSAA	64		50 - 150				08/18/21 19:44	08/20/21 11:55	
d5-NEtFOSAA	64		50 - 150				08/18/21 19:44	08/20/21 11:55	
13C3 HFPO-DA	83		50 - 150				08/18/21 19:44	08/20/21 11:55	
General Chemistry		0			1124	_	D	A	D.: -
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Percent Moisture	14.7		0.1	0.1	%			08/18/21 15:17	

08/18/21 15:17

0.1

0.1 %

85.3

А

6

8

10

12

A A

Client: Shannon & Wilson, Inc Job ID: 320-77655-1

Project/Site: AKN PFAS

Client Sample ID: 21AKN-SS-18 Lab Sample ID: 320-77655-27

Date Collected: 08/15/21 13:12

Matrix: Solid
Date Received: 08/17/21 10:32

Matrix: Solid
Percent Solids: 88.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		0.22	0.034	ug/Kg	<u></u>	08/18/21 19:44	08/20/21 12:04	
Perfluoroheptanoic acid (PFHpA)	ND		0.22	0.042	ug/Kg	☼	08/18/21 19:44	08/20/21 12:04	1
Perfluorooctanoic acid (PFOA)	0.061	J	0.22	0.058	ug/Kg	₽	08/18/21 19:44	08/20/21 12:04	1
Perfluorononanoic acid (PFNA)	ND		0.22	0.024	ug/Kg	₽	08/18/21 19:44	08/20/21 12:04	1
Perfluorodecanoic acid (PFDA)	0.063	J	0.22	0.052	ug/Kg	₽	08/18/21 19:44	08/20/21 12:04	1
Perfluoroundecanoic acid (PFUnA)	0.061	J	0.22	0.046	ug/Kg	₽	08/18/21 19:44	08/20/21 12:04	1
Perfluorododecanoic acid (PFDoA)	0.078	J	0.22	0.033	ug/Kg	₩	08/18/21 19:44	08/20/21 12:04	1
Perfluorotridecanoic acid (PFTriA)	0.033	J	0.22	0.023	ug/Kg	☼	08/18/21 19:44	08/20/21 12:04	1
Perfluorotetradecanoic acid (PFTeA)	0.043	J	0.22		ug/Kg	₩	08/18/21 19:44	08/20/21 12:04	
Perfluorobutanesulfonic acid (PFBS)	ND		0.22	0.042	ug/Kg	☼	08/18/21 19:44	08/20/21 12:04	1
Perfluorohexanesulfonic acid (PFHxS)	ND		0.22	0.032	ug/Kg	₽	08/18/21 19:44	08/20/21 12:04	1
Perfluorooctanesulfonic acid (PFOS)	ND	G	0.31	0.31	ug/Kg	₩	08/18/21 19:44	08/20/21 12:04	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.22	0.025	ug/Kg	₽	08/18/21 19:44	08/20/21 12:04	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.22	0.052	ug/Kg	≎	08/18/21 19:44	08/20/21 12:04	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		0.22	0.038	ug/Kg	₽	08/18/21 19:44	08/20/21 12:04	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.22	0.045	ug/Kg	₽	08/18/21 19:44	08/20/21 12:04	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		0.22	0.034	ug/Kg	≎	08/18/21 19:44	08/20/21 12:04	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.22	0.043	ug/Kg	₩	08/18/21 19:44	08/20/21 12:04	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	69		50 - 150				08/18/21 19:44	08/20/21 12:04	
13C4 PFHpA	76		50 - 150				08/18/21 19:44	08/20/21 12:04	1
13C4 PFOA	84		50 - 150				08/18/21 19:44	08/20/21 12:04	1
13C5 PFNA	76		50 - 150				08/18/21 19:44	08/20/21 12:04	
13C2 PFDA	78		50 - 150				08/18/21 19:44	08/20/21 12:04	1
13C2 PFUnA	79		50 - 150				08/18/21 19:44	08/20/21 12:04	1
13C2 PFDoA	75		50 - 150				08/18/21 19:44	08/20/21 12:04	
13C2 PFTeDA	70		50 ₋ 150				08/18/21 19:44	08/20/21 12:04	1
13C3 PFBS	74		50 ₋ 150				08/18/21 19:44	08/20/21 12:04	1
1802 PFHxS	71		50 - 150				08/18/21 19:44	08/20/21 12:04	
13C4 PFOS	62		50 - 150				08/18/21 19:44	08/20/21 12:04	1
d3-NMeFOSAA	78		50 ₋ 150				08/18/21 19:44	08/20/21 12:04	1
d5-NEtFOSAA	86		50 - 150				08/18/21 19:44	08/20/21 12:04	
13C3 HFPO-DA	63		50 - 150					08/20/21 12:04	

General	Chemistry
	• • • • • • • • • • • • • • • • • • • •

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Percent Moisture	11.5	0.1	0.1 %		08/18/21 15:17	1
Percent Solids	88.5	0.1	0.1 %		08/18/21 15:17	1

2

3

6

8

10

12

14

Client: Shannon & Wilson, Inc Job ID: 320-77655-1

Project/Site: AKN PFAS

Client Sample ID: 21AKN-SS-19 Lab Sample ID: 320-77655-28

Date Collected: 08/15/21 13:20 **Matrix: Solid** Date Received: 08/17/21 10:32 Percent Solids: 80.5

Method: EPA 537(Mod) - PFAS		•			1114	_	B	A	D.: -
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Perfluorohexanoic acid (PFHxA)	0.46		0.24		ug/Kg	≎		08/20/21 12:13	
Perfluoroheptanoic acid (PFHpA)	0.18		0.24		ug/Kg	≎		08/20/21 12:13	
Perfluorooctanoic acid (PFOA)	0.19	J	0.24		ug/Kg			08/20/21 12:13	
Perfluorononanoic acid (PFNA)	0.24		0.24	0.026	ug/Kg	≎	08/18/21 19:44	08/20/21 12:13	
Perfluorodecanoic acid (PFDA)	0.32		0.24		ug/Kg	≎	08/18/21 19:44	08/20/21 12:13	
Perfluoroundecanoic acid (PFUnA)	10		0.24	0.051	ug/Kg	₩	08/18/21 19:44	08/20/21 12:13	
Perfluorododecanoic acid (PFDoA)	0.20	J	0.24	0.036	ug/Kg	≎	08/18/21 19:44	08/20/21 12:13	
Perfluorotridecanoic acid (PFTriA)	0.55		0.24	0.025	ug/Kg	⇔	08/18/21 19:44	08/20/21 12:13	
Perfluorotetradecanoic acid	0.065	J	0.24		ug/Kg	₩		08/20/21 12:13	
(PFTeA) Perfluorobutanesulfonic acid (PFBS)	0.079	J	0.24	0.046	ug/Kg	₩	08/18/21 19:44	08/20/21 12:13	
Perfluorohexanesulfonic acid (PFHxS)	2.0	I	0.24	0.035	ug/Kg	₽	08/18/21 19:44	08/20/21 12:13	
Perfluorooctanesulfonic acid (PFOS)	15	I	0.24	0.052	ug/Kg	₩	08/18/21 19:44	08/20/21 12:13	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.24	0.028	ug/Kg	₩	08/18/21 19:44	08/20/21 12:13	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.24	0.058	ug/Kg	₩	08/18/21 19:44	08/20/21 12:13	
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		0.24	0.042	ug/Kg	₩	08/18/21 19:44	08/20/21 12:13	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.24	0.049	ug/Kg	₩	08/18/21 19:44	08/20/21 12:13	
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		0.24	0.037	ug/Kg	₩	08/18/21 19:44	08/20/21 12:13	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.24	0.047	ug/Kg	₩	08/18/21 19:44	08/20/21 12:13	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C2 PFHxA	75		50 - 150				08/18/21 19:44	08/20/21 12:13	-
13C4 PFHpA	69		50 - 150				08/18/21 19:44	08/20/21 12:13	
13C4 PFOA	75		50 ₋ 150				08/18/21 19:44	08/20/21 12:13	
13C5 PFNA	62		50 - 150				08/18/21 19:44	08/20/21 12:13	
13C2 PFDA	74		50 ₋ 150				08/18/21 19:44	08/20/21 12:13	
13C2 PFUnA	63		50 ₋ 150					08/20/21 12:13	
13C2 PFDoA	58		50 - 150					08/20/21 12:13	
13C2 PFTeDA	56		50 - 150					08/20/21 12:13	
13C3 PFBS	85		50 - 150					08/20/21 12:13	
1802 PFHxS	74 79		50 ₋ 150					08/20/21 12:13	
13C4 PFOS			50 - 150					08/20/21 12:13	
d3-NMeFOSAA	62		50 - 150					08/20/21 12:13	
d5-NEtFOSAA	61		50 ₋ 150					08/20/21 12:13	
13C3 HFPO-DA	72		50 - 150				00/10/21 19:44	08/20/21 12:13	
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Percent Moisture	19.5		0.1	0.1	%	_ _		08/18/21 15:17	
Percent Solids	80.5		0.1	0.1	%			08/18/21 15:17	

Page 40 of 74

Client: Shannon & Wilson, Inc Job ID: 320-77655-1

Project/Site: AKN PFAS

Client Sample ID: 21AKN-SS-20 Lab Sample ID: 320-77655-29

Date Collected: 08/15/21 13:30 Matrix: Solid
Date Received: 08/17/21 10:32 Percent Solids: 95.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	0.43	ī	0.19	0.030	ug/Kg	— <u></u>	08/18/21 19:44	08/20/21 12:40	
Perfluoroheptanoic acid (PFHpA)	0.084	J	0.19	0.037	ug/Kg	₩	08/18/21 19:44	08/20/21 12:40	1
Perfluorooctanoic acid (PFOA)	2.6		0.19	0.051	ug/Kg	₩	08/18/21 19:44	08/20/21 12:40	1
Perfluorononanoic acid (PFNA)	0.19		0.19	0.021	ug/Kg	₩	08/18/21 19:44	08/20/21 12:40	1
Perfluorodecanoic acid (PFDA)	0.25		0.19	0.047	ug/Kg	₩	08/18/21 19:44	08/20/21 12:40	1
Perfluoroundecanoic acid (PFUnA)	1.1		0.19		ug/Kg	₩	08/18/21 19:44	08/20/21 12:40	1
Perfluorododecanoic acid (PFDoA)	0.047	J	0.19	0.029	ug/Kg	₩	08/18/21 19:44	08/20/21 12:40	1
Perfluorotridecanoic acid (PFTriA)	0.11	J	0.19	0.020	ug/Kg	₩	08/18/21 19:44	08/20/21 12:40	1
Perfluorotetradecanoic acid (PFTeA)	ND		0.19		ug/Kg	☆	08/18/21 19:44	08/20/21 12:40	
Perfluorobutanesulfonic acid	0.049	.1	0.19		ug/Kg			08/20/21 12:40	· · · · · · .
(PFBS) Perfluorohexanesulfonic acid	5.5		0.19		ug/Kg			08/20/21 12:40	1
(PFHxS)	5.5		0.13	0.020	ug/itg	*	00/10/21 13.44	00/20/21 12.40	
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	0.14	J I F1	0.19	0.022	ug/Kg	₩	08/18/21 19:44	08/20/21 12:40	1
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	0.13	J	0.19	0.047	ug/Kg	₩	08/18/21 19:44	08/20/21 12:40	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND	F1	0.19	0.034	ug/Kg	₩	08/18/21 19:44	08/20/21 12:40	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.19	0.040	ug/Kg	₩	08/18/21 19:44	08/20/21 12:40	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		0.19	0.030	ug/Kg	₩	08/18/21 19:44	08/20/21 12:40	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	F1	0.19	0.038	ug/Kg	☼	08/18/21 19:44	08/20/21 12:40	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	76		50 - 150					08/20/21 12:40	
13C4 PFHpA	69		50 ₋ 150				08/18/21 19:44	08/20/21 12:40	
13C4 PFOA	76		50 - 150					08/20/21 12:40	
13C5 PFNA	61		50 - 150					08/20/21 12:40	
13C2 PFDA	73		50 ₋ 150					08/20/21 12:40	
13C2 PFUnA	66		50 - 150					08/20/21 12:40	
13C2 PFDoA	61		50 ₋ 150					08/20/21 12:40	
13C2 PFTeDA	47	*5-	50 - 150					08/20/21 12:40	
13C3 PFBS	124	3-	50 - 150					08/20/21 12:40	
1802 PFHxS	95		50 - 150					08/20/21 12:40	
13C4 PFOS	95	**	50 ₋ 150					08/20/21 12:40	1
d3-NMeFOSAA		*5-	50 - 150					08/20/21 12:40	
d5-NEtFOSAA	52		50 - 150					08/20/21 12:40	1
13C3 HFPO-DA	87		50 - 150				08/18/21 19:44	08/20/21 12:40	1
Method: EPA 537(Mod) - PFAS Analyte		.3, Table B Qualifier	-15 - DL RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanesulfonic acid	28		0.97		ug/Kg		08/18/21 19:44		
	20		0.51	0.21	ag/13g	*	03/10/21 10.44	33/22/21 00.20	
(PFOS)		_							
Isotope Dilution 13C4 PFOS	%Recovery	Qualifier	Limits 50 - 150				Prepared	Analyzed 08/22/21 03:28	Dil Fa

2

3

5

7

9

11

13

14

Client: Shannon & Wilson, Inc Job ID: 320-77655-1

Project/Site: AKN PFAS

Client Sample ID: 21AKN-SS-20 Lab Sample ID: 320-77655-29

Date Collected: 08/15/21 13:30 Matrix: Solid
Date Received: 08/17/21 10:32 Percent Solids: 95.7

General Chemistry Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	4.3	0.1	0.1	%			08/18/21 15:17	1
Percent Solids	95.7	0.1	0.1	%			08/18/21 15:17	1

6

Ω

9

11

13

14

Isotope Dilution Summary

Client: Shannon & Wilson, Inc
Project/Site: AKN PFAS

Job ID: 320-77655-1

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Matrix: Solid Prep Type: Total/NA

				•	Dilution Re	- `	•	•	
		PFHxA	C4PFHA	PFOA	PFNA	PFDA	PFUnA	PFDoA	PFTD/
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150
320-77655-1	21AKN-SB-02 (0'-1')	59	78	75	61	76	73	67	80
320-77655-1 MS	21AKN-SB-02 (0'-1')	50	66	63	66	66	62	66	72
320-77655-1 MSD	21AKN-SB-02 (0'-1')	62	73	80	65	76	72	70	74
320-77655-2	21AKN-SB-02 (6'-7')	56	68	68	76	75	66	67	78
320-77655-3	21AKN-SB-01 (0'-1')	62	64	71	66	68	63	56	64
320-77655-4	21AKN-SB-01 (6.5'-7.5')	54	59	63	62	64	62	70	71
320-77655-5	21AKN-SB-101 (6.5-7.5')	59	72	68	57	76	59	66	75
320-77655-6 - DL	21AKN-SB-03 (0'-1')								
320-77655-6	21AKN-SB-03 (0'-1')	56	62	62	61	68	67	63	68
320-77655-7	21AKN-SB-03 (7.3'-7.8')	71	72	73	75	88	84	77	75
320-77655-8	21AKN-SS-01	61	67	74	68	76	65	64	61
320-77655-9	21AKN-SS-02	63	56	69	60	70	63	62	62
320-77655-10	21AKN-SS-03	67	64	76	65	66	76	57	56
320-77655-11	21AKN-SS-04	58	63	70	62	74	63	56	60
320-77655-12	21AKN-SS-05	62	71	76	76	71	77	72	75
320-77655-13	21AKN-SS-06	70	65	77	66	79	69	79	72
320-77655-14	21AKN-SS-07	68	73	76	76	73	76	75	74
320-77655-15	21AKN-SS-08	53	63	75	66	71	62	59	70
320-77655-16	21AKN-SS-09	54	56	65	58	70	61	57	47 *5
320-77655-17	21AKN-SS-109	70	69	77	72	89	80	64	62
320-77655-18	21AKN-SS-10	59	71	67	67	67	68	69	77
320-77655-19	21AKN-SS-11	49 *5-	61	68	63	62	54	54	61
320-77655-20	21AKN-SS-12	74	66	80	72	76	64	54	51
320-77655-21	21AKN-SS-13	77	73	84	66	79	82	68	63
320-77655-22	21AKN-SS-14	75	76	87	87	86	74	75	62
320-77655-22 - DL	21AKN-SS-14								
320-77655-23	21AKN-SS-15	62	64	67	58	81	67	58	55
320-77655-23 - DL	21AKN-SS-15								
320-77655-24	21AKN-SS-16	65	78	86	75	78	77	74	86
320-77655-25	21AKN-SS-17	80	70	80	79	79	69	57	52
320-77655-26	21AKN-SS-117	85	82	87	80	80	71	65	53
320-77655-27	21AKN-SS-18	69	76	84	76	78	79	75	70
320-77655-28	21AKN-SS-19	75	69	75	62	74	63	58	56
320-77655-29	21AKN-SS-20	76	69	76	61	73	66	61	47 *5
320-77655-29 - DL	21AKN-SS-20								
320-77655-29 MS	21AKN-SS-20	74	66	78	57	63	60	64	43 *5
320-77655-29 MS - DL	21AKN-SS-20								
320-77655-29 MSD	21AKN-SS-20	75	66	76	57	71	66	63	43 *5
320-77655-29 MSD - DL	21AKN-SS-20				-				
LCS 320-517575/2-A	Lab Control Sample	54	62	63	53	72	63	56	71
LCS 320-517585/2-A	Lab Control Sample	64	76	76	69	66	74	84	73
MB 320-517575/1-A	Method Blank	56	71	70	60	75	63	75	75
MB 320-517585/1-A	Method Blank	78	88	85	81	77	76	83	80
320 011 000/17	ourou Diariit	, ,							00
		000500		-	Dilution Re	• .	-	ırnıt\$)	
Lab Canada IS	011	C3PFBS	PFHxS	PFOS		d5NEFOS			
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)		
320-77655-1	21AKN-SB-02 (0'-1')	60 55	67 56	61 55	73 60	85 87	58 56		
320-77655-1 MS	21AKN-SB-02 (0'-1')	55	56	55	69	87	56		
320-77655-1 MSD	21AKN-SB-02 (0'-1')	64	62	68	85	93	59		

Eurofins TestAmerica, Sacramento

Page 43 of 74

2

3

4

7

9

11

Isotope Dilution Summary

Client: Shannon & Wilson, Inc Job ID: 320-77655-1 Project/Site: AKN PFAS

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Matrix: Solid Prep Type: Total/NA

			Perce	Percent Isotope Dilution Recovery (Acceptance Limits)						
		C3PFBS	PFHxS	PFOS	d3NMFOS	d5NEFOS	HFPODA			
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)			
320-77655-2	21AKN-SB-02 (6'-7')	57	69	63	55	75	54			
320-77655-3	21AKN-SB-01 (0'-1')	58	63	59	71	76	54			
320-77655-4	21AKN-SB-01 (6.5'-7.5')	57	64	56	59	79	53			
320-77655-5	21AKN-SB-101 (6.5-7.5')	58	70	59	61	66	55			
320-77655-6 - DL	21AKN-SB-03 (0'-1')			46 *5-						
320-77655-6	21AKN-SB-03 (0'-1')	59	66		71	88	51			
320-77655-7	21AKN-SB-03 (7.3'-7.8')	79	88	75	84	95	64			
320-77655-8	21AKN-SS-01	60	57	66	75	81	53			
320-77655-9	21AKN-SS-02	61	66	66	65	73	53			
320-77655-10	21AKN-SS-03	69	67	69	60	65	63			
320-77655-11	21AKN-SS-04	63	67	69	68	66	55			
320-77655-12	21AKN-SS-05	55	66	60	72	92	56			
320-77655-13	21AKN-SS-06	62	69	65	80	80	57			
320-77655-14	21AKN-SS-07	65	64	62	83	88	57			
320-77655-15	21AKN-SS-08	56	57	52	66	78	55			
320-77655-16	21AKN-SS-09	60	65	57	59	61	55			
320-77655-17	21AKN-SS-109	75	70	78	74	80	68			
320-77655-18	21AKN-SS-10	54	66	59	57	74	59			
320-77655-19	21AKN-SS-11	52	55	50	58	72	45 *5-			
320-77655-20	21AKN-SS-12	88	81	79	60	60	73			
320-77655-21	21AKN-SS-13	93	65	76	69	83	77			
320-77655-22	21AKN-SS-14	90	84	88	76	83	77			
320-77655-22 - DL	21AKN-SS-14					117				
320-77655-23	21AKN-SS-15	69	68	64	75	79	57			
320-77655-23 - DL	21AKN-SS-15			59						
320-77655-24	21AKN-SS-16	72	70	74	77	83	64			
320-77655-25	21AKN-SS-17	97	85	72	60	62	73			
320-77655-26	21AKN-SS-117	92	88	92	64	64	83			
320-77655-27	21AKN-SS-18	74	71	62	78	86	63			
320-77655-28	21AKN-SS-19	85	74	79	62	61	72			
320-77655-29	21AKN-SS-20	124	95	95	49 *5-	52	87			
320-77655-29 - DL	21AKN-SS-20			74		0_	.			
320-77655-29 MS	21AKN-SS-20	112	96	82	46 *5-	48 *5-	75			
320-77655-29 MS - DL	21AKN-SS-20			84						
320-77655-29 MSD	21AKN-SS-20	107	97	110	43 *5-	47 *5-	81			
320-77655-29 MSD - DL	21AKN-SS-20 21AKN-SS-20	101	31	76	-10 0-	±1 0-	O I			
LCS 320-517575/2-A	Lab Control Sample	58	65	58	56	61	52			
LCS 320-517575/2-A	Lab Control Sample	76	81	78	68	74	63			
MB 320-517575/1-A	Method Blank	66	66	60	71	80	55			
MB 320-517575/1-A	Method Blank	78	81	88	75	81	73			

Surrogate Legend

PFHxA = 13C2 PFHxA

C4PFHA = 13C4 PFHpA

PFOA = 13C4 PFOA

PFNA = 13C5 PFNA

PFDA = 13C2 PFDA

PFUnA = 13C2 PFUnA

PFDoA = 13C2 PFDoA

PFTDA = 13C2 PFTeDA

Eurofins TestAmerica, Sacramento

Page 44 of 74

Isotope Dilution Summary

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS

C3PFBS = 13C3 PFBS
PFHxS = 18O2 PFHxS
PFOS = 13C4 PFOS
d3NMFOS = d3-NMeFOSAA
d5NEFOS = d5-NEtFOSAA
HFPODA = 13C3 HFPO-DA

Job ID: 320-77655-1

3

4

7

0

10

13

14

Client: Shannon & Wilson, Inc Job ID: 320-77655-1

Project/Site: AKN PFAS

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Lab Sample ID: MB 320-517575/1-A

Matrix: Solid Analysis Batch: 518612 **Client Sample ID: Method Blank**

Prep Type: Total/NA Prep Batch: 517575

7 maryolo Batom 010012								. Top Batom	011010
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		0.20	0.031	ug/Kg		08/18/21 18:34	08/22/21 05:26	1
Perfluoroheptanoic acid (PFHpA)	ND		0.20	0.038	ug/Kg		08/18/21 18:34	08/22/21 05:26	1
Perfluorooctanoic acid (PFOA)	ND		0.20	0.053	ug/Kg		08/18/21 18:34	08/22/21 05:26	1
Perfluorononanoic acid (PFNA)	ND		0.20	0.022	ug/Kg		08/18/21 18:34	08/22/21 05:26	1
Perfluorodecanoic acid (PFDA)	ND		0.20	0.048	ug/Kg		08/18/21 18:34	08/22/21 05:26	1
Perfluoroundecanoic acid (PFUnA)	ND		0.20	0.042	ug/Kg		08/18/21 18:34	08/22/21 05:26	1
Perfluorododecanoic acid (PFDoA)	ND		0.20	0.030	ug/Kg		08/18/21 18:34	08/22/21 05:26	1
Perfluorotridecanoic acid (PFTriA)	ND		0.20	0.021	ug/Kg		08/18/21 18:34	08/22/21 05:26	1
Perfluorotetradecanoic acid (PFTeA)	ND		0.20	0.037	ug/Kg		08/18/21 18:34	08/22/21 05:26	1
Perfluorobutanesulfonic acid (PFBS)	ND		0.20	0.038	ug/Kg		08/18/21 18:34	08/22/21 05:26	1
Perfluorohexanesulfonic acid (PFHxS)	ND		0.20	0.029	ug/Kg		08/18/21 18:34	08/22/21 05:26	1
Perfluorooctanesulfonic acid (PFOS)	ND		0.20	0.043	ug/Kg		08/18/21 18:34	08/22/21 05:26	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.20	0.023	ug/Kg		08/18/21 18:34	08/22/21 05:26	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.20	0.048	ug/Kg		08/18/21 18:34	08/22/21 05:26	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		0.20	0.035	ug/Kg		08/18/21 18:34	08/22/21 05:26	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.20	0.041	ug/Kg		08/18/21 18:34	08/22/21 05:26	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		0.20	0.031	ug/Kg		08/18/21 18:34	08/22/21 05:26	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.20	0.039	ug/Kg		08/18/21 18:34	08/22/21 05:26	1

MB MB

	IVID	IVID			
Isotope Dilution	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	56	50 - 150	08/18/21 18:34	08/22/21 05:26	1
13C4 PFHpA	71	50 - 150	08/18/21 18:34	08/22/21 05:26	1
13C4 PFOA	70	50 - 150	08/18/21 18:34	08/22/21 05:26	1
13C5 PFNA	60	50 - 150	08/18/21 18:34	08/22/21 05:26	1
13C2 PFDA	75	50 - 150	08/18/21 18:34	08/22/21 05:26	1
13C2 PFUnA	63	50 - 150	08/18/21 18:34	08/22/21 05:26	1
13C2 PFDoA	75	50 - 150	08/18/21 18:34	08/22/21 05:26	1
13C2 PFTeDA	75	50 - 150	08/18/21 18:34	08/22/21 05:26	1
13C3 PFBS	66	50 - 150	08/18/21 18:34	08/22/21 05:26	1
1802 PFHxS	66	50 - 150	08/18/21 18:34	08/22/21 05:26	1
13C4 PFOS	60	50 - 150	08/18/21 18:34	08/22/21 05:26	1
d3-NMeFOSAA	71	50 - 150	08/18/21 18:34	08/22/21 05:26	1
d5-NEtFOSAA	80	50 - 150	08/18/21 18:34	08/22/21 05:26	1
13C3 HFPO-DA	55	50 - 150	08/18/21 18:34	08/22/21 05:26	1

Lab Sample ID: LCS 320-517575/2-A

Matrix: Solid

Analysis Batch: 518612

Client Sample	D: Lab Control Sa	mple
	Pron Type: Tota	I/NI A

Prep Batch: 517575

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorohexanoic acid (PFHxA)	2.00	2.01		ug/Kg		101	70 - 132	
Perfluoroheptanoic acid (PFHpA)	2.00	2.11		ug/Kg		106	71 - 131	
Perfluorooctanoic acid (PFOA)	2.00	1.97		ug/Kg		98	69 - 133	
Perfluorononanoic acid (PFNA)	2.00	2.43		ug/Kg		122	72 - 129	

Eurofins TestAmerica, Sacramento

Page 46 of 74

5

3

4

6

8

10

11

13

14

13

8/30/2021

Client: Shannon & Wilson, Inc Job ID: 320-77655-1 Project/Site: AKN PFAS

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCS 320-517575/2-A

Matrix: Solid

acid (ADONA)

Analysis Batch: 518612

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 517575

Analysis Batem 910012	Spike	LCS	LCS		%Rec.
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits
Perfluorodecanoic acid (PFDA)	2.00	1.96	ug/Kg	98	69 - 133
Perfluoroundecanoic acid	2.00	1.99	ug/Kg	99	64 - 136
(PFUnA)					
Perfluorododecanoic acid	2.00	2.43	ug/Kg	122	69 - 135
(PFDoA)					
Perfluorotridecanoic acid	2.00	2.06	ug/Kg	103	66 - 139
(PFTriA)					
Perfluorotetradecanoic acid	2.00	1.97	ug/Kg	98	69 - 133
(PFTeA)					
Perfluorobutanesulfonic acid	1.77	1.54	ug/Kg	87	72 - 128
(PFBS)					
Perfluorohexanesulfonic acid	1.82	1.75	ug/Kg	96	67 - 130
(PFHxS)	4.00	4.04	0.6	00	00 400
Perfluorooctanesulfonic acid	1.86	1.84	ug/Kg	99	68 - 136
(PFOS)	2.00				62 144
N-methylperfluorooctanesulfona	2.00	2.29	ug/Kg	115	63 - 144
midoacetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonami	2.00	2.01	ug/Kg	100	61 - 139
doacetic acid (NEtFOSAA)	2.00	2.01	ug/Ng	100	01-139
9-Chlorohexadecafluoro-3-oxan	1.86	1.86	ug/Kg	100	75 - 135
onane-1-sulfonic acid	1.00	1.00	ugntg	100	70-100
Hexafluoropropylene Oxide	2.00	2.12	ug/Kg	106	77 - 137
Dimer Acid (HFPO-DA)			~g/· (g	.00	
11-Chloroeicosafluoro-3-oxaund	1.88	1.62	ug/Kg	86	76 - 136
ecane-1-sulfonic acid			3 3		
4,8-Dioxa-3H-perfluorononanoic	1.88	2.09	ug/Kg	111	79 - 139
l			5 0		

LCS LCS

200	_00	
%Recovery	Qualifier	Limits
54		50 - 150
62		50 - 150
63		50 - 150
53		50 - 150
72		50 - 150
63		50 - 150
56		50 - 150
71		50 - 150
58		50 - 150
65		50 - 150
58		50 - 150
56		50 - 150
61		50 - 150
52		50 - 150
	54 62 63 53 72 63 56 71 58 65 58 56	62 63 53 72 63 56 71 58 65 58 56

Lab Sample ID: 320-77655-1 MS

Matrix: Solid

Client Sample ID: 21AKN-SB-02 (0'-1')

Prep Type: Total/NA

Prep Batch: 517575

Analysis Batch: 518612									Prep Batch: 51
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Perfluorohexanoic acid (PFHxA)	ND		2.05	2.40		ug/Kg	<u></u>	117	70 - 132
Perfluoroheptanoic acid (PFHpA)	ND		2.05	2.16		ug/Kg	₩	105	71 - 131
Perfluorooctanoic acid (PFOA)	ND		2.05	2.42		ug/Kg	☼	118	69 - 133

Eurofins TestAmerica, Sacramento

Page 47 of 74

Job ID: 320-77655-1

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: 320-77655-1 MS

Matrix: Solid

Analysis Batch: 518612

Client Sample ID: 21AKN-SB-02 (0'-1')

Prep Type: Total/NA

Prep Batch: 517575

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorononanoic acid (PFNA)	ND		2.05	2.29		ug/Kg	<u></u>	111	72 - 129	
Perfluorodecanoic acid (PFDA)	ND		2.05	2.18		ug/Kg	≎	106	69 - 133	
Perfluoroundecanoic acid (PFUnA)	ND		2.05	2.25		ug/Kg	₽	110	64 - 136	
Perfluorododecanoic acid (PFDoA)	ND		2.05	2.36		ug/Kg	☼	115	69 - 135	
Perfluorotridecanoic acid (PFTriA)	ND		2.05	1.91		ug/Kg	☼	93	66 - 139	
Perfluorotetradecanoic acid (PFTeA)	ND		2.05	2.07		ug/Kg	☼	101	69 - 133	
Perfluorobutanesulfonic acid (PFBS)	ND		1.81	1.68		ug/Kg	☼	92	72 - 128	
Perfluorohexanesulfonic acid (PFHxS)	0.050	J	1.87	1.91		ug/Kg	☼	99	67 - 130	
Perfluorooctanesulfonic acid (PFOS)	0.35		1.91	2.42		ug/Kg	☼	109	68 - 136	
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	ND		2.05	2.46		ug/Kg	☼	120	63 - 144	
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	ND		2.05	2.15		ug/Kg	☼	105	61 - 139	
9-Chlorohexadecafluoro-3-oxan onane-1-sulfonic acid	ND		1.91	1.98		ug/Kg	₩	103	75 - 135	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		2.05	2.06		ug/Kg	☼	101	77 - 137	
11-Chloroeicosafluoro-3-oxaund ecane-1-sulfonic acid	ND		1.93	1.74		ug/Kg	₩	90	76 - 136	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.93	2.47		ug/Kg	₩	128	79 - 139	

MS MS

%Recovery	Qualifier	Limits
50		50 - 150
66		50 - 150
63		50 - 150
66		50 - 150
66		50 - 150
62		50 - 150
66		50 - 150
72		50 - 150
55		50 - 150
56		50 - 150
55		50 - 150
69		50 - 150
87		50 - 150
56		50 - 150
	50 66 63 66 66 62 66 72 55 56 55 69 87	66 63 66 66 62 66 72 55 56 55 69

Client Sample ID: 21AKN-SB-02 (0'-1')

Matrix: Solid

Analysis Batch: 518612

Lab Sample ID: 320-77655-1 MSD

Prep Batch: 517575 Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Perfluorohexanoic acid (PFHxA) ND 1.98 1.97 ug/Kg ₩ 99 70 - 132 20 30 Perfluoroheptanoic acid (PFHpA) ND 1.98 1.80 ug/Kg 91 71 - 131 18 30

Eurofins TestAmerica, Sacramento

Page 48 of 74

Prep Type: Total/NA

Client: Shannon & Wilson, Inc Job ID: 320-77655-1 Project/Site: AKN PFAS

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: 320-77655-1 MSD **Matrix: Solid**

Client Sample ID: 21AKN-SB-02 (0'-1')

Prep Type: Total/NA

Analysis Batch: 518612									Prep Ba	atch: 5'	17575
	Sample	•	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorooctanoic acid (PFOA)	ND		1.98	1.89		ug/Kg	≎	95	69 - 133	25	30
Perfluorononanoic acid (PFNA)	ND		1.98	2.34		ug/Kg	₩	118	72 - 129	2	30
Perfluorodecanoic acid (PFDA)	ND		1.98	2.09		ug/Kg	☼	105	69 - 133	4	30
Perfluoroundecanoic acid (PFUnA)	ND		1.98	2.16		ug/Kg	₽	109	64 - 136	4	30
Perfluorododecanoic acid (PFDoA)	ND		1.98	2.11		ug/Kg	☼	106	69 - 135	11	30
Perfluorotridecanoic acid (PFTriA)	ND		1.98	1.72		ug/Kg	₩	87	66 - 139	11	30
Perfluorotetradecanoic acid (PFTeA)	ND		1.98	2.09		ug/Kg	₩	105	69 - 133	1	30
Perfluorobutanesulfonic acid (PFBS)	ND		1.75	1.56		ug/Kg	☼	89	72 - 128	7	30
Perfluorohexanesulfonic acid (PFHxS)	0.050	J	1.81	1.96		ug/Kg	☼	106	67 - 130	2	30
Perfluorooctanesulfonic acid (PFOS)	0.35		1.84	2.17		ug/Kg	☼	99	68 - 136	11	30
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	ND		1.98	2.22		ug/Kg	₩	112	63 - 144	10	30
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	ND		1.98	2.25		ug/Kg	₩	114	61 - 139	5	30
9-Chlorohexadecafluoro-3-oxan onane-1-sulfonic acid	ND		1.85	1.77		ug/Kg	₩	96	75 - 135	11	30
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.98	2.13		ug/Kg	₽	107	77 - 137	3	30
11-Chloroeicosafluoro-3-oxaund ecane-1-sulfonic acid	ND		1.87	1.55		ug/Kg	₽	83	76 - 136	11	30
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.87	1.91		ug/Kg	₽	102	79 - 139	26	30
•	MCD	MCD									

MSD MSD

Isotope Dilution	%Recovery Qu	ıalifier Limits
13C2 PFHxA	62	50 - 150
13C4 PFHpA	73	50 - 150
13C4 PFOA	80	50 - 150
13C5 PFNA	65	50 - 150
13C2 PFDA	76	50 - 150
13C2 PFUnA	72	50 - 150
13C2 PFDoA	70	50 - 150
13C2 PFTeDA	74	50 - 150
13C3 PFBS	64	50 - 150
1802 PFHxS	62	50 - 150
13C4 PFOS	68	50 - 150
d3-NMeFOSAA	85	50 - 150
d5-NEtFOSAA	93	50 - 150
13C3 HFPO-DA	59	50 - 150

Lab Sample ID: MB 320-517585/1-A

Matrix: Solid

Analysis Batch: 518192

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 517585

	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		0.20	0.031	ug/Kg		08/18/21 19:44	08/20/21 10:51	1

Eurofins TestAmerica, Sacramento

Page 49 of 74

8/30/2021

Job ID: 320-77655-1 Client: Shannon & Wilson, Inc Project/Site: AKN PFAS

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

MB MB

Lab Sample ID: MB 320-517585/1-A

Matrix: Solid

Analysis Batch: 518192

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 517585

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid (PFHpA)	ND		0.20	0.038	ug/Kg		08/18/21 19:44	08/20/21 10:51	1
Perfluorooctanoic acid (PFOA)	ND		0.20	0.053	ug/Kg		08/18/21 19:44	08/20/21 10:51	1
Perfluorononanoic acid (PFNA)	ND		0.20	0.022	ug/Kg		08/18/21 19:44	08/20/21 10:51	1
Perfluorodecanoic acid (PFDA)	ND		0.20	0.048	ug/Kg		08/18/21 19:44	08/20/21 10:51	1
Perfluoroundecanoic acid (PFUnA)	ND		0.20	0.042	ug/Kg		08/18/21 19:44	08/20/21 10:51	1
Perfluorododecanoic acid (PFDoA)	ND		0.20	0.030	ug/Kg		08/18/21 19:44	08/20/21 10:51	1
Perfluorotridecanoic acid (PFTriA)	ND		0.20	0.021	ug/Kg		08/18/21 19:44	08/20/21 10:51	1
Perfluorotetradecanoic acid (PFTeA)	ND		0.20	0.037	ug/Kg		08/18/21 19:44	08/20/21 10:51	1
Perfluorobutanesulfonic acid (PFBS)	ND		0.20	0.038	ug/Kg		08/18/21 19:44	08/20/21 10:51	1
Perfluorohexanesulfonic acid (PFHxS)	ND		0.20	0.029	ug/Kg		08/18/21 19:44	08/20/21 10:51	1
Perfluorooctanesulfonic acid (PFOS)	ND		0.20	0.043	ug/Kg		08/18/21 19:44	08/20/21 10:51	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.20	0.023	ug/Kg		08/18/21 19:44	08/20/21 10:51	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.20	0.048	ug/Kg		08/18/21 19:44	08/20/21 10:51	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		0.20	0.035	ug/Kg		08/18/21 19:44	08/20/21 10:51	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.20	0.041	ug/Kg		08/18/21 19:44	08/20/21 10:51	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		0.20	0.031	ug/Kg		08/18/21 19:44	08/20/21 10:51	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.20	0.039	ug/Kg		08/18/21 19:44	08/20/21 10:51	1

	MB	MB				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	78		50 - 150	08/18/21 19:44	08/20/21 10:51	1
13C4 PFHpA	88		50 - 150	08/18/21 19:44	08/20/21 10:51	1
13C4 PFOA	85		50 - 150	08/18/21 19:44	08/20/21 10:51	1
13C5 PFNA	81		50 - 150	08/18/21 19:44	08/20/21 10:51	1
13C2 PFDA	77		50 - 150	08/18/21 19:44	08/20/21 10:51	1
13C2 PFUnA	76		50 - 150	08/18/21 19:44	08/20/21 10:51	1
13C2 PFDoA	83		50 - 150	08/18/21 19:44	08/20/21 10:51	1
13C2 PFTeDA	80		50 - 150	08/18/21 19:44	08/20/21 10:51	1
13C3 PFBS	78		50 - 150	08/18/21 19:44	08/20/21 10:51	1
1802 PFHxS	81		50 - 150	08/18/21 19:44	08/20/21 10:51	1
13C4 PFOS	88		50 - 150	08/18/21 19:44	08/20/21 10:51	1
d3-NMeFOSAA	75		50 - 150	08/18/21 19:44	08/20/21 10:51	1
d5-NEtFOSAA	81		50 - 150	08/18/21 19:44	08/20/21 10:51	1
13C3 HFPO-DA	73		50 ₋ 150	08/18/21 19:44	08/20/21 10:51	1

Lab Sample ID: LCS 320-517585/2-A

Matrix: Solid

Analysis Batch: 518192

Client Sample	ID: Lab Control Sample
	Prep Type: Total/NA

Prep Batch: 517585

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorohexanoic acid (PFHxA)	2.00	2.17		ug/Kg	_	108	70 - 132	
Perfluoroheptanoic acid (PFHpA)	2.00	2.31		ug/Kg		116	71 - 131	
Perfluorooctanoic acid (PFOA)	2.00	2.36		ug/Kg		118	69 - 133	
Perfluorononanoic acid (PFNA)	2.00	2.18		ug/Kg		109	72 - 129	
Perfluorodecanoic acid (PFDA)	2.00	2.28		ug/Kg		114	69 - 133	

Eurofins TestAmerica, Sacramento

Page 50 of 74

Client: Shannon & Wilson, Inc Job ID: 320-77655-1

Project/Site: AKN PFAS

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample	e ID: LCS	320-517585/2-A
------------	-----------	----------------

Matrix: Solid

Analysis Batch: 518192

4,8-Dioxa-3H-perfluorononanoic

Lab Sample ID: 320-77655-29 MS

Analysis Batch: 518192

Matrix: Solid

acid (ADONA)

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 517585

	Spike	LCS L	CS		%Rec.	
Analyte	Added	Result Q	ualifier Unit	D %Rec	Limits	
Perfluoroundecanoic acid	2.00	1.90	ug/Kg	95	64 - 136	
(PFUnA)						
Perfluorododecanoic acid	2.00	1.95	ug/Kg	97	69 - 135	
(PFDoA)						
Perfluorotridecanoic acid	2.00	2.09	ug/Kg	104	66 - 139	
(PFTriA)						
Perfluorotetradecanoic acid	2.00	2.11	ug/Kg	106	69 - 133	
(PFTeA)						
Perfluorobutanesulfonic acid	1.77	1.68	ug/Kg	95	72 - 128	
(PFBS)						
Perfluorohexanesulfonic acid	1.82	1.84	ug/Kg	101	67 - 130	
(PFHxS)						
Perfluorooctanesulfonic acid	1.86	1.91	ug/Kg	103	68 - 136	
(PFOS)						
N-methylperfluorooctanesulfona	2.00	2.28	ug/Kg	114	63 - 144	
midoacetic acid (NMeFOSAA)						
N-ethylperfluorooctanesulfonami	2.00	2.11	ug/Kg	105	61 - 139	
doacetic acid (NEtFOSAA)						
9-Chlorohexadecafluoro-3-oxan	1.86	1.80	ug/Kg	97	75 - 135	
onane-1-sulfonic acid						
Hexafluoropropylene Oxide	2.00	2.29	ug/Kg	115	77 - 137	
Dimer Acid (HFPO-DA)						
11-Chloroeicosafluoro-3-oxaund	1.88	1.70	ug/Kg	90	76 - 136	
ecane-1-sulfonic acid						

1.88

2.06

ug/Kg

LCS LCS

Isotope Dilution	%Recovery	Qualifier	Limits
13C2 PFHxA	64		50 - 150
13C4 PFHpA	76		50 - 150
13C4 PFOA	76		50 ₋ 150
13C5 PFNA	69		50 - 150
13C2 PFDA	66		50 ₋ 150
13C2 PFUnA	74		50 - 150
13C2 PFDoA	84		50 ₋ 150
13C2 PFTeDA	73		50 - 150
13C3 PFBS	76		50 ₋ 150
1802 PFHxS	81		50 - 150
13C4 PFOS	78		50 ₋ 150
d3-NMeFOSAA	68		50 - 150
d5-NEtFOSAA	74		50 - 150
13C3 HFPO-DA	63		50 - 150

Client Sample ID: 21AKN-SS-20

79 - 139

Prep Type: Total/NA

Prep Batch: 517585

_	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorohexanoic acid (PFHxA)	0.43	I	1.94	2.29		ug/Kg	-	96	70 - 132	
Perfluoroheptanoic acid (PFHpA)	0.084	J	1.94	2.04		ug/Kg	☼	101	71 - 131	
Perfluorooctanoic acid (PFOA)	2.6		1.94	4.27		ug/Kg	☼	86	69 - 133	
Perfluorononanoic acid (PFNA)	0.19		1.94	2.48		ug/Kg	₽	118	72 - 129	

Eurofins TestAmerica, Sacramento

Page 51 of 74

Job ID: 320-77655-1

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: 320-77655-29 MS Client Sample ID: 21AKN-SS-20 **Matrix: Solid** Prep Type: Total/NA **Prep Batch: 517585** Analysis Batch: 518192 MS MS Sample Sample Spike %Rec. Result Qualifier Added Result Qualifier Unit D %Rec Limits Perfluorodecanoic acid (PFDA) 0.25 1.94 2.44 ug/Kg ₩ 113 69 - 133 Perfluoroundecanoic acid 1.1 1.94 3.64 ug/Kg Ö 131 64 - 136 (PFUnA) 0.047 J 1.94 1.97 99 69 - 135 Perfluorododecanoic acid ug/Kg

(PFDoA) 1.94 1.60 77 66 - 139 Perfluorotridecanoic acid 0.11 J ug/Kg 77 (PFTriA) ND 1.94 2.00 ug/Kg 103 69 - 133 Perfluorotetradecanoic acid Ö (PFTeA) 0.049 J Perfluorobutanesulfonic acid 1.72 1.64 ug/Kg 93 72 - 128 (PFBS) Perfluorohexanesulfonic acid 5.5 F1 1.77 6.57 F1 ug/Kg 61 67 - 130₩ (PFHxS) N-methylperfluorooctanesulfona 0.14 JIF1 1.94 2.66 ug/Kg ₩ 129 63 - 144midoacetic acid (NMeFOSAA) 2.39 N-ethylperfluorooctanesulfonami 0.13 J 1.94 ug/Kg 116 61 - 139 24 doacetic acid (NEtFOSAA) 9-Chlorohexadecafluoro-3-oxan ND F1 1.81 2.57 F1 ug/Kg ∜ 142 75 - 135

Hexafluoropropylene Oxide ND 1.94 2.13 ug/Kg ₩ 110 77 - 137Dimer Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaund ND 1.83 1.95 ug/Kg 106 76 - 136 ecane-1-sulfonic acid 4,8-Dioxa-3H-perfluorononanoic ND F1 1.83 1.54 ug/Kg ☼ 84 79 - 139 acid (ADONA)

50 - 150

MS MS Isotope Dilution Qualifier %Recovery Limits 13C2 PFHxA 50 - 150 74 13C4 PFHpA 66 50 - 150 13C4 PFOA 78 50 - 150 13C5 PFNA 57 50 - 150 13C2 PFDA 63 50 - 150 13C2 PFUnA 60 50 - 150 13C2 PFDoA 64 50 - 150 13C2 PFTeDA 43 *5-50 - 150 13C3 PFBS 50 - 150 112 1802 PFHxS 96 50 - 150 13C4 PFOS 82 50 - 150 d3-NMeFOSAA 50 - 150 46 *5d5-NEtFOSAA 48 *5-50 - 150

75

Lab Sample ID: 320-77655-29 MSD

Matrix: Solid

13C3 HFPO-DA

onane-1-sulfonic acid

Analysis Batch: 518192									Prep Ba	tch: 51	17585
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorohexanoic acid (PFHxA)	0.43	I	1.97	2.21		ug/Kg	<u></u>	91	70 - 132	3	30
Perfluoroheptanoic acid (PFHpA)	0.084	J	1.97	2.39		ug/Kg	₩	117	71 - 131	16	30
Perfluorooctanoic acid (PFOA)	2.6		1.97	4.57		ug/Kg	₩	100	69 - 133	7	30
Perfluorononanoic acid (PFNA)	0.19		1.97	2.48		ug/Kg	₩	117	72 - 129	0	30
Perfluorodecanoic acid (PFDA)	0.25		1.97	2.36		ug/Kg	₽	107	69 - 133	4	30

Eurofins TestAmerica, Sacramento

Client Sample ID: 21AKN-SS-20

Prep Type: Total/NA

Client: Shannon & Wilson, Inc Job ID: 320-77655-1 Project/Site: AKN PFAS

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: 320-77655-29 MSD Client Sample ID: 21AKN-SS-20

Matrix: Solid

Analysis Batch: 518192

Prep Type: Total/NA

Prep Batch: 517585

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluoroundecanoic acid	1.1		1.97	3.44		ug/Kg	<u></u>	119	64 - 136	6	30
(PFUnA)											
Perfluorododecanoic acid	0.047	J	1.97	1.81		ug/Kg	₩	90	69 - 135	9	30
(PFDoA)											
Perfluorotridecanoic acid	0.11	J	1.97	1.48		ug/Kg	₩	70	66 - 139	8	30
(PFTriA)											
Perfluorotetradecanoic acid	ND		1.97	1.90		ug/Kg	☼	97	69 - 133	5	30
(PFTeA)											
Perfluorobutanesulfonic acid	0.049	J	1.74	1.78		ug/Kg	₩	99	72 - 128	8	30
(PFBS)											
Perfluorohexanesulfonic acid	5.5	F1	1.79	6.45	F1	ug/Kg	₩	53	67 - 130	2	30
(PFHxS)											
N-methylperfluorooctanesulfona	0.14	JIF1	1.97	2.99	F1	ug/Kg	₩	145	63 - 144	12	30
midoacetic acid (NMeFOSAA)											
N-ethylperfluorooctanesulfonami	0.13	J	1.97	2.46		ug/Kg	≎	118	61 - 139	3	30
doacetic acid (NEtFOSAA)											
9-Chlorohexadecafluoro-3-oxan	ND	F1	1.83	1.92		ug/Kg	≎	104	75 - 135	29	30
onane-1-sulfonic acid	ND		4.07	0.40		/11.7		400	77 407	•	00
Hexafluoropropylene Oxide	ND		1.97	2.13		ug/Kg	≎	108	77 - 137	0	30
Dimer Acid (HFPO-DA)	ND								70 400		
11-Chloroeicosafluoro-3-oxaund	ND		1.85	1.50		ug/Kg	≎	81	76 - 136	26	30
ecane-1-sulfonic acid	ND	E4	4.05	4 47	F4	/11.7		00	70 400	07	00
4,8-Dioxa-3H-perfluorononanoic	ND	F1	1.85	1.17	FΊ	ug/Kg	≎	63	79 - 139	27	30
acid (ADONA)											

MSD MSD

	IIIOD	MOD	
Isotope Dilution	%Recovery	Qualifier	Limits
13C2 PFHxA	75		50 - 150
13C4 PFHpA	66		50 - 150
13C4 PFOA	76		50 - 150
13C5 PFNA	57		50 - 150
13C2 PFDA	71		50 - 150
13C2 PFUnA	66		50 - 150
13C2 PFDoA	63		50 - 150
13C2 PFTeDA	43	*5-	50 - 150
13C3 PFBS	107		50 - 150
1802 PFHxS	97		50 - 150
13C4 PFOS	110		50 - 150
d3-NMeFOSAA	43	*5-	50 - 150
d5-NEtFOSAA	47	*5-	50 - 150
13C3 HFPO-DA	81		50 ₋ 150

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 - DL

Lab Sample ID: 320-77655-29 MS Client Sample ID: 21AKN-SS-20 Prep Type: Total/NA

Matrix: Solid

Sample Sample Spike MS MS

Analysis Batch: 518606 Prep Batch: 517585 %Rec. Result Qualifier Added Result Qualifier Unit D %Rec Limits Perfluorooctanesulfonic acid 28 1.80 24.5 4 ug/Kg -210 68 - 136

(PFOS) - DL

Eurofins TestAmerica, Sacramento

Page 53 of 74

Client: Shannon & Wilson, Inc Job ID: 320-77655-1

Project/Site: AKN PFAS

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 - DL (Continued)

	MS	MS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C4 PFOS - DL	84		50 - 150

Lab Sample ID: 320-77655-29 MSD Client Sample ID: 21AKN-SS-20

Matrix: Solid

Prep Type: Total/NA Analysis Batch: 518606

MSD MSD

Prep Batch: 517585 %Rec. **RPD**

Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Perfluorooctanesulfonic acid 1.83 28 24.7 4 ug/Kg -200 68 - 136

(PFOS) - DL

MSD MSD

Isotope Dilution %Recovery Qualifier Limits 13C4 PFOS - DL 76 50 - 150

Method: D 2216 - Percent Moisture

Lab Sample ID: 320-77655-1 DU Client Sample ID: 21AKN-SB-02 (0'-1') Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 517502

Sample Sample DU DU **RPD** Analyte Result Qualifier Result Qualifier Unit RPD Limit Percent Moisture 6.3 6.6 % 4 20 Percent Solids 93.7 93.4 % 0.3 20

Lab Sample ID: 320-77655-20 DU Client Sample ID: 21AKN-SS-12 **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 517510

DU DU RPD Sample Sample Result Qualifier Analyte Result Qualifier Unit D RPD Limit % Percent Moisture 5.4 20 4.7 14 Percent Solids 94.6 95.3 % 20

QC Association Summary

Client: Shannon & Wilson, Inc
Project/Site: AKN PFAS

Job ID: 320-77655-1

LCMS

Prep Batch: 517575

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-77655-1	21AKN-SB-02 (0'-1')	Total/NA	Solid	SHAKE	_
320-77655-2	21AKN-SB-02 (6'-7')	Total/NA	Solid	SHAKE	
320-77655-3	21AKN-SB-01 (0'-1')	Total/NA	Solid	SHAKE	
320-77655-4	21AKN-SB-01 (6.5'-7.5')	Total/NA	Solid	SHAKE	
320-77655-5	21AKN-SB-101 (6.5-7.5')	Total/NA	Solid	SHAKE	
320-77655-6	21AKN-SB-03 (0'-1')	Total/NA	Solid	SHAKE	
320-77655-6 - DL	21AKN-SB-03 (0'-1')	Total/NA	Solid	SHAKE	
320-77655-7	21AKN-SB-03 (7.3'-7.8')	Total/NA	Solid	SHAKE	
320-77655-8	21AKN-SS-01	Total/NA	Solid	SHAKE	
320-77655-9	21AKN-SS-02	Total/NA	Solid	SHAKE	
320-77655-10	21AKN-SS-03	Total/NA	Solid	SHAKE	
320-77655-11	21AKN-SS-04	Total/NA	Solid	SHAKE	
320-77655-12	21AKN-SS-05	Total/NA	Solid	SHAKE	
320-77655-13	21AKN-SS-06	Total/NA	Solid	SHAKE	
320-77655-14	21AKN-SS-07	Total/NA	Solid	SHAKE	
320-77655-15	21AKN-SS-08	Total/NA	Solid	SHAKE	
320-77655-16	21AKN-SS-09	Total/NA	Solid	SHAKE	
320-77655-17	21AKN-SS-109	Total/NA	Solid	SHAKE	
320-77655-18	21AKN-SS-10	Total/NA	Solid	SHAKE	
320-77655-19	21AKN-SS-11	Total/NA	Solid	SHAKE	
320-77655-20	21AKN-SS-12	Total/NA	Solid	SHAKE	
MB 320-517575/1-A	Method Blank	Total/NA	Solid	SHAKE	
LCS 320-517575/2-A	Lab Control Sample	Total/NA	Solid	SHAKE	
320-77655-1 MS	21AKN-SB-02 (0'-1')	Total/NA	Solid	SHAKE	
320-77655-1 MSD	21AKN-SB-02 (0'-1')	Total/NA	Solid	SHAKE	

Prep Batch: 517585

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
320-77655-21	21AKN-SS-13	Total/NA	Solid	SHAKE	
320-77655-22	21AKN-SS-14	Total/NA	Solid	SHAKE	
320-77655-22 - DL	21AKN-SS-14	Total/NA	Solid	SHAKE	
320-77655-23 - DL	21AKN-SS-15	Total/NA	Solid	SHAKE	
320-77655-23	21AKN-SS-15	Total/NA	Solid	SHAKE	
320-77655-24	21AKN-SS-16	Total/NA	Solid	SHAKE	
320-77655-25	21AKN-SS-17	Total/NA	Solid	SHAKE	
320-77655-26	21AKN-SS-117	Total/NA	Solid	SHAKE	
320-77655-27	21AKN-SS-18	Total/NA	Solid	SHAKE	
320-77655-28	21AKN-SS-19	Total/NA	Solid	SHAKE	
320-77655-29	21AKN-SS-20	Total/NA	Solid	SHAKE	
320-77655-29 - DL	21AKN-SS-20	Total/NA	Solid	SHAKE	
MB 320-517585/1-A	Method Blank	Total/NA	Solid	SHAKE	
LCS 320-517585/2-A	Lab Control Sample	Total/NA	Solid	SHAKE	
320-77655-29 MS	21AKN-SS-20	Total/NA	Solid	SHAKE	
320-77655-29 MS - DL	21AKN-SS-20	Total/NA	Solid	SHAKE	
320-77655-29 MSD	21AKN-SS-20	Total/NA	Solid	SHAKE	
320-77655-29 MSD - DL	21AKN-SS-20	Total/NA	Solid	SHAKE	

Analysis Batch: 518192

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-77655-21	21AKN-SS-13	Total/NA	Solid	EPA 537(Mod)	517585
320-77655-22	21AKN-SS-14	Total/NA	Solid	EPA 537(Mod)	517585

Eurofins TestAmerica, Sacramento

Page 55 of 74 8/30/2021

5

7

9

10

12

13

14

QC Association Summary

Client: Shannon & Wilson, Inc
Project/Site: AKN PFAS

Job ID: 320-77655-1

LCMS (Continued)

Analysis Batch: 518192 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-77655-23	21AKN-SS-15	Total/NA	Solid	EPA 537(Mod)	517585
320-77655-24	21AKN-SS-16	Total/NA	Solid	EPA 537(Mod)	517585
320-77655-25	21AKN-SS-17	Total/NA	Solid	EPA 537(Mod)	517585
320-77655-26	21AKN-SS-117	Total/NA	Solid	EPA 537(Mod)	517585
320-77655-27	21AKN-SS-18	Total/NA	Solid	EPA 537(Mod)	517585
320-77655-28	21AKN-SS-19	Total/NA	Solid	EPA 537(Mod)	517585
320-77655-29	21AKN-SS-20	Total/NA	Solid	EPA 537(Mod)	517585
MB 320-517585/1-A	Method Blank	Total/NA	Solid	EPA 537(Mod)	517585
LCS 320-517585/2-A	Lab Control Sample	Total/NA	Solid	EPA 537(Mod)	517585
320-77655-29 MS	21AKN-SS-20	Total/NA	Solid	EPA 537(Mod)	517585
320-77655-29 MSD	21AKN-SS-20	Total/NA	Solid	EPA 537(Mod)	517585

Analysis Batch: 518606

Lab Sample ID 320-77655-23 - DL	Client Sample ID 21AKN-SS-15	Prep Type Total/NA	Matrix Solid	Method EPA 537(Mod)	Prep Batch 517585
320-77655-29 - DL	21AKN-SS-20	Total/NA	Solid	EPA 537(Mod)	517585
320-77655-29 MS - DL	21AKN-SS-20	Total/NA	Solid	EPA 537(Mod)	517585
320-77655-29 MSD - DL	21AKN-SS-20	Total/NA	Solid	EPA 537(Mod)	517585

Analysis Batch: 518612

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-77655-1	21AKN-SB-02 (0'-1')	Total/NA	Solid	EPA 537(Mod)	517575
320-77655-2	21AKN-SB-02 (6'-7')	Total/NA	Solid	EPA 537(Mod)	517575
320-77655-3	21AKN-SB-01 (0'-1')	Total/NA	Solid	EPA 537(Mod)	517575
320-77655-4	21AKN-SB-01 (6.5'-7.5')	Total/NA	Solid	EPA 537(Mod)	517575
320-77655-5	21AKN-SB-101 (6.5-7.5')	Total/NA	Solid	EPA 537(Mod)	517575
320-77655-7	21AKN-SB-03 (7.3'-7.8')	Total/NA	Solid	EPA 537(Mod)	517575
320-77655-8	21AKN-SS-01	Total/NA	Solid	EPA 537(Mod)	517575
320-77655-9	21AKN-SS-02	Total/NA	Solid Solid	EPA 537(Mod)	517575 517575
320-77655-10	21AKN-SS-03	Total/NA		EPA 537(Mod)	
320-77655-11	21AKN-SS-04	Total/NA	Solid	EPA 537(Mod)	517575
320-77655-12	21AKN-SS-05	Total/NA	Solid	EPA 537(Mod)	517575
320-77655-13	21AKN-SS-06	Total/NA	Solid	EPA 537(Mod)	517575
320-77655-14	21AKN-SS-07	Total/NA	Solid	EPA 537(Mod)	517575
320-77655-15	21AKN-SS-08	Total/NA	Solid	EPA 537(Mod)	517575
320-77655-16	21AKN-SS-09	Total/NA	Solid	EPA 537(Mod)	517575
320-77655-17	21AKN-SS-109	Total/NA	Solid	EPA 537(Mod)	517575
320-77655-18	21AKN-SS-10	Total/NA	Solid	EPA 537(Mod)	517575
320-77655-19	21AKN-SS-11	Total/NA	Solid	EPA 537(Mod)	517575
320-77655-20	21AKN-SS-12	Total/NA	Solid	EPA 537(Mod)	517575
MB 320-517575/1-A	Method Blank	Total/NA	Solid	EPA 537(Mod)	517575
LCS 320-517575/2-A	Lab Control Sample	Total/NA	Solid	EPA 537(Mod)	517575
320-77655-1 MS	21AKN-SB-02 (0'-1')	Total/NA	Solid	EPA 537(Mod)	517575
320-77655-1 MSD	21AKN-SB-02 (0'-1')	Total/NA	Solid	EPA 537(Mod)	517575

Analysis Batch: 519850

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-77655-6 - DL	21AKN-SB-03 (0'-1')	Total/NA	Solid	EPA 537(Mod)	517575
320-77655-6	21AKN-SB-03 (0'-1')	Total/NA	Solid	EPA 537(Mod)	517575

Eurofins TestAmerica, Sacramento

8/30/2021

Page 56 of 74

_

3

_

_

10

11

13

14

QC Association Summary

Client: Shannon & Wilson, Inc Job ID: 320-77655-1 Project/Site: AKN PFAS

LCMS

Analysis Batch: 520530

Lab Sample ID	Client Sample ID	Prep Type	pe Matrix Method		Prep Batch
320-77655-22 - DL	21AKN-SS-14	Total/NA	Solid	EPA 537(Mod)	517585

General Chemistry

Analysis Batch: 517502

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-77655-1	21AKN-SB-02 (0'-1')	Total/NA	Solid	D 2216	
320-77655-2	21AKN-SB-02 (6'-7')	Total/NA	Solid	D 2216	
320-77655-3	21AKN-SB-01 (0'-1')	Total/NA	Solid	D 2216	
320-77655-4	21AKN-SB-01 (6.5'-7.5')	Total/NA	Solid	D 2216	
320-77655-5	21AKN-SB-101 (6.5-7.5')	Total/NA	Solid	D 2216	
320-77655-6	21AKN-SB-03 (0'-1')	Total/NA	Solid	D 2216	
320-77655-7	21AKN-SB-03 (7.3'-7.8')	Total/NA	Solid	D 2216	
320-77655-8	21AKN-SS-01	Total/NA	Solid	D 2216	
320-77655-9	21AKN-SS-02	Total/NA	Solid	D 2216	
320-77655-10	21AKN-SS-03	Total/NA	Solid	D 2216	
320-77655-11	21AKN-SS-04	Total/NA	Solid	D 2216	
320-77655-12	21AKN-SS-05	Total/NA	Solid	D 2216	
320-77655-13	21AKN-SS-06	Total/NA	Solid	D 2216	
320-77655-14	21AKN-SS-07	Total/NA	Solid	D 2216	
320-77655-15	21AKN-SS-08	Total/NA	Solid	D 2216	
320-77655-16	21AKN-SS-09	Total/NA	Solid	D 2216	
320-77655-17	21AKN-SS-109	Total/NA	Solid	D 2216	
320-77655-18	21AKN-SS-10	Total/NA	Solid	D 2216	
320-77655-19	21AKN-SS-11	Total/NA	Solid	D 2216	
320-77655-1 DU	21AKN-SB-02 (0'-1')	Total/NA	Solid	D 2216	

Analysis Batch: 517510

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-77655-20	21AKN-SS-12	Total/NA	Solid	D 2216	
320-77655-21	21AKN-SS-13	Total/NA	Solid	D 2216	
320-77655-22	21AKN-SS-14	Total/NA	Solid	D 2216	
320-77655-23	21AKN-SS-15	Total/NA	Solid	D 2216	
320-77655-24	21AKN-SS-16	Total/NA	Solid	D 2216	
320-77655-25	21AKN-SS-17	Total/NA	Solid	D 2216	
320-77655-26	21AKN-SS-117	Total/NA	Solid	D 2216	
320-77655-27	21AKN-SS-18	Total/NA	Solid	D 2216	
320-77655-28	21AKN-SS-19	Total/NA	Solid	D 2216	
320-77655-29	21AKN-SS-20	Total/NA	Solid	D 2216	
320-77655-20 DU	21AKN-SS-12	Total/NA	Solid	D 2216	

Page 57 of 74

Job ID: 320-77655-1

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS

Client Sample ID: 21AKN-SB-02 (0'-1')

Lab Sample ID: 320-77655-1

Date Collected: 08/14/21 09:40 Date Received: 08/17/21 10:32

Matrix: Solid

Dil Initial Batch Batch Final Batch Prepared or Analyzed Method **Prep Type** Type Run **Factor Amount** Amount Number Analyst Lab Total/NA D 2216 517502 08/18/21 15:17 KDB TAL SAC Analysis

Client Sample ID: 21AKN-SB-02 (0'-1')

Lab Sample ID: 320-77655-1

Date Collected: 08/14/21 09:40 Date Received: 08/17/21 10:32

Matrix: Solid Percent Solids: 93.7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.33 g	10.0 mL	517575	08/18/21 18:34	AM	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			518612	08/22/21 05:45	K1S	TAL SAC

Client Sample ID: 21AKN-SB-02 (6'-7')

Lab Sample ID: 320-77655-2

Matrix: Solid

Date Collected: 08/14/21 10:00 Date Received: 08/17/21 10:32

Batch Batch Dil Initial Final **Batch** Prepared **Prep Type** Method Number or Analyzed Type Run **Factor Amount** Amount **Analyst** Lab Total/NA D 2216 517502 08/18/21 15:17 KDB TAL SAC Analysis

Client Sample ID: 21AKN-SB-02 (6'-7')

Lab Sample ID: 320-77655-2 **Matrix: Solid**

Date Collected: 08/14/21 10:00

Percent Solids: 79.1

Matrix: Solid

TAL SAC

Date Received: 08/17/21 10:32

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.37 g	10.0 mL	517575	08/18/21 18:34	AM	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			518612	08/22/21 06:12	K1S	TAL SAC

Client Sample ID: 21AKN-SB-01 (0'-1')

Analysis

Lab Sample ID: 320-77655-3

08/18/21 15:17 KDB

Date Collected: 08/14/21 11:50 Date Received: 08/17/21 10:32

Batch Batch Dil Initial Final **Batch** Prepared **Prep Type** Type Method Run Factor Amount **Amount** Number or Analyzed Analyst Lab

Client Sample ID: 21AKN-SB-01 (0'-1')

D 2216

Lab Sample ID: 320-77655-3

Date Collected: 08/14/21 11:50 Date Received: 08/17/21 10:32

Total/NA

Matrix: Solid Percent Solids: 88.5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.14 g	10.0 mL	517575	08/18/21 18:34	AM	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			518612	08/22/21 06:21	K1S	TAL SAC

Client Sample ID: 21AKN-SB-01 (6.5'-7.5')

Lab Sample ID: 320-77655-4 Date Collected: 08/14/21 12:05 **Matrix: Solid**

517502

Date Received: 08/17/21 10:32

_										
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216					517502	08/18/21 15:17	KDB	TAL SAC

Eurofins TestAmerica, Sacramento

Page 58 of 74

8/30/2021

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS

Date Received: 08/17/21 10:32

Client Sample ID: 21AKN-SB-01 (6.5'-7.5')

Date Collected: 08/14/21 12:05

Lab Sample ID: 320-77655-4

Matrix: Solid

Percent Solids: 86.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.03 g	10.0 mL	517575	08/18/21 18:34	AM	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			518612	08/22/21 06:30	K1S	TAL SAC

Client Sample ID: 21AKN-SB-101 (6.5-7.5')

Lab Sample ID: 320-77655-5

Matrix: Solid

Date Collected: 08/14/21 11:55 Date Received: 08/17/21 10:32

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			517502	08/18/21 15:17	KDB	TAL SAC

Client Sample ID: 21AKN-SB-101 (6.5-7.5') Date Collected: 08/14/21 11:55

Lab Sample ID: 320-77655-5

Matrix: Solid

Date Received: 08/17/21 10:32

Percent Solids: 85.4

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.30 g	10.0 mL	517575	08/18/21 18:34	AM	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			518612	08/22/21 06:40	K1S	TAL SAC

Client Sample ID: 21AKN-SB-03 (0'-1')

Lab Sample ID: 320-77655-6

Matrix: Solid

Date Collected: 08/14/21 13:40 Date Received: 08/17/21 10:32

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			517502	08/18/21 15:17	KDB	TAL SAC

Client Sample ID: 21AKN-SB-03 (0'-1')

Lab Sample ID: 320-77655-6

Matrix: Solid Percent Solids: 88.4

Date Collected: 08/14/21 13:40 Date Received: 08/17/21 10:32

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE	DL		5.17 g	10.0 mL	517575	08/18/21 18:34	AM	TAL SAC
Total/NA	Analysis	EPA 537(Mod)	DL	50			519850	08/26/21 01:12	S1M	TAL SAC
Total/NA	Prep	SHAKE			5.17 g	10.0 mL	517575	08/18/21 18:34	AM	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		5			519850	08/26/21 01:21	S1M	TAL SAC

Client Sample ID: 21AKN-SB-03 (7.3'-7.8')

Lab Sample ID: 320-77655-7

Date Collected: 08/14/21 13:55 Date Received: 08/17/21 10:32

Matrix: Solid

Batch Batch Dil Initial Final Batch Prepared Method **Prep Type** Type Run Factor Amount Amount Number or Analyzed Analyst Lab D 2216 517502 08/18/21 15:17 KDB Total/NA Analysis TAL SAC

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS

Client Sample ID: 21AKN-SB-03 (7.3'-7.8')

Date Collected: 08/14/21 13:55

Lab Sample ID: 320-77655-7

Matrix: Solid Percent Solids: 80.9

Date Received: 08/17/21 10:32

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.23 g	10.0 mL	517575	08/18/21 18:34	AM	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			518612	08/22/21 06:49	K1S	TAL SAC

Lab Sample ID: 320-77655-8 Client Sample ID: 21AKN-SS-01

Date Collected: 08/15/21 08:49 Date Received: 08/17/21 10:32

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			517502	08/18/21 15:17	KDB	TAL SAC

Client Sample ID: 21AKN-SS-01 Lab Sample ID: 320-77655-8

Date Collected: 08/15/21 08:49

Matrix: Solid

Date Received: 08/17/21 10:32

Percent Solids: 78.0

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.59 g	10.0 mL	517575	08/18/21 18:34	AM	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			518612	08/22/21 07:07	K1S	TAL SAC

Client Sample ID: 21AKN-SS-02 Lab Sample ID: 320-77655-9

Date Collected: 08/15/21 09:00

Matrix: Solid

Date Received: 08/17/21 10:32

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			517502	08/18/21 15:17	KDB	TAL SAC

Client Sample ID: 21AKN-SS-02 Lab Sample ID: 320-77655-9

Date Collected: 08/15/21 09:00

Matrix: Solid

Date Received: 08/17/21 10:32

Percent Solids: 88.5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.14 g	10.0 mL	517575	08/18/21 18:34	AM	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			518612	08/22/21 07:16	K1S	TAL SAC

Client Sample ID: 21AKN-SS-03 Lab Sample ID: 320-77655-10 **Matrix: Solid**

Date Collected: 08/15/21 08:08 Date Received: 08/17/21 10:32

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	D 2216					517502	08/18/21 15:17	KDB	TAL SAC	

Job ID: 320-77655-1

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS

Client Sample ID: 21AKN-SS-03

Date Collected: 08/15/21 08:08 Date Received: 08/17/21 10:32

Lab Sample ID: 320-77655-10

Matrix: Solid

Percent Solids: 92.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.45 g	10.0 mL	517575	08/18/21 18:34	AM	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			518612	08/22/21 07:25	K1S	TAL SAC

Client Sample ID: 21AKN-SS-04

Date Collected: 08/15/21 09:19 Date Received: 08/17/21 10:32

Lab Sample ID: 320-77655-11

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			517502	08/18/21 15:17	KDB	TAL SAC

Client Sample ID: 21AKN-SS-04

Date Collected: 08/15/21 09:19 Date Received: 08/17/21 10:32 Lab Sample ID: 320-77655-11 **Matrix: Solid**

Percent Solids: 93.2

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE	Kuii		5.28 g	10.0 mL	517575	08/18/21 18:34		TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			518612	08/22/21 07:34	K1S	TAL SAC

Client Sample ID: 21AKN-SS-05

Date Collected: 08/15/21 09:53

Date Received: 08/17/21 10:32

Lab	Sample	ID: 320-77655-12	
		Matrix: Solid	

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			517502	08/18/21 15:17	KDB	TAL SAC

Client Sample ID: 21AKN-SS-05

Date Collected: 08/15/21 09:53

Date Received: 08/17/21 10:32

Lab Sample ID: 320-77655-12 Matrix: Solid

Percent Solids: 93.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.33 g	10.0 mL	517575	08/18/21 18:34	AM	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			518612	08/22/21 07:43	K1S	TAL SAC

Client Sample ID: 21AKN-SS-06

Date Collected: 08/15/21 10:04

Date Received: 08/17/21 10:32

Lab Sample I	ID: 320-77655-13

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1		-	517502	08/18/21 15:17	KDB	TAL SAC

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS

Client Sample ID: 21AKN-SS-06

Date Collected: 08/15/21 10:04 Date Received: 08/17/21 10:32

Lab Sample ID: 320-77655-13

Matrix: Solid

Percent Solids: 92.4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.19 g	10.0 mL	517575	08/18/21 18:34	AM	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			518612	08/22/21 07:52	K1S	TAL SAC

Client Sample ID: 21AKN-SS-07

Date Collected: 08/15/21 10:31 Date Received: 08/17/21 10:32

Lab Sample ID: 320-77655-14

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			517502	08/18/21 15:17	KDB	TAL SAC

Client Sample ID: 21AKN-SS-07

Date Collected: 08/15/21 10:31 Date Received: 08/17/21 10:32 Lab Sample ID: 320-77655-14

Matrix: Solid Percent Solids: 91.7

B 7	Batch	Batch	D	Dil	Initial	Final	Batch	Prepared	Amalmat	1 -1-
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.10 g	10.0 mL	517575	08/18/21 18:34	AM	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			518612	08/22/21 08:02	K1S	TAL SAC

Client Sample ID: 21AKN-SS-08

Date Collected: 08/15/21 10:43

Date Received: 08/17/21 10:32

Lab Sample	ID: 320-77655-15
------------	------------------

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			517502	08/18/21 15:17	KDB	TAL SAC

Client Sample ID: 21AKN-SS-08

Date Collected: 08/15/21 10:43

Date Received: 08/17/21 10:32

Lab Sample ID: 320-77655-15 Matrix: Solid

Percent Solids: 92.4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.35 g	10.0 mL	517575	08/18/21 18:34	AM	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			518612	08/22/21 08:11	K1S	TAL SAC

Date Received: 08/17/21 10:32

Client Sample ID: 21AKN-SS-09	Lab Sample ID: 320-77655-16
Date Collected: 08/15/21 10:55	Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	D 2216		1			517502	08/18/21 15:17	KDB	TAL SAC	

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS

Client Sample ID: 21AKN-SS-09

Date Collected: 08/15/21 10:55 Date Received: 08/17/21 10:32 Lab Sample ID: 320-77655-16

Matrix: Solid Percent Solids: 91.5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.08 g	10.0 mL	517575	08/18/21 18:34	AM	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			518612	08/22/21 08:20	K1S	TAL SAC

Client Sample ID: 21AKN-SS-109

Date Collected: 08/15/21 10:45 Date Received: 08/17/21 10:32 Lab Sample ID: 320-77655-17

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			517502	08/18/21 15:17	KDB	TAL SAC

Client Sample ID: 21AKN-SS-109

Date Collected: 08/15/21 10:45 Date Received: 08/17/21 10:32 Lab Sample ID: 320-77655-17

Matrix: Solid Percent Solids: 92.3

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.56 g	10.0 mL	517575	08/18/21 18:34	AM	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			518612	08/22/21 08:29	K1S	TAL SAC

Client Sample ID: 21AKN-SS-10

Date Collected: 08/15/21 11:10

Date Received: 08/17/21 10:32

Lab Sample ID: 320-77655-18

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			517502	08/18/21 15:17	KDB	TAL SAC

Client Sample ID: 21AKN-SS-10

Date Collected: 08/15/21 11:10

Date Received: 08/17/21 10:32

Lab Sample ID: 320-77655-18

Matrix: Solid
Percent Solids: 89.5

Lab Sample ID: 320-77655-19

Prop Type	Batch	Batch Method	Dun	Dil	Initial	Final	Batch Number	Prepared or Analyzed	Analyst	Lab
Prep Type	Туре	wethou	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.06 g	10.0 mL	517575	08/18/21 18:34	AM	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			518612	08/22/21 08:47	K1S	TAL SAC

Client Sample ID: 21AKN-SS-11

Date Collected: 08/15/21 11:18

Date Received: 08/17/21 10:32

ì	_											
		Batch	Batch		Dil	Initial	Final	Batch	Prepared			
	Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
	Total/NA	Analysis	D 2216		1			517502	08/18/21 15:17	KDB	TAL SAC	

10

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS

Client Sample ID: 21AKN-SS-11

Date Collected: 08/15/21 11:18 Date Received: 08/17/21 10:32

Lab Sample ID: 320-77655-19

Matrix: Solid Percent Solids: 93.3

Dil Initial Batch Batch Batch Final Prepared Method Factor Number or Analyzed **Prep Type** Type Run **Amount** Amount **Analyst** Lab Total/NA SHAKE 517575 08/18/21 18:34 TAL SAC Prep 5.03 g 10.0 mL Total/NA 08/22/21 08:56 K1S Analysis EPA 537(Mod) 10 518612 TAL SAC

Client Sample ID: 21AKN-SS-12

Date Collected: 08/15/21 11:33 Date Received: 08/17/21 10:32 Lab Sample ID: 320-77655-20

Matrix: Solid

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Method **Amount Amount** Number or Analyzed Type Run **Factor** Analyst Lab Total/NA Analysis D 2216 517510 08/18/21 15:17 KDB TAL SAC

Client Sample ID: 21AKN-SS-12

Date Collected: 08/15/21 11:33 Date Received: 08/17/21 10:32

Lab Sample ID: 320-77655-20

Matrix: Solid Percent Solids: 94.6

Batch Batch Dil Initial Final **Batch Prepared** Method **Factor Amount** Number or Analyzed **Prep Type** Type Run Amount **Analyst** Lab Total/NA Prep SHAKE 517575 08/18/21 18:34 TAL SAC 5.07 g 10.0 mL AM Total/NA Analysis EPA 537(Mod) 1 518612 08/22/21 09:24 K1S TAL SAC

Client Sample ID: 21AKN-SS-13

Date Collected: 08/15/21 11:41

Date Received: 08/17/21 10:32

Lab Sample ID: 320-77655-21

Matrix: Solid

Dil Batch Initial Final Batch Prepared Batch **Prep Type** Type Method **Factor** Amount Amount Number or Analyzed Run Analyst Lab Total/NA Analysis D 2216 517510 08/18/21 15:17 KDB TAL SAC 1

Client Sample ID: 21AKN-SS-13

Date Collected: 08/15/21 11:41

Date Received: 08/17/21 10:32

Lab Sample ID: 320-77655-21 Matrix: Solid Percent Solids: 95.4

Batch Batch Dil Initial Final **Batch** Prepared **Prep Type** Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA SHAKE 517585 08/18/21 19:44 FX TAL SAC Prep 5.23 g 10.0 mL Total/NA 518192 08/20/21 11:09 S1M TAL SAC Analysis EPA 537(Mod) 1

Client Sample ID: 21AKN-SS-14

Date Collected: 08/15/21 11:52 Date Received: 08/17/21 10:32

Lab Sample ID: 320-77655-22

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			517510	08/18/21 15:17	KDB	TAL SAC

10

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS

Client Sample ID: 21AKN-SS-14

Date Collected: 08/15/21 11:52

Lab Sample ID: 320-77655-22

Matrix: Solid

Date Received: 08/17/21 10:32 Percent Solids: 87.8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.01 g	10.0 mL	517585	08/18/21 19:44	FX	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			518192	08/20/21 11:18	S1M	TAL SAC
Total/NA	Prep	SHAKE	DL		5.01 g	10.0 mL	517585	08/18/21 19:44	FX	TAL SAC
Total/NA	Analysis	EPA 537(Mod)	DL	5			520530	08/27/21 20:20	JRB	TAL SAC

Client Sample ID: 21AKN-SS-15

Date Collected: 08/15/21 12:17 Date Received: 08/17/21 10:32

Lab Sample ID: 320-77655-23

Lab Sample ID: 320-77655-23

Lab Sample ID: 320-77655-24

Matrix: Solid

Matrix: Solid

Batch Dil Initial Batch Prepared Batch Final Method or Analyzed **Prep Type** Run **Factor Amount** Amount Number Analyst Type Lab Total/NA Analysis D 2216 517510 08/18/21 15:17 KDB TAL SAC

Client Sample ID: 21AKN-SS-15

Date Collected: 08/15/21 12:17

Matrix: Solid Date Received: 08/17/21 10:32 Percent Solids: 35.2

Batch Batch Dil Initial Final Batch Prepared Method Amount Amount Number **Prep Type** Type Run **Factor** or Analyzed Analyst Lab Total/NA SHAKE 517585 08/18/21 19:44 FX TAL SAC Prep 5.15 g 10.0 mL Total/NA Analysis EPA 537(Mod) 518192 08/20/21 11:27 S1M TAL SAC Total/NA Prep SHAKE DI 5.15 g 10.0 mL 517585 08/18/21 19:44 FX TAL SAC Total/NA Analysis EPA 537(Mod) DL 10 518606 08/22/21 03:55 K1S TAL SAC

Client Sample ID: 21AKN-SS-16

Date Collected: 08/15/21 12:37

Date Received: 08/17/21 10:32

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			517510	08/18/21 15:17	KDB	TAL SAC

Lab Sample ID: 320-77655-24 Client Sample ID: 21AKN-SS-16 Date Collected: 08/15/21 12:37 Matrix: Solid Date Received: 08/17/21 10:32 Percent Solids: 86.6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.05 g	10.0 mL	517585	08/18/21 19:44	FX	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			518192	08/20/21 11:37	S1M	TAL SAC

Lab Sample ID: 320-77655-25 Client Sample ID: 21AKN-SS-17 Date Collected: 08/15/21 12:52 **Matrix: Solid** Date Received: 08/17/21 10:32

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			517510	08/18/21 15:17	KDB	TAL SAC

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS

Client Sample ID: 21AKN-SS-17

Date Collected: 08/15/21 12:52 Date Received: 08/17/21 10:32 Lab Sample ID: 320-77655-25

Matrix: Solid

Percent Solids: 85.7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.21 g	10.0 mL	517585	08/18/21 19:44	FX	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			518192	08/20/21 11:46	S1M	TAL SAC

Client Sample ID: 21AKN-SS-117

Date Collected: 08/15/21 12:42 Date Received: 08/17/21 10:32 Lab Sample ID: 320-77655-26

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			517510	08/18/21 15:17	KDB	TAL SAC

Client Sample ID: 21AKN-SS-117

Date Collected: 08/15/21 12:42 Date Received: 08/17/21 10:32 Lab Sample ID: 320-77655-26

Lab Sample ID: 320-77655-27

Lab Sample ID: 320-77655-27

Lab Sample ID: 320-77655-28

Matrix: Solid Percent Solids: 85.3

Matrix: Solid

Matrix: Solid

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE	- Kuii		5.15 g	10.0 mL	517585	08/18/21 19:44		TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			518192	08/20/21 11:55	S1M	TAL SAC

Client Sample ID: 21AKN-SS-18

Date Collected: 08/15/21 13:12

Date Received: 08/17/21 10:32

ì	_											
		Batch	Batch		Dil	Initial	Final	Batch	Prepared			
	Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
	Total/NA	Analysis	D 2216					517510	08/18/21 15:17	KDB	TAL SAC	

Client Sample ID: 21AKN-SS-18

·	•
Date Collected: 08/15/21 13:12	Matrix: Solid
Date Received: 08/17/21 10:32	Percent Solids: 88.5
Γ	

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.17 g	10.0 mL	517585	08/18/21 19:44	FX	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			518192	08/20/21 12:04	S1M	TAL SAC

Client Sample ID: 21AKN-SS-19

Date Collected: 08/15/21 13:20

Date Received: 08/17/21 10:32

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1	<u> </u>		517510	08/18/21 15:17	KDB	TAL SAC

Lab Chronicle

Client: Shannon & Wilson, Inc Job ID: 320-77655-1

Project/Site: AKN PFAS

Client Sample ID: 21AKN-SS-19

Lab Sample ID: 320-77655-28 Date Collected: 08/15/21 13:20 **Matrix: Solid**

Date Received: 08/17/21 10:32 Percent Solids: 80.5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.16 g	10.0 mL	517585	08/18/21 19:44	FX	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			518192	08/20/21 12:13	S1M	TAL SAC

Lab Sample ID: 320-77655-29 Client Sample ID: 21AKN-SS-20

Date Collected: 08/15/21 13:30 **Matrix: Solid**

Date Received: 08/17/21 10:32

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			517510	08/18/21 15:17	KDB	TAL SAC

Lab Sample ID: 320-77655-29 Client Sample ID: 21AKN-SS-20

Date Collected: 08/15/21 13:30 **Matrix: Solid** Date Received: 08/17/21 10:32 Percent Solids: 95.7

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Туре Method Factor **Amount Amount** Number or Analyzed Analyst Lab Run Total/NA Prep SHAKE 517585 08/18/21 19:44 FX TAL SAC 5.38 g 10.0 mL Total/NA Analysis EPA 537(Mod) 518192 08/20/21 12:40 S1M TAL SAC Total/NA TAL SAC Prep SHAKE DL 5.38 g 10.0 mL 517585 08/18/21 19:44 FX

518606

08/22/21 03:28 K1S

5

Laboratory References:

Analysis

EPA 537(Mod)

Total/NA

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

DL

TAL SAC

Accreditation/Certification Summary

Client: Shannon & Wilson, Inc
Project/Site: AKN PFAS

Job ID: 320-77655-1

Laboratory: Eurofins TestAmerica, Sacramento

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date	
Alaska (UST)		ate	17-020	02-20-24	
The following analyte	s are included in this rend	ort but the laboratory is r	not certified by the governing authority.	This list may include analytes for whi	
the agency does not	•	ort, but the laboratory is i	lot certified by the governing authority.	This list may include analytes for will	
0 ,	•	Matrix	Analyte	This list may include analytes for will	
the agency does not	offer certification.	•	, , ,	This list may include analytes for will	

3

4

5

7

4 4

12

1 *1*

Method Summary

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS

Method	Method Description	Protocol	Laboratory
EPA 537(Mod)	PFAS for QSM 5.3, Table B-15	EPA	TAL SAC
D 2216	Percent Moisture	ASTM	TAL SAC
SHAKE	Shake Extraction with Ultrasonic Bath Extraction	SW846	TAL SAC

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Job ID: 320-77655-1

3

4

6

10

11

13

14

Sample Summary

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS

320-77655-29

21AKN-SS-20

Lab Sample ID Client Sample ID Matrix Collected Received 320-77655-1 21AKN-SB-02 (0'-1') Solid 08/14/21 09:40 08/17/21 10:32 Solid 320-77655-2 21AKN-SB-02 (6'-7') 08/14/21 10:00 08/17/21 10:32 320-77655-3 21AKN-SB-01 (0'-1') Solid 08/14/21 11:50 08/17/21 10:32 Solid 320-77655-4 21AKN-SB-01 (6.5'-7.5') 08/14/21 12:05 08/17/21 10:32 320-77655-5 21AKN-SB-101 (6.5-7.5') Solid 08/14/21 11:55 08/17/21 10:32 21AKN-SB-03 (0'-1') Solid 08/14/21 13:40 08/17/21 10:32 320-77655-6 320-77655-7 21AKN-SB-03 (7.3'-7.8') Solid 08/14/21 13:55 08/17/21 10:32 320-77655-8 21AKN-SS-01 Solid 08/15/21 08:49 08/17/21 10:32 Solid 320-77655-9 21AKN-SS-02 08/15/21 09:00 08/17/21 10:32 320-77655-10 21AKN-SS-03 Solid 08/15/21 08:08 08/17/21 10:32 320-77655-11 21AKN-SS-04 Solid 08/15/21 09:19 08/17/21 10:32 320-77655-12 21AKN-SS-05 Solid 08/15/21 09:53 08/17/21 10:32 320-77655-13 21AKN-SS-06 Solid 08/15/21 10:04 08/17/21 10:32 21AKN-SS-07 Solid 08/15/21 10:31 08/17/21 10:32 320-77655-14 320-77655-15 21AKN-SS-08 Solid 08/15/21 10:43 08/17/21 10:32 320-77655-16 21AKN-SS-09 Solid 08/15/21 10:55 08/17/21 10:32 Solid 320-77655-17 21AKN-SS-109 08/15/21 10:45 08/17/21 10:32 320-77655-18 21AKN-SS-10 Solid 08/15/21 11:10 08/17/21 10:32 21AKN-SS-11 Solid 08/15/21 11:18 08/17/21 10:32 320-77655-19 320-77655-20 21AKN-SS-12 Solid 21AKN-SS-13 Solid 08/15/21 11:41 08/17/21 10:32 320-77655-21 320-77655-22 21AKN-SS-14 Solid 08/15/21 11:52 08/17/21 10:32 320-77655-23 21AKN-SS-15 Solid 08/15/21 12:17 08/17/21 10:32 Solid 320-77655-24 21AKN-SS-16 08/15/21 12:37 08/17/21 10:32 320-77655-25 21AKN-SS-17 08/15/21 12:52 08/17/21 10:32 Solid Solid 320-77655-26 21AKN-SS-117 08/15/21 12:42 08/17/21 10:32 Solid 08/15/21 13:12 08/17/21 10:32 320-77655-27 21AKN-SS-18 Solid 320-77655-28 21AKN-SS-19 08/15/21 13:20 08/17/21 10:32

Solid

08/15/21 13:30 08/17/21 10:32

1

Job ID: 320-77655-1

16

-4

_

9

10

11

13

8/30/2021

8/30/2021

x Tmc List 1917

No.

8/30/2021

Client: Shannon & Wilson, Inc

Job Number: 320-77655-1

Login Number: 77655

List Source: Eurofins TestAmerica, Sacramento

List Number: 1 Creator: Her, David A

Answer True	Comment
True	
	SEAL
N/A	
rue -	
True	
alse	Refer to Job Narrative for details.
True	
N/A	
True	
rue -	
True	
True	
N/A	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rue rue rue rue rue rue rue rue rue rue

Laboratory Data Review Checklist

Completed By:
Amber Masters
itle:
Environmental Scientist
Date:
9/7/2021
Consultant Firm:
Shannon & Wilson, Inc.
aboratory Name:
Eurofins / TestAmerica Laboratories, Inc. (TestAmerica)
aboratory Report Number:
320-77655-1
aboratory Report Date:
8/30/2021
CS Site Name:
ADOT&PF King Salmon Airport Statewide PFAS
ADEC File Number:
2569.38.033
Iazard Identification Number:
26981

320-77655-1
Laboratory Report Date:
8/30/2021
CS Site Name:
Note: Any N/A or No box checked must have an explanation in the comments box.
1. <u>Laboratory</u>
a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?
Yes \boxtimes No \square N/A \square Comments:
The DEC certified TestAmerica of West Sacramento, CA for the analysis of per- and polyfluorinated alkyl substances (PFAS) on February 11, 2021 by LCMSMS compliant with QSM Version 5.3 Table B-15. These reported analytes were included in the DEC's Contaminated Sites Laboratory Approval 17-020.
b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
$Yes \square No \square N/A \boxtimes Comments:$
Samples were not transferred to another laboratory.
2. <u>Chain of Custody (CoC)</u>
a. CoC information completed, signed, and dated (including released/received by)?
Yes \boxtimes No \square N/A \square Comments:
b. Correct analyses requested?
$Yes \boxtimes No \square N/A \square$ Comments:
3. <u>Laboratory Sample Receipt Documentation</u>
a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?
Yes⊠ No□ N/A□ Comments:
Sample cooler temperature recorded at 1.5° C upon receipt at laboratory.
b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?
Yes \square No \square N/A \boxtimes Comments:
Analysis of PFAS does not require chemical preservation.

320-77655-1	
Laboratory Report Date:	
8/30/2021	
CS Site Name:	
c. Sample condition documentedYes⊠ No□ N/A□	d – broken, leaking (Methanol), zero headspace (VOC vials)? Comments:
The sample receipt form notes that	at the samples were received in good condition.
• •	es, were they documented? For example, incorrect sample ble temperature outside of acceptable range, insufficient or missing
Yes⊠ No□ N/A□	Comments:
	at the sample time on container label for sample 21AKN-SS-04 did not a sample was logged at the time listed on the COC, 9:19.
e. Data quality or usability affect	eted?
	Comments:
Data quality and/or usability is no	ot affected.
4. <u>Case Narrative</u>	
a. Present and understandable?	
Yes⊠ No□ N/A□	Comments:

Page 3 May 2020

320-77655-1
poratory Report Date:
8/30/2021

CS Site Name:

b. Discrepancies, errors, or QC failures identified by the lab?

The container label for sample *21AKN-SS-04* did not match the information listed on the COC; container sample time lists 9:17, the COC lists 9:19. Sample time was logged in according to COC.

The "I" qualifier means the transition mass ratio was outside of the established ratio limits for the following:

- PFHxS in samples 21AKN-SS-03, 21AKN-SS-16, and 21AKN-SS-19;
- FFNA in samples 21AKN-SS-01 and 21AKN-SS-12;
- PFOS in samples 21AKN-SS-01, 21AKN-SS-02, 21AKN-SS-11, and 21AKN-SS-19; and
- PFHxA and NMeFOSAA in sample 21AKN-SS-20.

The qualitative identification of the analyte has some degree of uncertainty with possible high bias. However, analyst judgment was used to positively identify the analyte.

The low level continuing calibration verification (CCVL) associated with batch 320-518606 recovered above the upper control limit for PFDA. The samples associated with this CCV were less than the reportin limit (RL) for the affected analyte. Additionally, the bracketing CCV were within control limits for the analyte. There is no impact on the data; therefore the data have been reported.

The samples 21AKN-SB-01 (0'-1'), 21AKN-SS-03, and 21AKN-SS-18 exhibited matrix interferences for PFOS causing elevation of the RL. The RL for the affected analyte has been raised to be equal to the matrix interferences.

The matrix spike / matrix spike duplicate (MS/MSD) associate with preparation batch 320-517585 had recoveries for PFHxS, NMeFOSAA, 9-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid, and/or ADONA outside control limits Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Due to the high concentration of PFOS, the MS/MSD for analytical batch 320-518606 could not be evaluated for accuracy and precision. The associated LCS met acceptance criteria.

Results for project samples 21AKN-SB-03 (0'-1'), 21AKN-SS-11, 21AKN-SS-14, 21AKN-SS-15, and 21AKN-SS-20 as well as the MS/MSD associated with preparation batch 320-517585 were reported from the analysis of a diluted extract due to high concentration of the target analyte in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits.

320-77655-1	
Laboratory Report Date:	
8/30/2021	
0/30/2021	
CS Site Name:	
The isotope dilution analyte (IDA) recovery associated with the following samples is below the recommended limit: 21AKN-SB-03 (0'-1'), 21AKN-SS-09, 21AKN-SS-11, 21AKN-SS-12, 21AKN-SS-17, 21AKN-SS-17, 21AKN-SS-20, and the MS/MSD samples associated with preparation batch 320-517585. Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the samples.	
The following samples were yellow after final volume/extraction: 21AKN-SS-13, 21AKN-SS-17, 21AKN-SS-117, 21AKN-SS-19, 21AKN-SS-20, 21AKN-SS-03, 21AKN-SS-11, 21AKN-SS-12, and MS/MSD samples associated with preparation batch 320-517585.	
c. Were all corrective actions documented?	
Yes \boxtimes No \square N/A \square Comments:	
Sample results with "I" qualifiers are considered estimated, with high bias and are flagged "JH" in the analytical database.	9
d. What is the effect on data quality/usability according to the case narrative?	
Comments:	
Yes; see above. Refer to Sections 6.c and 6.d for further assessment of MS/MSD and surrogate recovery failures.	
5. <u>Samples Results</u>	
a. Correct analyses performed/reported as requested on COC?	
Yes⊠ No□ N/A□ Comments:	
b. All applicable holding times met?	
Yes⊠ No□ N/A□ Comments:	
c. All soils reported on a dry weight basis?	
Yes⊠ No□ N/A□ Comments:	
d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?	
Yes \square No \boxtimes N/A \square Comments:	

The sample was analyzed at a dilution due to high concentrations of target analytes.

The reporting limit for PFOA in sample 21AKN-SS-11 is above the applicable ADEC Cleanup Level.

	320-77655-1
Lal	poratory Report Date:
	8/30/2021
CS	Site Name:
	e. Data quality or usability affected?
	Data quality and or usability were not affected, the detected PFOA result for sample 21AKN-SS-11 is below the ADEC Cleanup Level.
6.	QC Samples
	a. Method Blank
	i. One method blank reported per matrix, analysis and 20 samples?
	$Yes \boxtimes No \square N/A \square$ Comments:
	ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?
	$Yes \boxtimes No \square N/A \square$ Comments:
	iii. If above LOQ or project specified objectives, what samples are affected? Comments:
	No samples were affected. See above.
	iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
	$Yes \square No \square N/A \boxtimes Comments:$
	There was not a method blank detection, therefore qualification is not required.
	v. Data quality or usability affected? Comments:
	Data quality and or usability were not affected.
	b. Laboratory Control Sample/Duplicate (LCS/LCSD)
	 Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
	Yes⊠ No□ N/A□ Comments:

320-77	7655-1
aborator	y Report Date:
8/30/2	0021
CS Site N	ame:
	ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
	Yes \square No \square N/A \boxtimes Comments:
Me	etals and inorganics were not analyzed as part of this work order.
	iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
	Yes \boxtimes No \square N/A \square Comments:
	 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) Yes⊠ No□ N/A□ Comments:
	TOSE TWO TYPE COMMENTS.
	v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
N/	A; analytical accuracy and precision were within acceptable limits.
	vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
	$Yes \square No \square N/A \boxtimes Comments:$
Se	e above.
	vii. Data quality or usability affected? (Use comment box to explain.)
	Comments:
Th	ne data quality and usability were not affected.
c.	Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project
	i. Organics – One MS/MSD reported per matrix, analysis and 20 samples?
	Yes \boxtimes No \square N/A \square Comments:

320-77655-1
Laboratory Report Date:
8/30/2021
CS Site Name:
ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples?
$Yes \square No \square N/A \boxtimes Comments:$
Metals and/or inorganics were not analyzed as part of this work order.
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?
$Yes \square No \boxtimes N/A \square$ Comments:
The MS and/or MSD associated with preparation batch 320-517585 had percent recovery failures for PFOS, PFHxS, NMeFOSAA, 9-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid, and ADONA. The parent sample 21AKN-SS-20 is associated with the project sample set.
 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. Yes⊠ No□ N/A□ Comments:
Tesa 100 1771 Comments.
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
The parent sample 21AKN-SS-20 had detections for PFOS and PFHxS that were greater than the spiking concentration. This leads to high uncertainty in the MS/MSD recovery calculations and sample results are not affected by the MS/MSD recovery failures for these analytes
The project sample 21AKN-SS-20 had a detection for the NMeFOSAA and the sample result is considered estimated, biased high, and flagged "JH" in the analytical database due to the high MSD recovery failure.
The project sample 21AKN-SS-20 did not have a detection for 9-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid and is not considered affected by the high MS recovery failure.
The project sample 21AKN-SS-20 did not have a detection for ADONA. The sample result is considered affected and the non-detect result is flagged "J" in the analytical database due to the low MSD recovery failure for this analyte.
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
Yes \boxtimes No \square N/A \square Comments:
See above.

320-77655-1
Laboratory Report Date:
8/30/2021
CS Site Name:
vii. Data quality or usability affected? (Use comment box to explain.) Comments:
Data quality and/or usability was affected; see above.
d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only
 i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?
$Yes \boxtimes No \square N/A \square$ Comments:
ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)
Yes□ No⊠ N/A□ Comments:
 The IDA percent recovery associated with the following samples is below the recommended limit: 13C4 PFOS in sample 21AKN-SB-03 (0'-1'). However, the sample was analyzed at a 50x dilution due to high concentrations of PFOS. Sample result is not affected. 13C2 PFTeDA in sample 21AKN-SS-09.
■ 13C2 PFHxA and 13C3 HFPO-DA in sample 21AKN-SS-11. However, the sample was analyzed at a 10x dilution due to high concentrations of target analytes. Sample result is not affected.
 13C2 PFTeDA and d3NMeFOSAA in sample 21AKN-SS-20. 13C2 PFTeDA, d3-NMeFOSAA, and d5-NEtFOSAA in the MS and MSD samples associated with preparation batch 320-517585. Project samples are not affected by IDA recovery failures in QC samples.
iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?
$Yes \boxtimes No \square N/A \square$ Comments:
PFTeA results for sample 21AKN-SS-09 and 21AKN-SS-20 are considered estimated, no direction of bias, and are flagged "J" in the analytical database.
NMeFOSAA results for sample <i>21AKN-SS-20</i> are already flagged for transition mass ratio in the analytical database (see Section 4.c)
iv. Data quality or usability affected? Comments:
Yes, see above.

320-77655-1
Laboratory Report Date:
8/30/2021
CS Site Name:
e. Trip Blanks
 i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)
Yes \square No \square N/A \boxtimes Comments:
PFAS are not volatile compounds; therefore, a trip blank is not required.
ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)
$Yes \square No \square N/A \boxtimes Comments:$
See above.
iii. All results less than LOQ and project specified objectives?
$Yes \square No \square N/A \boxtimes Comments:$
See above.
iv. If above LOQ or project specified objectives, what samples are affected? Comments:
No samples were affected.
v. Data quality or usability affected? Comments:
The data quality and/or usability was not affected.
f. Field Duplicate
i. One field duplicate submitted per matrix, analysis and 10 project samples?
Yes \boxtimes No \square N/A \square Comments:
ii. Submitted blind to lab?
$Yes \boxtimes No \square N/A \square$ Comments:
Field duplicate pairs 21AKN-SB-01(6.5'-7.5')/21AKN-SB-101(6.5'-7.5'), 21AKN-SS-09/21AKN-SS-109, and 21AKN-SS-17/21AKN-SS-117 were included with this work order.

320-77655-1
Laboratory Report Date:
8/30/2021
CS Site Name:
iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$
Where $R_1 = $ Sample Concentration $R_2 = $ Field Duplicate Concentration
$Yes \boxtimes No \square N/A \square$ Comments:
RPDs were less than the recommended 50% DQO for soil, where calculable.
iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:
Data quality and/or usability were not affected.
g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?
$Yes \square No \square N/A \boxtimes Comments:$
Reusable sampling equipment was not used, so an equipment blank was not necessary.
i. All results less than LOQ and project specified objectives?
$Yes \square No \square N/A \boxtimes Comments:$
See above.
ii. If above LOQ or project specified objectives, what samples are affected? Comments:
N/A, see above.
iii. Data quality or usability affected? Comments:
The data quality and/or usability was not affected.
7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
a. Defined and appropriate?
$Yes \square No \square N/A \boxtimes Comments:$
Additional flags were not required.

	320-77655-1		
Laboratory Report Date:			
	8/30/2021		

CS Site Name:

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-78371-1 Client Project/Site: AKN PFAS

For:

Shannon & Wilson, Inc 2355 Hill Rd. Fairbanks, Alaska 99709-5244

Attn: Michael X Jaramillo

Jinda C. Javn

Authorized for release by: 9/15/2021 3:10:56 PM Linda C. Laver, Senior Project Manager (916)374-4362 Linda.Laver@Eurofinset.com

Designee for

David Alltucker, Project Manager I (916)374-4383

David.Alltucker@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

6

0

9

11

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS Laboratory Job ID: 320-78371-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	8
Isotope Dilution Summary	25
QC Sample Results	27
QC Association Summary	33
Lab Chronicle	35
Certification Summary	38
Method Summary	39
Sample Summary	40
Chain of Custody	41
Receipt Checklists	43

3

4

6

8

9

11

13

14

Definitions/Glossary

Client: Shannon & Wilson, Inc Job ID: 320-78371-1

Project/Site: AKN PFAS

Qualifiers

-	_		_
	_	N/A	
	L	IVI	

Qualifier	Qualifier Description
*+	LCS and/or LCSD is outside acceptance limits, high biased.
*5-	Isotope dilution analyte is outside acceptance limits, low biased.
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit MDL ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

Not Calculated NC

Not Detected at the reporting limit (or MDL or EDL if shown) ND

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RLReporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points **RPD**

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins TestAmerica, Sacramento

Page 3 of 43 9/15/2021

Case Narrative

Client: Shannon & Wilson, Inc Job ID: 320-78371-1
Project/Site: AKN PFAS

Job ID: 320-78371-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Job Narrative 320-78371-1

Receipt

The samples were received on 9/1/2021 3:57 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.5° C.

LCMS

Method EPA 537(Mod): Some results for samples 21AKN-SW-09 (320-78371-8) were reported from the analysis of a diluted extract due to high concentration of the target analyte in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits.

Method EPA 537(Mod): The Isotope Dilution Analyte (IDA) recoveries associated with the following samples are below the method recommended limit: 21AKN-MW-04-45 (320-78371-5) and 21AKN-Drum-10 (320-78371-17). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample.

Method EPA 537(Mod): The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 320-522308 and analytical batch 320-522804 recovered outside control limits for the following analytes: Hexafluoropropylene Oxide Dimer Acid (HFPO-DA). This analyte was biased high in the LCS and LCSD and was not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-522308.

Method 3535: The following samples were yellow and contained a thin layer of sediment at the bottom of the bottle prior to extraction: 21AKN-MW-05-15 (320-78371-1) and 21AKN-MW-105-15 (320-78371-2). Water

Method 3535: The following samples were gray and contained a thin layer of sediment at the bottom of the bottle prior to extraction: 21AKN-MW-05-85 (320-78371-3), 21AKN-MW-05-85F (320-78371-4), 21AKN-MW-04-85 (320-78371-6) and 21AKN-MW-04-85F (320-78371-7).

Method 3535: During the solid phase extraction process, the following sample contained non-settable particulates which clogged the solid phase extraction column: 21AKN-MW-05-85 (320-78371-3).

Method 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-523724.

Method 3535: The following samples were light brown with sediment in the sample bottle prior to extraction: 21AKN-Drum-04 (320-78371-12), 21AKN-Drum-02 (320-78371-13), 21AKN-Drum-06 (320-78371-14), 21AKN-Drum-07 (320-78371-15), 21AKN-Drum-08 (320-78371-16) and 21AKN-Drum-10 (320-78371-17).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

<u>۾</u>

Q

3

11

13

14

Client: Shannon & Wilson, Inc Job ID: 320-78371-1

Project/Site: AKN PFAS

Client Sample ID: 21AKN-MW-05-15

Lab Sample ID: 320-78371-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	48		1.8	0.53	ng/L	1	_	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	8.8	В	1.8	0.23	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	27	В	1.8	0.78	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	3.7	В	1.8	0.25	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	32	В	1.8	0.18	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	46	В	1.8	0.52	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	10	В	1.8	0.50	ng/L	1		EPA 537(Mod)	Total/NA
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	1.3	J	4.6	1.1	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-MW-105-15

Lab Sample ID: 320-78371-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	45		1.9	0.54	ng/L	1	_	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	8.4	В	1.9	0.23	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	26	В	1.9	0.79	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	3.2	В	1.9	0.25	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	33	В	1.9	0.19	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	49	В	1.9	0.53	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	10	В	1.9	0.50	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-MW-05-85

Lab Sample ID: 320-78371-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	23		1.9	0.55	ng/L	1	_	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	3.4	В	1.9	0.24	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	12	В	1.9	0.81	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	8.4	В	1.9	0.19	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	5.0	В	1.9	0.54	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	0.70	JB	1.9	0.51	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-MW-05-85F

Lab Sample ID: 320-78371-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Perfluorohexanoic acid (PFHxA)	37		1.8	0.54	ng/L		EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	6.6	В	1.8	0.23	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	35	В	1.8	0.79	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	16	В	1.8	0.18	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	32	В	1.8	0.53	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	2.6	В	1.8	0.50	ng/L	1	EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-MW-04-45

Lab Sample ID: 320-78371-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	110		1.8	0.52	ng/L	1	_	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	25	В	1.8	0.22	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	140	В	1.8	0.76	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	45	В	1.8	0.18	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	140	В	1.8	0.51	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	11	В	1.8	0.48	ng/L	1		EPA 537(Mod)	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Shannon & Wilson, Inc Job ID: 320-78371-1

Project/Site: AKN PFAS

Client Sample ID: 21AKN-M	W-04-85	j				Lab Sa	mple ID: 32	0-78371-
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	0.65	J	1.8	0.53	ng/L		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	0.87	JB	1.8	0.77	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.1	JB	1.8	0.52	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	0.68	JB	1.8	0.49	ng/L	1	EPA 537(Mod)	Total/NA
Client Sample ID: 21AKN-M	W-04-85	F				Lab Sa	mple ID: 32	0-78371-
Analyte		Qualifier	RL	MDL		Dil Fac D		Prep Type
Perfluorohexanoic acid (PFHxA)	0.68	J	1.8	0.53	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	1.1	JB	1.8	0.78	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.91	JB	1.8	0.52	ng/L	1	EPA 537(Mod)	Total/NA
Client Sample ID: 21AKN-S\	N-09					Lab Sa	mple ID: 32	0-78371-
Analyte		Qualifier	RL	MDL		Dil Fac D		Prep Type
Perfluorohexanoic acid (PFHxA)	55		1.9		ng/L	1	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	24		1.9		ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	120		1.9		ng/L	1	EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	9.5	В	1.9	0.25	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	14		1.9		ng/L	1	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS) - DL	460	В	19	5.3	ng/L	10	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS) - DL	1500	В	19	5.0	ng/L	10	EPA 537(Mod)	Total/NA
Client Sample ID: 21AKN-Dr	um-01					Lab Sa	mple ID: 32	0-78371
No Detections.								
Client Sample ID: 21AKN-Dr	um-101					Lab San	nple ID: 320	-78371-1
No Detections.								
Client Sample ID: 21AKN-Dr	'um-03					Lab San	nple ID: 320)-78371-1
No Detections.								
Client Sample ID: 21AKN-Dr	um-04					Lab San	nple ID: 320	-78371-1
No Detections.								
Client Sample ID: 21AKN-Dr	um-02					Lab San	nple ID: 320	-78371-1
Analyte		Qualifier	RL _		Unit	Dil Fac D		Prep Type
Perfluorooctanesulfonic acid (PFOS)	1.3	J	1.8	0.49	ng/L	1	EPA 537(Mod)	Total/NA
Client Sample ID: 21AKN-Dr	rum-06					Lab San	nple ID: 320	-78371-1
No Detections.								
Client Sample ID: 21AKN-Dr	um-07					Lab San	nple ID: 320	-78371-1
No Detections.								

This Detection Summary does not include radiochemical test results.

Client Sample ID: 21AKN-Drum-08

No Detections.

Eurofins TestAmerica, Sacramento

9/15/2021

Lab Sample ID: 320-78371-16

Page 6 of 43

Detection Summary

Client: Shannon & Wilson, Inc
Project/Site: AKN PFAS

Job ID: 320-78371-1

Client Sample ID: 21AKN-Drum-10

Lab Sample ID: 320-78371-17

No Detections.

4

5

7

10

12

4.4

Client: Shannon & Wilson, Inc Job ID: 320-78371-1 Project/Site: AKN PFAS

Client Sample ID: 21AKN-MW-05-15

Date Received: 09/01/21 15:57

13C3 HFPO-DA

Lab Sample ID: 320-78371-1 Date Collected: 08/28/21 14:11

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	48		1.8	0.53	ng/L		09/03/21 04:59	09/06/21 21:51	1
Perfluoroheptanoic acid (PFHpA)	8.8	В	1.8	0.23	ng/L		09/03/21 04:59	09/06/21 21:51	1
Perfluorooctanoic acid (PFOA)	27	В	1.8	0.78	ng/L		09/03/21 04:59	09/06/21 21:51	1
Perfluorononanoic acid (PFNA)	3.7	В	1.8	0.25	ng/L		09/03/21 04:59	09/06/21 21:51	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		09/03/21 04:59	09/06/21 21:51	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	1.0	ng/L		09/03/21 04:59	09/06/21 21:51	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.50	ng/L		09/03/21 04:59	09/06/21 21:51	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		09/03/21 04:59	09/06/21 21:51	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.67	ng/L		09/03/21 04:59	09/06/21 21:51	1
Perfluorobutanesulfonic acid (PFBS)	32	В	1.8	0.18	ng/L		09/03/21 04:59	09/06/21 21:51	1
Perfluorohexanesulfonic acid (PFHxS)	46	В	1.8	0.52	ng/L		09/03/21 04:59	09/06/21 21:51	1
Perfluorooctanesulfonic acid (PFOS)	10	В	1.8	0.50	ng/L		09/03/21 04:59	09/06/21 21:51	1
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	1.3	J	4.6		ng/L		09/03/21 04:59	09/06/21 21:51	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.6		ng/L		09/03/21 04:59	09/06/21 21:51	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.22	ng/L		09/03/21 04:59	09/06/21 21:51	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	*+	3.7	1.4	ng/L		09/03/21 04:59	09/06/21 21:51	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.8	0.29	ng/L		09/03/21 04:59	09/06/21 21:51	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.37	ng/L		09/03/21 04:59	09/06/21 21:51	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	62		50 - 150				09/03/21 04:59	09/06/21 21:51	1
13C4 PFHpA	58		50 - 150				09/03/21 04:59	09/06/21 21:51	1
13C4 PFOA	88		50 - 150				09/03/21 04:59	09/06/21 21:51	1
13C5 PFNA	65		50 - 150				09/03/21 04:59	09/06/21 21:51	1
13C2 PFDA	86		50 ₋ 150				09/03/21 04:59	09/06/21 21:51	1
13C2 PFUnA	76		50 - 150				09/03/21 04:59	09/06/21 21:51	1
13C2 PFDoA	93		50 - 150				09/03/21 04:59	09/06/21 21:51	1
13C2 PFTeDA	109		50 ₋ 150					09/06/21 21:51	1
13C3 PFBS	52		50 ₋ 150				09/03/21 04:59	09/06/21 21:51	1
1802 PFHxS	83		50 - 150				09/03/21 04:59	09/06/21 21:51	1
13C4 PFOS	68		50 - 150				09/03/21 04:59	09/06/21 21:51	1
d3-NMeFOSAA	77		50 ₋ 150					09/06/21 21:51	1
d5-NEtFOSAA	83		50 - 150					09/06/21 21:51	1

09/03/21 04:59 09/06/21 21:51

50 - 150

Client: Shannon & Wilson, Inc Job ID: 320-78371-1 Project/Site: AKN PFAS

Client Sample ID: 21AKN-MW-105-15

Date Received: 09/01/21 15:57

13C4 PFOS

d3-NMeFOSAA

d5-NEtFOSAA

13C3 HFPO-DA

Lab Sample ID: 320-78371-2 Date Collected: 08/28/21 14:01

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	45		1.9	0.54	ng/L		09/03/21 04:59	09/06/21 22:00	1
Perfluoroheptanoic acid (PFHpA)	8.4	В	1.9	0.23	ng/L		09/03/21 04:59	09/06/21 22:00	1
Perfluorooctanoic acid (PFOA)	26	В	1.9	0.79	ng/L		09/03/21 04:59	09/06/21 22:00	1
Perfluorononanoic acid (PFNA)	3.2	В	1.9	0.25	ng/L		09/03/21 04:59	09/06/21 22:00	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.29	ng/L		09/03/21 04:59	09/06/21 22:00	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.0	ng/L		09/03/21 04:59	09/06/21 22:00	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.51	ng/L		09/03/21 04:59	09/06/21 22:00	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.2	ng/L		09/03/21 04:59	09/06/21 22:00	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.68	ng/L		09/03/21 04:59	09/06/21 22:00	1
Perfluorobutanesulfonic acid (PFBS)	33	В	1.9	0.19	ng/L		09/03/21 04:59	09/06/21 22:00	1
Perfluorohexanesulfonic acid (PFHxS)	49	В	1.9	0.53	ng/L			09/06/21 22:00	1
Perfluorooctanesulfonic acid (PFOS)	10	В	1.9	0.50	ng/L		09/03/21 04:59	09/06/21 22:00	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.6	1.1	ng/L		09/03/21 04:59	09/06/21 22:00	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.6	1.2	ng/L		09/03/21 04:59	09/06/21 22:00	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.9	0.22	ng/L		09/03/21 04:59	09/06/21 22:00	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	*+	3.7		ng/L		09/03/21 04:59	09/06/21 22:00	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.9	0.30	ng/L		09/03/21 04:59	09/06/21 22:00	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.37	ng/L		09/03/21 04:59	09/06/21 22:00	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	66		50 - 150				09/03/21 04:59	09/06/21 22:00	1
13C4 PFHpA	57		50 - 150				09/03/21 04:59	09/06/21 22:00	1
13C4 PFOA	95		50 - 150				09/03/21 04:59	09/06/21 22:00	1
13C5 PFNA	67		50 - 150				09/03/21 04:59	09/06/21 22:00	1
13C2 PFDA	88		50 - 150				09/03/21 04:59	09/06/21 22:00	1
13C2 PFUnA	80		50 - 150				09/03/21 04:59	09/06/21 22:00	1
13C2 PFDoA	98		50 - 150				09/03/21 04:59	09/06/21 22:00	1
13C2 PFTeDA	124		50 - 150				09/03/21 04:59	09/06/21 22:00	1
13C3 PFBS	53		50 - 150				09/03/21 04:59	09/06/21 22:00	1
1802 PFHxS	85		50 - 150				09/03/21 04:59	09/06/21 22:00	1
4004 5500			E0 4E0				00/00/04 04:50	00/00/04 00 00	

09/03/21 04:59 09/06/21 22:00

09/03/21 04:59 09/06/21 22:00

09/03/21 04:59 09/06/21 22:00

09/03/21 04:59 09/06/21 22:00

50 - 150

50 - 150

50 - 150

50 - 150

73

83

89

Client: Shannon & Wilson, Inc Job ID: 320-78371-1 Project/Site: AKN PFAS

Date Received: 09/01/21 15:57

e-1-sulfonic acid

4,8-Dioxa-3H-perfluorononanoic acid

Client Sample ID: 21AKN-MW-05-85 Lab Sample ID: 320-78371-3 Date Collected: 08/28/21 17:48

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	23		1.9	0.55	ng/L		09/03/21 04:59	09/06/21 22:10	1
Perfluoroheptanoic acid (PFHpA)	3.4	В	1.9	0.24	ng/L		09/03/21 04:59	09/06/21 22:10	1
Perfluorooctanoic acid (PFOA)	12	В	1.9	0.81	ng/L		09/03/21 04:59	09/06/21 22:10	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.26	ng/L		09/03/21 04:59	09/06/21 22:10	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.29	ng/L		09/03/21 04:59	09/06/21 22:10	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.0	ng/L		09/03/21 04:59	09/06/21 22:10	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.52	ng/L		09/03/21 04:59	09/06/21 22:10	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.2	ng/L		09/03/21 04:59	09/06/21 22:10	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.69	ng/L		09/03/21 04:59	09/06/21 22:10	1
Perfluorobutanesulfonic acid (PFBS)	8.4	В	1.9	0.19	ng/L		09/03/21 04:59	09/06/21 22:10	1
Perfluorohexanesulfonic acid (PFHxS)	5.0	В	1.9	0.54	ng/L		09/03/21 04:59	09/06/21 22:10	1
Perfluorooctanesulfonic acid (PFOS)	0.70	JB	1.9	0.51	ng/L		09/03/21 04:59	09/06/21 22:10	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.8	1.1	ng/L		09/03/21 04:59	09/06/21 22:10	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.8	1.2	ng/L		09/03/21 04:59	09/06/21 22:10	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.9	0.23	ng/L		09/03/21 04:59	09/06/21 22:10	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	*+	3.8	1.4	ng/L		09/03/21 04:59	09/06/21 22:10	1
11-Chloroeicosafluoro-3-oxaundecan	ND		1.9	0.30	ng/L		09/03/21 04:59	09/06/21 22:10	1

(ADONA)					
Isotope Dilution	%Recovery Qu	alifier Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	64	50 - 150	09/03/21 04:59	09/06/21 22:10	1
13C4 PFHpA	62	50 ₋ 150	09/03/21 04:59	09/06/21 22:10	1
13C4 PFOA	89	50 ₋ 150	09/03/21 04:59	09/06/21 22:10	1
13C5 PFNA	68	50 ₋ 150	09/03/21 04:59	09/06/21 22:10	1
13C2 PFDA	78	50 ₋ 150	09/03/21 04:59	09/06/21 22:10	1
13C2 PFUnA	72	<i>50 - 150</i>	09/03/21 04:59	09/06/21 22:10	1
13C2 PFDoA	71	50 ₋ 150	09/03/21 04:59	09/06/21 22:10	1
13C2 PFTeDA	50	50 ₋ 150	09/03/21 04:59	09/06/21 22:10	1
13C3 PFBS	58	50 ₋ 150	09/03/21 04:59	09/06/21 22:10	1
1802 PFHxS	85	50 ₋ 150	09/03/21 04:59	09/06/21 22:10	1
13C4 PFOS	73	50 - 150	09/03/21 04:59	09/06/21 22:10	1
d3-NMeFOSAA	79	50 ₋ 150	09/03/21 04:59	09/06/21 22:10	1
d5-NEtFOSAA	83	50 - 150	09/03/21 04:59	09/06/21 22:10	1
13C3 HFPO-DA	51	50 ₋ 150	09/03/21 04:59	09/06/21 22:10	1

1.9

0.38 ng/L

ND

09/03/21 04:59 09/06/21 22:10

9/15/2021

Client: Shannon & Wilson, Inc Job ID: 320-78371-1 Project/Site: AKN PFAS

Client Sample ID: 21AKN-MW-05-85F

Date Received: 09/01/21 15:57

Lab Sample ID: 320-78371-4 Date Collected: 08/28/21 17:50

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	37		1.8	0.54	ng/L		09/03/21 04:59	09/06/21 22:19	1
Perfluoroheptanoic acid (PFHpA)	6.6	В	1.8	0.23	ng/L		09/03/21 04:59	09/06/21 22:19	1
Perfluorooctanoic acid (PFOA)	35	В	1.8	0.79	ng/L		09/03/21 04:59	09/06/21 22:19	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.25	ng/L		09/03/21 04:59	09/06/21 22:19	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.29	ng/L		09/03/21 04:59	09/06/21 22:19	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	1.0	ng/L		09/03/21 04:59	09/06/21 22:19	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.51	ng/L		09/03/21 04:59	09/06/21 22:19	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		09/03/21 04:59	09/06/21 22:19	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.67	ng/L		09/03/21 04:59	09/06/21 22:19	1
Perfluorobutanesulfonic acid (PFBS)	16	В	1.8	0.18	ng/L		09/03/21 04:59	09/06/21 22:19	1
Perfluorohexanesulfonic acid (PFHxS)	32	В	1.8	0.53	ng/L		09/03/21 04:59	09/06/21 22:19	1
Perfluorooctanesulfonic acid (PFOS)	2.6	В	1.8	0.50	ng/L		09/03/21 04:59	09/06/21 22:19	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.6	1.1	ng/L		09/03/21 04:59	09/06/21 22:19	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.6	1.2	ng/L		09/03/21 04:59	09/06/21 22:19	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.22	ng/L		09/03/21 04:59	09/06/21 22:19	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	*+	3.7	1.4	ng/L		09/03/21 04:59	09/06/21 22:19	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.8	0.30	ng/L		09/03/21 04:59	09/06/21 22:19	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.37	ng/L		09/03/21 04:59	09/06/21 22:19	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	80		50 - 150				09/03/21 04:59	09/06/21 22:19	1
13C4 PFHpA	74		50 - 150				09/03/21 04:59	09/06/21 22:19	1
13C4 PFOA	107		50 ₋ 150				09/03/21 04:59	09/06/21 22:19	1

Isotope Dilution	%Recovery Qualifie	r Limits	Prepared Analyzed Dil Fa	ас
13C2 PFHxA	80	50 - 150	09/03/21 04:59 09/06/21 22:19	1
13C4 PFHpA	74	50 - 150	09/03/21 04:59 09/06/21 22:19	1
13C4 PFOA	107	50 - 150	09/03/21 04:59 09/06/21 22:19	1
13C5 PFNA	83	50 - 150	09/03/21 04:59 09/06/21 22:19	1
13C2 PFDA	97	50 - 150	09/03/21 04:59 09/06/21 22:19	1
13C2 PFUnA	89	50 - 150	09/03/21 04:59 09/06/21 22:19	1
13C2 PFDoA	98	50 - 150	09/03/21 04:59 09/06/21 22:19	1
13C2 PFTeDA	101	50 - 150	09/03/21 04:59 09/06/21 22:19	1
13C3 PFBS	70	50 - 150	09/03/21 04:59 09/06/21 22:19	1
18O2 PFHxS	102	50 - 150	09/03/21 04:59 09/06/21 22:19	1
13C4 PFOS	88	50 - 150	09/03/21 04:59 09/06/21 22:19	1
d3-NMeFOSAA	98	50 - 150	09/03/21 04:59 09/06/21 22:19	1
d5-NEtFOSAA	105	50 - 150	09/03/21 04:59 09/06/21 22:19	1
13C3 HFPO-DA	62	50 - 150	09/03/21 04:59 09/06/21 22:19	1

Client: Shannon & Wilson, Inc Job ID: 320-78371-1 Project/Site: AKN PFAS

Client Sample ID: 21AKN-MW-04-45

13C3 HFPO-DA

Lab Sample ID: 320-78371-5 Date Collected: 08/29/21 15:19 **Matrix: Water**

Date Received: 09/01/21 15:57

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	110		1.8	0.52	ng/L		09/03/21 04:59	09/06/21 22:29	1
Perfluoroheptanoic acid (PFHpA)	25	В	1.8	0.22	ng/L		09/03/21 04:59	09/06/21 22:29	1
Perfluorooctanoic acid (PFOA)	140	В	1.8	0.76	ng/L		09/03/21 04:59	09/06/21 22:29	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L		09/03/21 04:59	09/06/21 22:29	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		09/03/21 04:59	09/06/21 22:29	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.98	ng/L		09/03/21 04:59	09/06/21 22:29	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.49	ng/L		09/03/21 04:59	09/06/21 22:29	
Perfluorotridecanoic acid (PFTriA)	ND		1.8		ng/L		09/03/21 04:59	09/06/21 22:29	
Perfluorotetradecanoic acid (PFTeA)	ND		1.8		ng/L			09/06/21 22:29	
Perfluorobutanesulfonic acid	45	В	1.8		ng/L		09/03/21 04:59	09/06/21 22:29	
Perfluorohexanesulfonic acid (PFHxS)	140	В	1.8	0.51	ng/L		09/03/21 04:59	09/06/21 22:29	,
Perfluorooctanesulfonic acid PFOS)	11	В	1.8	0.48	ng/L		09/03/21 04:59	09/06/21 22:29	•
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.5	1.1	ng/L		09/03/21 04:59	09/06/21 22:29	
I-ethylperfluorooctanesulfonamidoac tic acid (NEtFOSAA)	ND		4.5	1.2	ng/L		09/03/21 04:59	09/06/21 22:29	
-Chlorohexadecafluoro-3-oxanonan -1-sulfonic acid	ND		1.8	0.21	ng/L		09/03/21 04:59	09/06/21 22:29	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	*+	3.6	1.3	ng/L		09/03/21 04:59	09/06/21 22:29	
1-Chloroeicosafluoro-3-oxaundecan -1-sulfonic acid	ND		1.8	0.29	ng/L		09/03/21 04:59	09/06/21 22:29	
,8-Dioxa-3H-perfluorononanoic acid ADONA)	ND		1.8	0.36	ng/L		09/03/21 04:59	09/06/21 22:29	
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
3C2 PFHxA	55		50 - 150				09/03/21 04:59	09/06/21 22:29	
13C4 PFHpA	60		50 ₋ 150				09/03/21 04:59	09/06/21 22:29	
I3C4 PFOA	71		50 ₋ 150				09/03/21 04:59	09/06/21 22:29	
3C5 PFNA	57		50 - 150					09/06/21 22:29	
I3C2 PFDA	69		50 - 150					09/06/21 22:29	
3C2 PFUnA	62		50 - 150					09/06/21 22:29	
3C2 PFDoA	77		50 - 150					09/06/21 22:29	
3C2 PFTeDA	87		50 - 150					09/06/21 22:29	
3C3 PFBS	49	*5-	50 - 150 50 - 150					09/06/21 22:29	
802 PFHxS	72		50 - 150 50 - 150					09/06/21 22:29	
3C4 PFOS	62		50 - 150 50 - 150					09/06/21 22:29	
3C4 PFOS 3-NMeFOSAA	67		50 - 150 50 - 150					09/06/21 22:29	
d5-NEtFOSAA	75		50 - 150				09/03/27 04:59	09/06/21 22:29	

09/03/21 04:59 09/06/21 22:29

50 - 150

47 *5-

Client: Shannon & Wilson, Inc Job ID: 320-78371-1 Project/Site: AKN PFAS

Client Sample ID: 21AKN-MW-04-85

Lab Sample ID: 320-78371-6 Date Collected: 08/29/21 16:53

Matrix: Water Date Received: 09/01/21 15:57

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	0.65	J	1.8	0.53	ng/L		09/03/21 04:59	09/06/21 22:38	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.23	ng/L		09/03/21 04:59	09/06/21 22:38	1
Perfluorooctanoic acid (PFOA)	0.87	JB	1.8	0.77	ng/L		09/03/21 04:59	09/06/21 22:38	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.25	ng/L		09/03/21 04:59	09/06/21 22:38	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		09/03/21 04:59	09/06/21 22:38	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	1.0	ng/L		09/03/21 04:59	09/06/21 22:38	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.50	ng/L		09/03/21 04:59	09/06/21 22:38	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		09/03/21 04:59	09/06/21 22:38	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.67	ng/L		09/03/21 04:59	09/06/21 22:38	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.18	ng/L		09/03/21 04:59	09/06/21 22:38	1
Perfluorohexanesulfonic acid (PFHxS)	1.1	JB	1.8	0.52	ng/L		09/03/21 04:59	09/06/21 22:38	1
Perfluorooctanesulfonic acid (PFOS)	0.68	JB	1.8	0.49	ng/L		09/03/21 04:59	09/06/21 22:38	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.6		ng/L		09/03/21 04:59	09/06/21 22:38	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.6	1.2	ng/L		09/03/21 04:59	09/06/21 22:38	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8		ng/L		09/03/21 04:59	09/06/21 22:38	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	*+	3.6	1.4	ng/L		09/03/21 04:59	09/06/21 22:38	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.8	0.29	ng/L		09/03/21 04:59	09/06/21 22:38	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.36	ng/L		09/03/21 04:59	09/06/21 22:38	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	66		50 - 150				09/03/21 04:59	09/06/21 22:38	1
13C4 PFHpA	71		50 - 150				09/03/21 04:59	09/06/21 22:38	1
13C4 PFOA	88		50 - 150				09/03/21 04:59	09/06/21 22:38	1
13C5 PFNA	72		50 - 150				09/03/21 04:59	09/06/21 22:38	1
13C2 PFDA	83		50 ₋ 150				09/03/21 04:59	09/06/21 22:38	1
13C2 PFUnA	76		50 ₋ 150				09/03/21 04:59	09/06/21 22:38	1
13C2 PFDoA	89		50 - 150				09/03/21 04:59	09/06/21 22:38	1
13C2 PFTeDA	84		50 ₋ 150				09/03/21 04:59	09/06/21 22:38	1
13C3 PFBS	58		50 ₋ 150				09/03/21 04:59	09/06/21 22:38	1
1802 PFHxS	83		50 - 150					09/06/21 22:38	1
13C4 PFOS	75		50 - 150					09/06/21 22:38	1
d3-NMeFOSAA	89		50 - 150					09/06/21 22:38	1
d5-NEtFOSAA	100		50 - 150					09/06/21 22:38	
13C3 HFPO-DA	57		50 - 150					09/06/21 22:38	1

Client: Shannon & Wilson, Inc Job ID: 320-78371-1 Project/Site: AKN PFAS

Client Sample ID: 21AKN-MW-04-85F

Lab Sample ID: 320-78371-7

Date Collected: 08/29/21 16:55 **Matrix: Water** Date Received: 09/01/21 15:57

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	0.68	J	1.8	0.53	ng/L		09/03/21 04:59	09/06/21 22:47	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.23	ng/L		09/03/21 04:59	09/06/21 22:47	1
Perfluorooctanoic acid (PFOA)	1.1	JB	1.8	0.78	ng/L		09/03/21 04:59	09/06/21 22:47	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.25	ng/L		09/03/21 04:59	09/06/21 22:47	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.29	ng/L		09/03/21 04:59	09/06/21 22:47	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	1.0	ng/L		09/03/21 04:59	09/06/21 22:47	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.51	ng/L		09/03/21 04:59	09/06/21 22:47	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		09/03/21 04:59	09/06/21 22:47	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.67	ng/L		09/03/21 04:59	09/06/21 22:47	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.18	ng/L		09/03/21 04:59	09/06/21 22:47	1
Perfluorohexanesulfonic acid (PFHxS)	0.91	JB	1.8		ng/L		09/03/21 04:59	09/06/21 22:47	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.50	ng/L		09/03/21 04:59	09/06/21 22:47	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.6		ng/L			09/06/21 22:47	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.6	1.2	ng/L		09/03/21 04:59	09/06/21 22:47	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.22	ng/L		09/03/21 04:59	09/06/21 22:47	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	*+	3.7	1.4	ng/L		09/03/21 04:59	09/06/21 22:47	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.8	0.29	ng/L		09/03/21 04:59	09/06/21 22:47	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.37	ng/L		09/03/21 04:59	09/06/21 22:47	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	66		50 - 150				09/03/21 04:59	09/06/21 22:47	
13C4 PFHpA	63		50 ₋ 150				09/03/21 04:59	09/06/21 22:47	1
13C4 PFOA	95		50 ₋ 150				09/03/21 04:59	09/06/21 22:47	1
13C5 PFNA	70		50 ₋ 150				09/03/21 04:59	09/06/21 22:47	1
13C2 PFDA	85		50 ₋ 150				09/03/21 04:59	09/06/21 22:47	1
13C2 PFUnA	81		50 - 150				09/03/21 04:59	09/06/21 22:47	1
13C2 PFDoA	91		50 ₋ 150				09/03/21 04:59	09/06/21 22:47	1
13C2 PFTeDA	99		50 ₋ 150				09/03/21 04:59	09/06/21 22:47	1
13C3 PFBS	62		50 ₋ 150				09/03/21 04:59	09/06/21 22:47	1
1802 PFHxS	85		50 ₋ 150				09/03/21 04:59	09/06/21 22:47	1
13C4 PFOS	79		50 - 150				09/03/21 04:59	09/06/21 22:47	1
d3-NMeFOSAA	82		50 - 150					09/06/21 22:47	1
d5-NEtFOSAA	87		50 - 150					09/06/21 22:47	1
13C3 HFPO-DA	58		50 - 150					09/06/21 22:47	1

Eurofins TestAmerica, Sacramento

Client: Shannon & Wilson, Inc
Project/Site: AKN PFAS

Job ID: 320-78371-1

Client Comple ID: 24 AVAI SW 00

Isotope Dilution

1802 PFHxS

13C4 PFOS

Client Sample ID: 21AKN-SW-09 Lab Sample ID: 320-78371-8

Date Collected: 08/29/21 13:50

Matrix: Water

Date Received: 09/01/21 15:57

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perfluorohexanoic acid (PFHxA)	55		1.9	0.54	ng/L		09/03/21 04:59	09/06/21 22:57	
Perfluoroheptanoic acid (PFHpA)	24	В	1.9	0.23	ng/L		09/03/21 04:59	09/06/21 22:57	
Perfluorooctanoic acid (PFOA)	120	В	1.9	0.79	ng/L		09/03/21 04:59	09/06/21 22:57	
Perfluorononanoic acid (PFNA)	9.5	В	1.9	0.25	ng/L		09/03/21 04:59	09/06/21 22:57	
Perfluorodecanoic acid (PFDA)	ND		1.9	0.29	ng/L		09/03/21 04:59	09/06/21 22:57	
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.0	ng/L		09/03/21 04:59	09/06/21 22:57	•
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.51	ng/L		09/03/21 04:59	09/06/21 22:57	
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.2	ng/L		09/03/21 04:59	09/06/21 22:57	
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.68	ng/L		09/03/21 04:59	09/06/21 22:57	
Perfluorobutanesulfonic acid (PFBS)	14	В	1.9	0.19	ng/L		09/03/21 04:59	09/06/21 22:57	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.6		ng/L		09/03/21 04:59	09/06/21 22:57	•
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.6		ng/L			09/06/21 22:57	
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.9		ng/L			09/06/21 22:57	•
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	*+	3.7		ng/L			09/06/21 22:57	•
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.9		ng/L			09/06/21 22:57	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.37	ng/L		09/03/21 04:59	09/06/21 22:57	•
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C2 PFHxA	63		50 - 150				09/03/21 04:59	09/06/21 22:57	
13C4 PFHpA	62		50 - 150				09/03/21 04:59	09/06/21 22:57	
13C4 PFOA	98		50 - 150				09/03/21 04:59	09/06/21 22:57	
13C5 PFNA	62		50 - 150				09/03/21 04:59	09/06/21 22:57	
13C2 PFDA	88		50 - 150				09/03/21 04:59	09/06/21 22:57	
13C2 PFUnA	71		50 - 150				09/03/21 04:59	09/06/21 22:57	
13C2 PFDoA	90		50 - 150				09/03/21 04:59	09/06/21 22:57	
13C2 PFTeDA	118		50 - 150				09/03/21 04:59	09/06/21 22:57	
13C3 PFBS	58		50 - 150				09/03/21 04:59	09/06/21 22:57	
1802 PFHxS	88		50 - 150				09/03/21 04:59	09/06/21 22:57	
13C4 PFOS	70		50 - 150				09/03/21 04:59	09/06/21 22:57	
d3-NMeFOSAA	81		50 - 150				09/03/21 04:59	09/06/21 22:57	
do-Milei Ooaa			50 - 150				09/03/21 04:59	09/06/21 22:57	
	87						00/03/21 04:50		
d5-NEtFOSAA	87 58		50 - 150				09/03/21 04.59	09/06/21 22:57	
d5-NEtFOSAA 13C3 HFPO-DA Method: EPA 537(Mod) - PFAS	58 6 for QSM 5 .	.3, Table B	-15 - DL	MDI	Unit	ח			
d5-NEtFOSAA 13C3 HFPO-DA Method: EPA 537(Mod) - PFAS Analyte	58 S for QSM 5 Result	.3, Table B Qualifier	-15 - DL RL		Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
d5-NEtFOSAA 13C3 HFPO-DA Method: EPA 537(Mod) - PFAS Analyte Perfluorohexanesulfonic acid (PFHxS) Perfluorooctanesulfonic acid	58 6 for QSM 5 .	.3, Table B Qualifier B	-15 - DL	5.3	Unit ng/L	<u>D</u>	Prepared 09/03/21 04:59	Analyzed	Dil Fac

Eurofins TestAmerica, Sacramento

Analyzed

Prepared

<u>09/03/21 04:59</u> <u>09/11/21 00:23</u>

09/03/21 04:59 09/11/21 00:23

Limits

50 - 150

50 - 150

%Recovery Qualifier

94

87

2

3

8

10

12

14

15

9/15/2021

Dil Fac

10

Client: Shannon & Wilson, Inc Job ID: 320-78371-1 Project/Site: AKN PFAS

Date Received: 09/01/21 15:57

4,8-Dioxa-3H-perfluorononanoic acid

(ADONA)

Client Sample ID: 21AKN-Drum-01 Lab Sample ID: 320-78371-9 Date Collected: 08/30/21 20:45

Matrix: Water

09/10/21 04:46 09/11/21 18:19

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND	1.9	0.54	ng/L		09/10/21 04:46	09/11/21 18:19	1
Perfluoroheptanoic acid (PFHpA)	ND	1.9	0.23	ng/L		09/10/21 04:46	09/11/21 18:19	1
Perfluorooctanoic acid (PFOA)	ND	1.9	0.79	ng/L		09/10/21 04:46	09/11/21 18:19	1
Perfluorononanoic acid (PFNA)	ND	1.9	0.25	ng/L		09/10/21 04:46	09/11/21 18:19	1
Perfluorodecanoic acid (PFDA)	ND	1.9	0.29	ng/L		09/10/21 04:46	09/11/21 18:19	1
Perfluoroundecanoic acid (PFUnA)	ND	1.9	1.0	ng/L		09/10/21 04:46	09/11/21 18:19	1
Perfluorododecanoic acid (PFDoA)	ND	1.9	0.51	ng/L		09/10/21 04:46	09/11/21 18:19	1
Perfluorotridecanoic acid (PFTriA)	ND	1.9	1.2	ng/L		09/10/21 04:46	09/11/21 18:19	1
Perfluorotetradecanoic acid (PFTeA)	ND	1.9	0.68	ng/L		09/10/21 04:46	09/11/21 18:19	1
Perfluorobutanesulfonic acid (PFBS)	ND	1.9	0.19	ng/L		09/10/21 04:46	09/11/21 18:19	1
Perfluorohexanesulfonic acid (PFHxS)	ND	1.9	0.53	ng/L		09/10/21 04:46	09/11/21 18:19	1
Perfluorooctanesulfonic acid (PFOS)	ND	1.9	0.50	ng/L		09/10/21 04:46	09/11/21 18:19	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	4.7	1.1	ng/L		09/10/21 04:46	09/11/21 18:19	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	4.7	1.2	ng/L		09/10/21 04:46	09/11/21 18:19	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND	1.9	0.22	ng/L		09/10/21 04:46	09/11/21 18:19	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	3.7	1.4	ng/L		09/10/21 04:46	09/11/21 18:19	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND	1.9	0.30	ng/L		09/10/21 04:46	09/11/21 18:19	1

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	92	50 - 150	09/10/21 04:46	09/11/21 18:19	1
13C4 PFHpA	86	50 - 150	09/10/21 04:46	09/11/21 18:19	1
13C4 PFOA	91	50 - 150	09/10/21 04:46	09/11/21 18:19	1
13C5 PFNA	84	50 - 150	09/10/21 04:46	09/11/21 18:19	1
13C2 PFDA	87	50 - 150	09/10/21 04:46	09/11/21 18:19	1
13C2 PFUnA	87	50 - 150	09/10/21 04:46	09/11/21 18:19	1
13C2 PFDoA	90	50 - 150	09/10/21 04:46	09/11/21 18:19	1
13C2 PFTeDA	85	50 - 150	09/10/21 04:46	09/11/21 18:19	1
13C3 PFBS	82	50 - 150	09/10/21 04:46	09/11/21 18:19	1
1802 PFHxS	90	50 - 150	09/10/21 04:46	09/11/21 18:19	1
13C4 PFOS	86	50 - 150	09/10/21 04:46	09/11/21 18:19	1
d3-NMeFOSAA	93	50 - 150	09/10/21 04:46	09/11/21 18:19	1
d5-NEtFOSAA	99	50 - 150	09/10/21 04:46	09/11/21 18:19	1
13C3 HFPO-DA	79	50 ₋ 150	09/10/21 04:46	09/11/21 18:19	1

1.9

0.37 ng/L

ND

Client: Shannon & Wilson, Inc Job ID: 320-78371-1 Project/Site: AKN PFAS

Client Sample ID: 21AKN-Drum-101

Lab Sample ID: 320-78371-10

Matrix: Water

Date Collected: 08/30/21 20:35 Date Received: 09/01/21 15:57

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.53	ng/L		09/10/21 04:46	09/11/21 18:29	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.23	ng/L		09/10/21 04:46	09/11/21 18:29	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.77	ng/L		09/10/21 04:46	09/11/21 18:29	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.25	ng/L		09/10/21 04:46	09/11/21 18:29	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		09/10/21 04:46	09/11/21 18:29	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	1.0	ng/L		09/10/21 04:46	09/11/21 18:29	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.50	ng/L		09/10/21 04:46	09/11/21 18:29	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		09/10/21 04:46	09/11/21 18:29	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.66	ng/L		09/10/21 04:46	09/11/21 18:29	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.18	ng/L		09/10/21 04:46	09/11/21 18:29	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.52	ng/L		09/10/21 04:46	09/11/21 18:29	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.49	ng/L		09/10/21 04:46	09/11/21 18:29	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.5	1.1	ng/L		09/10/21 04:46	09/11/21 18:29	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.5	1.2	ng/L		09/10/21 04:46	09/11/21 18:29	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.22	ng/L		09/10/21 04:46	09/11/21 18:29	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.6	1.4	ng/L		09/10/21 04:46	09/11/21 18:29	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.8	0.29	ng/L		09/10/21 04:46	09/11/21 18:29	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.36	ng/L		09/10/21 04:46	09/11/21 18:29	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	93		50 - 150				09/10/21 04:46	09/11/21 18:29	1
13C4 PFHpA	88		50 - 150				09/10/21 04:46	09/11/21 18:29	1
13C4 PFOA	91		50 - 150				09/10/21 04:46	09/11/21 18:29	1
13C5 PFNA	86		50 - 150				09/10/21 04:46	09/11/21 18:29	1
13C2 PFDA	90		50 - 150				09/10/21 04:46	09/11/21 18:29	1
13C2 PFUnA	94		50 - 150				09/10/21 04:46	09/11/21 18:29	1
13C2 PFDoA	86		50 - 150				09/10/21 04:46	09/11/21 18:29	1
13C2 PFTeDA	81		50 - 150				09/10/21 04:46	09/11/21 18:29	1
13C3 PFBS	83		50 - 150				09/10/21 04:46	09/11/21 18:29	1
1802 PFHxS	87		50 - 150				09/10/21 04:46	09/11/21 18:29	1
13C4 PFOS	85		50 ₋ 150				09/10/21 04:46	09/11/21 18:29	1
d3-NMeFOSAA	89		50 ₋ 150					09/11/21 18:29	1
d5-NEtFOSAA	101		50 - 150				09/10/21 04:46	09/11/21 18:29	1
13C3 HFPO-DA	82		50 ₋ 150					09/11/21 18:29	1

Client: Shannon & Wilson, Inc Job ID: 320-78371-1 Project/Site: AKN PFAS

Date Received: 09/01/21 15:57

d3-NMeFOSAA

d5-NEtFOSAA

13C3 HFPO-DA

Client Sample ID: 21AKN-Drum-03 Lab Sample ID: 320-78371-11 Date Collected: 08/30/21 21:05

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.9	0.54	ng/L		09/10/21 04:46	09/11/21 18:38	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.23	ng/L		09/10/21 04:46	09/11/21 18:38	1
Perfluorooctanoic acid (PFOA)	ND		1.9	0.79	ng/L		09/10/21 04:46	09/11/21 18:38	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.25	ng/L		09/10/21 04:46	09/11/21 18:38	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.29	ng/L		09/10/21 04:46	09/11/21 18:38	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.0	ng/L		09/10/21 04:46	09/11/21 18:38	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.51	ng/L		09/10/21 04:46	09/11/21 18:38	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.2	ng/L		09/10/21 04:46	09/11/21 18:38	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.68	ng/L		09/10/21 04:46	09/11/21 18:38	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.19	ng/L		09/10/21 04:46	09/11/21 18:38	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9	0.53	ng/L		09/10/21 04:46	09/11/21 18:38	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.9	0.50	ng/L		09/10/21 04:46	09/11/21 18:38	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.7	1.1	ng/L		09/10/21 04:46	09/11/21 18:38	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.7	1.2	ng/L		09/10/21 04:46	09/11/21 18:38	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.9	0.22	ng/L		09/10/21 04:46	09/11/21 18:38	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.7	1.4	ng/L		09/10/21 04:46	09/11/21 18:38	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.9	0.30	ng/L		09/10/21 04:46	09/11/21 18:38	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.37	ng/L		09/10/21 04:46	09/11/21 18:38	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	89		50 - 150				09/10/21 04:46	09/11/21 18:38	1
13C4 PFHpA	84		50 - 150				09/10/21 04:46	09/11/21 18:38	1
13C4 PFOA	92		50 - 150				09/10/21 04:46	09/11/21 18:38	1
13C5 PFNA	81		50 - 150				09/10/21 04:46	09/11/21 18:38	1
13C2 PFDA	89		50 - 150				09/10/21 04:46	09/11/21 18:38	1
13C2 PFUnA	90		50 - 150				09/10/21 04:46	09/11/21 18:38	1
13C2 PFDoA	90		50 - 150				09/10/21 04:46	09/11/21 18:38	1
13C2 PFTeDA	83		50 - 150				09/10/21 04:46	09/11/21 18:38	1
13C3 PFBS	78		50 - 150				09/10/21 04:46	09/11/21 18:38	1
1802 PFHxS	80		50 - 150				09/10/21 04:46	09/11/21 18:38	1
13C4 PFOS	79		50 - 150				09/10/21 04:46	09/11/21 18:38	1
			/						

09/10/21 04:46 09/11/21 18:38

09/10/21 04:46 09/11/21 18:38

09/10/21 04:46 09/11/21 18:38

50 - 150

50 - 150

50 - 150

87

100

Client: Shannon & Wilson, Inc Job ID: 320-78371-1 Project/Site: AKN PFAS

Lab Sample ID: 320-78371-12 Client Sample ID: 21AKN-Drum-04

Date Collected: 08/30/21 21:30 **Matrix: Water** Date Received: 09/01/21 15:57

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.52	ng/L		09/10/21 04:46	09/13/21 15:43	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.22	ng/L		09/10/21 04:46	09/13/21 15:43	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.76	ng/L		09/10/21 04:46	09/13/21 15:43	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L		09/10/21 04:46	09/13/21 15:43	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		09/10/21 04:46	09/13/21 15:43	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.98	ng/L		09/10/21 04:46	09/13/21 15:43	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.49	ng/L		09/10/21 04:46	09/13/21 15:43	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		09/10/21 04:46	09/13/21 15:43	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.65	ng/L		09/10/21 04:46	09/13/21 15:43	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.18	ng/L		09/10/21 04:46	09/13/21 15:43	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.51	ng/L		09/10/21 04:46	09/13/21 15:43	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.48	ng/L		09/10/21 04:46	09/13/21 15:43	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.5	1.1	ng/L		09/10/21 04:46	09/13/21 15:43	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.5	1.2	ng/L		09/10/21 04:46	09/13/21 15:43	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.21	ng/L		09/10/21 04:46	09/13/21 15:43	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.6	1.3	ng/L		09/10/21 04:46	09/13/21 15:43	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.8	0.29	ng/L		09/10/21 04:46	09/13/21 15:43	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.36	ng/L		09/10/21 04:46	09/13/21 15:43	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	89		50 - 150				09/10/21 04:46	09/13/21 15:43	1
13C4 PFHpA	91		50 - 150				09/10/21 04:46	09/13/21 15:43	1
13C4 PFOA	91		50 - 150				09/10/21 04:46	09/13/21 15:43	1
13C5 PFNA	84		50 - 150				09/10/21 04:46	09/13/21 15:43	1
13C2 PFDA	89		50 - 150				09/10/21 04:46	09/13/21 15:43	1
13C2 PFUnA	89		50 - 150				09/10/21 04:46	09/13/21 15:43	1
13C2 PFDoA	90		50 - 150				09/10/21 04:46	09/13/21 15:43	1
13C2 PFTeDA	77		50 ₋ 150				09/10/21 04:46	09/13/21 15:43	1
13C3 PFBS	85		50 ₋ 150				09/10/21 04:46	09/13/21 15:43	1
1802 PFHxS	85		50 - 150				09/10/21 04:46	09/13/21 15:43	1
13C4 PFOS	82		50 ₋ 150				09/10/21 04:46	09/13/21 15:43	1
d3-NMeFOSAA	95		50 ₋ 150				09/10/21 04:46	09/13/21 15:43	1
d5-NEtFOSAA	99		50 ₋ 150				09/10/21 04:46	09/13/21 15:43	1
13C3 HFPO-DA	84		50 ₋ 150				00/40/04 04:40	09/13/21 15:43	1

Client: Shannon & Wilson, Inc Job ID: 320-78371-1 Project/Site: AKN PFAS

Client Sample ID: 21AKN-Drum-02

Date Received: 09/01/21 15:57

13C3 HFPO-DA

Lab Sample ID: 320-78371-13 Date Collected: 08/30/21 21:00

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.53	ng/L		09/10/21 04:46	09/11/21 18:47	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.23	ng/L		09/10/21 04:46	09/11/21 18:47	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.78	ng/L		09/10/21 04:46	09/11/21 18:47	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.25	ng/L		09/10/21 04:46	09/11/21 18:47	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		09/10/21 04:46	09/11/21 18:47	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	1.0	ng/L		09/10/21 04:46	09/11/21 18:47	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.50	ng/L		09/10/21 04:46	09/11/21 18:47	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		09/10/21 04:46	09/11/21 18:47	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.67	ng/L		09/10/21 04:46	09/11/21 18:47	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.18	ng/L		09/10/21 04:46	09/11/21 18:47	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.52	ng/L		09/10/21 04:46	09/11/21 18:47	1
Perfluorooctanesulfonic acid (PFOS)	1.3	J	1.8	0.49	ng/L		09/10/21 04:46	09/11/21 18:47	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.6	1.1	ng/L		09/10/21 04:46	09/11/21 18:47	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.6	1.2	ng/L		09/10/21 04:46	09/11/21 18:47	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.22	ng/L		09/10/21 04:46	09/11/21 18:47	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.6	1.4	ng/L		09/10/21 04:46	09/11/21 18:47	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.8	0.29	ng/L		09/10/21 04:46	09/11/21 18:47	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.36	ng/L		09/10/21 04:46	09/11/21 18:47	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	94		50 - 150				09/10/21 04:46	09/11/21 18:47	1
13C4 PFHpA	88		50 ₋ 150				09/10/21 04:46	09/11/21 18:47	1
13C4 PFOA	88		50 ₋ 150				09/10/21 04:46	09/11/21 18:47	1
13C5 PFNA	86		50 - 150				09/10/21 04:46	09/11/21 18:47	1
13C2 PFDA	88		50 ₋ 150				09/10/21 04:46	09/11/21 18:47	1
13C2 PFUnA	91		50 - 150				09/10/21 04:46	09/11/21 18:47	1
13C2 PFDoA	98		50 ₋ 150				09/10/21 04:46	09/11/21 18:47	1
13C2 PFTeDA	87		50 ₋ 150				09/10/21 04:46	09/11/21 18:47	1
13C3 PFBS	85		50 ₋ 150				09/10/21 04:46	09/11/21 18:47	1
1802 PFHxS	88		50 - 150					09/11/21 18:47	1
13C4 PFOS	87		50 - 150					09/11/21 18:47	1
d3-NMeFOSAA	89		50 - 150					09/11/21 18:47	1

09/10/21 04:46 09/11/21 18:47

50 - 150

Client: Shannon & Wilson, Inc Job ID: 320-78371-1 Project/Site: AKN PFAS

Client Sample ID: 21AKN-Drum-06 Lab Sample ID: 320-78371-14

Matrix: Water

Date Collected: 08/30/21 22:00 Date Received: 09/01/21 15:57

Analyte	Result Qualifier	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND	1.9	0.54	ng/L		09/10/21 04:46	09/11/21 18:56	1
Perfluoroheptanoic acid (PFHpA)	ND	1.9	0.23	ng/L		09/10/21 04:46	09/11/21 18:56	1
Perfluorooctanoic acid (PFOA)	ND	1.9	0.79	ng/L		09/10/21 04:46	09/11/21 18:56	1
Perfluorononanoic acid (PFNA)	ND	1.9	0.25	ng/L		09/10/21 04:46	09/11/21 18:56	1
Perfluorodecanoic acid (PFDA)	ND	1.9	0.29	ng/L		09/10/21 04:46	09/11/21 18:56	1
Perfluoroundecanoic acid (PFUnA)	ND	1.9	1.0	ng/L		09/10/21 04:46	09/11/21 18:56	1
Perfluorododecanoic acid (PFDoA)	ND	1.9	0.51	ng/L		09/10/21 04:46	09/11/21 18:56	1
Perfluorotridecanoic acid (PFTriA)	ND	1.9	1.2	ng/L		09/10/21 04:46	09/11/21 18:56	1
Perfluorotetradecanoic acid (PFTeA)	ND	1.9	0.68	ng/L		09/10/21 04:46	09/11/21 18:56	1
Perfluorobutanesulfonic acid (PFBS)	ND	1.9	0.19	ng/L		09/10/21 04:46	09/11/21 18:56	1
Perfluorohexanesulfonic acid (PFHxS)	ND	1.9	0.53	ng/L		09/10/21 04:46	09/11/21 18:56	1
Perfluorooctanesulfonic acid (PFOS)	ND	1.9	0.50	ng/L		09/10/21 04:46	09/11/21 18:56	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	4.7	1.1	ng/L		09/10/21 04:46	09/11/21 18:56	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	4.7	1.2	ng/L		09/10/21 04:46	09/11/21 18:56	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND	1.9	0.22	ng/L		09/10/21 04:46	09/11/21 18:56	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	3.7	1.4	ng/L		09/10/21 04:46	09/11/21 18:56	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND	1.9	0.30	ng/L		09/10/21 04:46	09/11/21 18:56	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.9	0.37	ng/L		09/10/21 04:46	09/11/21 18:56	1
Isotope Dilution	%Recovery Qualifier	r Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	85	50 - 150				09/10/21 04:46	09/11/21 18:56	1
13C4 PFHpA	88	50 - 150				09/10/21 04:46	09/11/21 18:56	1
13C4 PFOA	86	50 - 150				09/10/21 04:46	09/11/21 18:56	1
13C5 PFNA	84	50 ₋ 150				09/10/21 04:46	09/11/21 18:56	1
13C2 PFDA	90	50 - 150				09/10/21 04:46	09/11/21 18:56	1
13C2 PFUnA	86	50 ₋ 150				09/10/21 04:46	09/11/21 18:56	1
13C2 PFDoA	95	50 - 150				09/10/21 04:46	09/11/21 18:56	1
13C2 PFTeDA	83	50 ₋ 150				09/10/21 04:46	09/11/21 18:56	1
13C3 PFBS	83	50 ₋ 150				09/10/21 04:46	09/11/21 18:56	1
1802 PFHxS	85	50 ₋ 150				09/10/21 04:46	09/11/21 18:56	1
13C4 PFOS	85	50 ₋ 150					09/11/21 18:56	1
d3-NMeFOSAA	92	50 ₋ 150					09/11/21 18:56	1
d5-NEtFOSAA	95	50 ₋ 150					09/11/21 18:56	1
13C3 HFPO-DA	81	50 ₋ 150					09/11/21 18:56	1

Client: Shannon & Wilson, Inc Job ID: 320-78371-1

Project/Site: AKN PFAS

Date Received: 09/01/21 15:57

Client Sample ID: 21AKN-Drum-07 Lab Sample ID: 320-78371-15 Date Collected: 08/30/21 22:05

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND	1.8	0.53	ng/L		09/10/21 04:46	09/11/21 19:05	1
Perfluoroheptanoic acid (PFHpA)	ND	1.8	0.23	ng/L		09/10/21 04:46	09/11/21 19:05	1
Perfluorooctanoic acid (PFOA)	ND	1.8	0.78	ng/L		09/10/21 04:46	09/11/21 19:05	1
Perfluorononanoic acid (PFNA)	ND	1.8	0.25	ng/L		09/10/21 04:46	09/11/21 19:05	1
Perfluorodecanoic acid (PFDA)	ND	1.8	0.28	ng/L		09/10/21 04:46	09/11/21 19:05	1
Perfluoroundecanoic acid (PFUnA)	ND	1.8	1.0	ng/L		09/10/21 04:46	09/11/21 19:05	1
Perfluorododecanoic acid (PFDoA)	ND	1.8	0.50	ng/L		09/10/21 04:46	09/11/21 19:05	1
Perfluorotridecanoic acid (PFTriA)	ND	1.8	1.2	ng/L		09/10/21 04:46	09/11/21 19:05	1
Perfluorotetradecanoic acid (PFTeA)	ND	1.8	0.67	ng/L		09/10/21 04:46	09/11/21 19:05	1
Perfluorobutanesulfonic acid (PFBS)	ND	1.8	0.18	ng/L		09/10/21 04:46	09/11/21 19:05	1
Perfluorohexanesulfonic acid (PFHxS)	ND	1.8	0.52	ng/L		09/10/21 04:46	09/11/21 19:05	1
Perfluorooctanesulfonic acid (PFOS)	ND	1.8	0.49	ng/L		09/10/21 04:46	09/11/21 19:05	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	4.6	1.1	ng/L		09/10/21 04:46	09/11/21 19:05	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	4.6	1.2	ng/L		09/10/21 04:46	09/11/21 19:05	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND	1.8	0.22	ng/L		09/10/21 04:46	09/11/21 19:05	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	3.6	1.4	ng/L		09/10/21 04:46	09/11/21 19:05	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND	1.8	0.29	ng/L		09/10/21 04:46	09/11/21 19:05	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.8	0.36	ng/L		09/10/21 04:46	09/11/21 19:05	1

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	86	50 - 150	09/10/21 04:46	09/11/21 19:05	1
13C4 PFHpA	87	50 - 150	09/10/21 04:46	09/11/21 19:05	1
13C4 PFOA	88	50 - 150	09/10/21 04:46	09/11/21 19:05	1
13C5 PFNA	76	50 - 150	09/10/21 04:46	09/11/21 19:05	1
13C2 PFDA	82	50 - 150	09/10/21 04:46	09/11/21 19:05	1
13C2 PFUnA	82	50 - 150	09/10/21 04:46	09/11/21 19:05	1
13C2 PFDoA	83	50 - 150	09/10/21 04:46	09/11/21 19:05	1
13C2 PFTeDA	78	50 - 150	09/10/21 04:46	09/11/21 19:05	1
13C3 PFBS	81	50 - 150	09/10/21 04:46	09/11/21 19:05	1
1802 PFHxS	84	50 - 150	09/10/21 04:46	09/11/21 19:05	1
13C4 PFOS	81	50 - 150	09/10/21 04:46	09/11/21 19:05	1
d3-NMeFOSAA	82	50 - 150	09/10/21 04:46	09/11/21 19:05	1
d5-NEtFOSAA	87	50 - 150	09/10/21 04:46	09/11/21 19:05	1
13C3 HFPO-DA	85	50 - 150	09/10/21 04:46	09/11/21 19:05	1

Client: Shannon & Wilson, Inc Job ID: 320-78371-1 Project/Site: AKN PFAS

Client Sample ID: 21AKN-Drum-08

Lab Sample ID: 320-78371-16

Matrix: Water

Date Collected: 08/30/21 22:40 Date Received: 09/01/21 15:57

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.53	ng/L		09/10/21 04:46	09/11/21 19:32	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.23	ng/L		09/10/21 04:46	09/11/21 19:32	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.78	ng/L		09/10/21 04:46	09/11/21 19:32	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.25	ng/L		09/10/21 04:46	09/11/21 19:32	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		09/10/21 04:46	09/11/21 19:32	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	1.0	ng/L		09/10/21 04:46	09/11/21 19:32	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.50	ng/L		09/10/21 04:46	09/11/21 19:32	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		09/10/21 04:46	09/11/21 19:32	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.67	ng/L		09/10/21 04:46	09/11/21 19:32	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.18	ng/L		09/10/21 04:46	09/11/21 19:32	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.52	ng/L		09/10/21 04:46	09/11/21 19:32	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.49	ng/L		09/10/21 04:46	09/11/21 19:32	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.6	1.1	ng/L		09/10/21 04:46	09/11/21 19:32	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.6	1.2	ng/L		09/10/21 04:46	09/11/21 19:32	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.22	ng/L		09/10/21 04:46	09/11/21 19:32	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.7	1.4	ng/L		09/10/21 04:46	09/11/21 19:32	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.8	0.29	ng/L		09/10/21 04:46	09/11/21 19:32	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.37	ng/L		09/10/21 04:46	09/11/21 19:32	1
Isotope Dilution	%Recovery (Qualifier L	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	86		50 - 150				09/10/21 04:46	09/11/21 19:32	1
13C4 PFHpA	86	5	50 - 150				09/10/21 04:46	09/11/21 19:32	1
13C4 PFOA	87	5	50 - 150				09/10/21 04:46	09/11/21 19:32	1
13C5 PFNA	81		50 - 150				09/10/21 04:46	09/11/21 19:32	1
13C2 PFDA	83	5	50 - 150				09/10/21 04:46	09/11/21 19:32	1
13C2 PFUnA	84	5	50 - 150				09/10/21 04:46	09/11/21 19:32	1
13C2 PFDoA	91		50 - 150				09/10/21 04:46	09/11/21 19:32	1
13C2 PFTeDA	79	5	50 - 150				09/10/21 04:46	09/11/21 19:32	1
13C3 PFBS	81	5	50 - 150				09/10/21 04:46	09/11/21 19:32	1
1802 PFHxS	86		50 - 150				09/10/21 04:46	09/11/21 19:32	1
13C4 PFOS	82	5	50 - 150					09/11/21 19:32	1
d3-NMeFOSAA	86		50 - 150					09/11/21 19:32	1
d5-NEtFOSAA	85		50 ₋ 150					09/11/21 19:32	1
13C3 HFPO-DA	79		50 - 150					09/11/21 19:32	1

Client: Shannon & Wilson, Inc Job ID: 320-78371-1 Project/Site: AKN PFAS

Client Sample ID: 21AKN-Drum-10

Date Received: 09/01/21 15:57

Lab Sample ID: 320-78371-17 Date Collected: 08/31/21 10:30

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.52	ng/L		09/10/21 04:46	09/11/21 19:42	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.22	ng/L		09/10/21 04:46	09/11/21 19:42	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.76	ng/L		09/10/21 04:46	09/11/21 19:42	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L		09/10/21 04:46	09/11/21 19:42	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		09/10/21 04:46	09/11/21 19:42	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.99	ng/L		09/10/21 04:46	09/11/21 19:42	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.49	ng/L		09/10/21 04:46	09/11/21 19:42	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		09/10/21 04:46	09/11/21 19:42	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.66	ng/L		09/10/21 04:46	09/11/21 19:42	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.18	ng/L		09/10/21 04:46	09/11/21 19:42	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.51	ng/L		09/10/21 04:46	09/11/21 19:42	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.49	ng/L		09/10/21 04:46	09/11/21 19:42	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.5	1.1	ng/L		09/10/21 04:46	09/11/21 19:42	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.5	1.2	ng/L		09/10/21 04:46	09/11/21 19:42	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.22	ng/L		09/10/21 04:46	09/11/21 19:42	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.6	1.3	ng/L		09/10/21 04:46	09/11/21 19:42	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.8		ng/L		09/10/21 04:46	09/11/21 19:42	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.36	ng/L		09/10/21 04:46	09/11/21 19:42	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	66		50 - 150				09/10/21 04:46	09/11/21 19:42	1
13C4 PFHpA	68		50 - 150				09/10/21 04:46	09/11/21 19:42	1
13C4 PFOA	69		50 - 150				09/10/21 04:46	09/11/21 19:42	1
13C5 PFNA	66		50 - 150				09/10/21 04:46	09/11/21 19:42	1
13C2 PFDA	66		50 - 150				09/10/21 04:46	09/11/21 19:42	1
13C2 PFUnA	67		50 - 150				09/10/21 04:46	09/11/21 19:42	1
13C2 PFDoA	65		50 - 150				09/10/21 04:46	09/11/21 19:42	1
13C2 PFTeDA	45	*5-	50 ₋ 150				09/10/21 04:46	09/11/21 19:42	1
13C3 PFBS	55		50 ₋ 150				09/10/21 04:46	09/11/21 19:42	1
1802 PFHxS	58		50 - 150				09/10/21 04:46	09/11/21 19:42	1
13C4 PFOS	58		50 ₋ 150				09/10/21 04:46	09/11/21 19:42	1
d3-NMeFOSAA	70		50 ₋ 150				09/10/21 04:46	09/11/21 19:42	1
d5-NEtFOSAA	74		50 ₋ 150				09/10/21 04:46	09/11/21 19:42	
13C3 HFPO-DA	68		50 - 150					09/11/21 19:42	1

Isotope Dilution Summary

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Matrix: Water Prep Type: Total/NA

			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PFHxA	C4PFHA	PFOA	PFNA	PFDA	PFUnA	PFDoA	PFTDA
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)
320-78371-1	21AKN-MW-05-15	62	58	88	65	86	76	93	109
320-78371-2	21AKN-MW-105-15	66	57	95	67	88	80	98	124
320-78371-3	21AKN-MW-05-85	64	62	89	68	78	72	71	50
320-78371-4	21AKN-MW-05-85F	80	74	107	83	97	89	98	101
320-78371-5	21AKN-MW-04-45	55	60	71	57	69	62	77	87
320-78371-6	21AKN-MW-04-85	66	71	88	72	83	76	89	84
320-78371-7	21AKN-MW-04-85F	66	63	95	70	85	81	91	99
320-78371-8	21AKN-SW-09	63	62	98	62	88	71	90	118
320-78371-8 - DL	21AKN-SW-09								
320-78371-9	21AKN-Drum-01	92	86	91	84	87	87	90	85
320-78371-10	21AKN-Drum-101	93	88	91	86	90	94	86	81
320-78371-11	21AKN-Drum-03	89	84	92	81	89	90	90	83
320-78371-12	21AKN-Drum-04	89	91	91	84	89	89	90	77
320-78371-13	21AKN-Drum-02	94	88	88	86	88	91	98	87
320-78371-14	21AKN-Drum-06	85	88	86	84	90	86	95	83
320-78371-15	21AKN-Drum-07	86	87	88	76	82	82	83	78
320-78371-16	21AKN-Drum-08	86	86	87	81	83	84	91	79
320-78371-17	21AKN-Drum-10	66	68	69	66	66	67	65	45 *5-
LCS 320-522308/2-A	Lab Control Sample	83	83	92	83	86	82	91	96
LCS 320-523724/2-A	Lab Control Sample	84	84	87	76	85	85	88	84
LCSD 320-522308/3-A	Lab Control Sample Dup	77	87	92	76	89	81	91	101
LCSD 320-523724/3-A	Lab Control Sample Dup	91	89	89	82	91	93	97	84
MB 320-522308/1-A	Method Blank	84	90	94	79	89	85	95	102
MB 320-523724/1-A	Method Blank	88	89	95	80	87	86	97	86

WID 020 02072 1/171	Would Blank	00	00	00	00	01	00	01	00
				•		• .	ceptance Li	mits)	
		C3PFBS	PFHxS	PFOS	d3NMFOS	d5NEFOS	HFPODA		
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)		
320-78371-1	21AKN-MW-05-15	52	83	68	77	83	51		
320-78371-2	21AKN-MW-105-15	53	85	73	83	89	53		
320-78371-3	21AKN-MW-05-85	58	85	73	79	83	51		
320-78371-4	21AKN-MW-05-85F	70	102	88	98	105	62		
320-78371-5	21AKN-MW-04-45	49 *5-	72	62	67	75	47 *5-		
320-78371-6	21AKN-MW-04-85	58	83	75	89	100	57		
320-78371-7	21AKN-MW-04-85F	62	85	79	82	87	58		
320-78371-8	21AKN-SW-09	58	88	70	81	87	58		
320-78371-8 - DL	21AKN-SW-09		94	87					
320-78371-9	21AKN-Drum-01	82	90	86	93	99	79		
320-78371-10	21AKN-Drum-101	83	87	85	89	101	82		
320-78371-11	21AKN-Drum-03	78	80	79	87	100	81		
320-78371-12	21AKN-Drum-04	85	85	82	95	99	84		
320-78371-13	21AKN-Drum-02	85	88	87	89	106	86		
320-78371-14	21AKN-Drum-06	83	85	85	92	95	81		
320-78371-15	21AKN-Drum-07	81	84	81	82	87	85		
320-78371-16	21AKN-Drum-08	81	86	82	86	85	79		
320-78371-17	21AKN-Drum-10	55	58	58	70	74	68		
LCS 320-522308/2-A	Lab Control Sample	81	94	81	94	98	66		
LCS 320-523724/2-A	Lab Control Sample	76	76	75	87	100	81		
LCSD 320-522308/3-A	Lab Control Sample Dup	77	93	79	92	99	66		
LCSD 320-523724/3-A	Lab Control Sample Dup	86	89	88	94	101	88		
I control of the cont									

Eurofins TestAmerica, Sacramento

Job ID: 320-78371-1

3

4

6

8

10

12

14

Isotope Dilution Summary

Client: Shannon & Wilson, Inc
Project/Site: AKN PFAS

Job ID: 320-78371-1

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Matrix: Water Prep Type: Total/NA

			Percent Isotope Dilution Recovery (Acceptance Lim								
		C3PFBS	PFHxS	PFOS	d3NMFOS	d5NEFOS	HFPODA				
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)				
MB 320-522308/1-A	Method Blank	73	91	86	93	104	72				
MB 320-523724/1-A	Method Blank	84	90	82	92	94	87				

Surrogate Legend

PFHxA = 13C2 PFHxA

C4PFHA = 13C4 PFHpA

PFOA = 13C4 PFOA

PFNA = 13C5 PFNA

PFDA = 13C2 PFDA

PFUnA = 13C2 PFUnA

PFDoA = 13C2 PFDoA

PFTDA = 13C2 PFTeDA

C3PFBS = 13C3 PFBS

PFHxS = 18O2 PFHxS

PFOS = 13C4 PFOS

d3NMFOS = d3-NMeFOSAA

d5NEFOS = d5-NEtFOSAA

HFPODA = 13C3 HFPO-DA

3

Δ

5

6

_

10

13

Client: Shannon & Wilson, Inc
Project/Site: AKN PFAS

Job ID: 320-78371-1

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Lab Sample ID: MB 320-522308/1-A

Matrix: Water

Analysis Batch: 522804

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 522308

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.58	ng/L		09/03/21 04:59	09/06/21 19:49	1
Perfluoroheptanoic acid (PFHpA)	0.582	J	2.0	0.25	ng/L		09/03/21 04:59	09/06/21 19:49	1
Perfluorooctanoic acid (PFOA)	0.888	J	2.0	0.85	ng/L		09/03/21 04:59	09/06/21 19:49	1
Perfluorononanoic acid (PFNA)	0.665	J	2.0	0.27	ng/L		09/03/21 04:59	09/06/21 19:49	1
Perfluorodecanoic acid (PFDA)	0.599	J	2.0	0.31	ng/L		09/03/21 04:59	09/06/21 19:49	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		09/03/21 04:59	09/06/21 19:49	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55	ng/L		09/03/21 04:59	09/06/21 19:49	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		09/03/21 04:59	09/06/21 19:49	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.73	ng/L		09/03/21 04:59	09/06/21 19:49	1
Perfluorobutanesulfonic acid (PFBS)	0.542	J	2.0	0.20	ng/L		09/03/21 04:59	09/06/21 19:49	1
Perfluorohexanesulfonic acid (PFHxS)	0.835	J	2.0	0.57	ng/L		09/03/21 04:59	09/06/21 19:49	1
Perfluorooctanesulfonic acid (PFOS)	0.890	J	2.0	0.54	ng/L		09/03/21 04:59	09/06/21 19:49	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		5.0	1.2	ng/L		09/03/21 04:59	09/06/21 19:49	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		5.0	1.3	ng/L		09/03/21 04:59	09/06/21 19:49	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	0.578	J	2.0	0.24	ng/L		09/03/21 04:59	09/06/21 19:49	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		4.0	1.5	ng/L		09/03/21 04:59	09/06/21 19:49	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	0.543	J	2.0	0.32	ng/L		09/03/21 04:59	09/06/21 19:49	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	0.556	J	2.0	0.40	ng/L		09/03/21 04:59	09/06/21 19:49	1
	MR	MR							

ИΒ	MR	

Isotope Dilution	%Recovery	Qualifier Li	imits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	84		0 - 150	09/03/21 04:59	09/06/21 19:49	1
13C4 PFHpA	90	50	0 - 150	09/03/21 04:59	09/06/21 19:49	1
13C4 PFOA	94	50	0 - 150	09/03/21 04:59	09/06/21 19:49	1
13C5 PFNA	79	50	0 - 150	09/03/21 04:59	09/06/21 19:49	1
13C2 PFDA	89	50	0 - 150	09/03/21 04:59	09/06/21 19:49	1
13C2 PFUnA	85	50	0 - 150	09/03/21 04:59	09/06/21 19:49	1
13C2 PFDoA	95	50	0 - 150	09/03/21 04:59	09/06/21 19:49	1
13C2 PFTeDA	102	50	0 - 150	09/03/21 04:59	09/06/21 19:49	1
13C3 PFBS	73	50	0 - 150	09/03/21 04:59	09/06/21 19:49	1
1802 PFHxS	91	50	0 - 150	09/03/21 04:59	09/06/21 19:49	1
13C4 PFOS	86	50	0 - 150	09/03/21 04:59	09/06/21 19:49	1
d3-NMeFOSAA	93	50	0 - 150	09/03/21 04:59	09/06/21 19:49	1
d5-NEtFOSAA	104	50	0 - 150	09/03/21 04:59	09/06/21 19:49	1
13C3 HFPO-DA	72	50	0 - 150	09/03/21 04:59	09/06/21 19:49	1

Lab Sample ID: LCS 320-522308/2-A

Matrix: Water

Analysis Batch: 522804

Client Sample	D: Lab Control Sa	mple
	Pron Type: Tota	I/NI A

Prep Batch: 522308

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Perfluorohexanoic acid (PFHxA)	40.0	38.5		ng/L		96	72 - 129
Perfluoroheptanoic acid (PFHpA)	40.0	41.7		ng/L		104	72 - 130
Perfluorooctanoic acid (PFOA)	40.0	40.0		ng/L		100	71 - 133
Perfluorononanoic acid (PFNA)	40.0	43.8		ng/L		110	69 - 130

Eurofins TestAmerica, Sacramento

Page 27 of 43

2

3

4

6

8

10

11

13

14

1,

Job ID: 320-78371-1 Client: Shannon & Wilson, Inc Project/Site: AKN PFAS

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCS 320-522308/2-A

Matrix: Water

Analysis Batch: 522804

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 522308 %Rec.

Analysis Batom 022004	Spike	LCS LC	s		%Rec.
Analyte	Added	Result Qu	alifier Unit	D %Rec	Limits
Perfluorodecanoic acid (PFDA)	40.0	39.1	ng/L	98	71 - 129
Perfluoroundecanoic acid (PFUnA)	40.0	44.8	ng/L	112	69 - 133
Perfluorododecanoic acid (PFDoA)	40.0	42.7	ng/L	107	72 - 134
Perfluorotridecanoic acid (PFTriA)	40.0	43.2	ng/L	108	65 - 144
Perfluorotetradecanoic acid (PFTeA)	40.0	42.4	ng/L	106	71 - 132
Perfluorobutanesulfonic acid (PFBS)	35.4	36.3	ng/L	103	72 - 130
Perfluorohexanesulfonic acid (PFHxS)	36.4	36.0	ng/L	99	68 - 131
Perfluorooctanesulfonic acid (PFOS)	37.1	40.2	ng/L	108	65 - 140
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	40.0	40.2	ng/L	101	65 - 136
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	40.0	42.0	ng/L	105	61 ₋ 135
9-Chlorohexadecafluoro-3-oxan onane-1-sulfonic acid	37.3	39.1	ng/L	105	77 - 137
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	40.0	55.9 *+	ng/L	140	72 - 132
11-Chloroeicosafluoro-3-oxaund ecane-1-sulfonic acid	37.7	42.8	ng/L	114	76 - 136
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	37.7	43.5	ng/L	116	81 - 141
,	LCS				

LCS LCS

	LUJ	LUJ	
Isotope Dilution	%Recovery	Qualifier	Limits
13C2 PFHxA	83		50 - 150
13C4 PFHpA	83		50 ₋ 150
13C4 PFOA	92		50 ₋ 150
13C5 PFNA	83		50 - 150
13C2 PFDA	86		50 - 150
13C2 PFUnA	82		50 ₋ 150
13C2 PFDoA	91		50 - 150
13C2 PFTeDA	96		50 ₋ 150
13C3 PFBS	81		50 ₋ 150
1802 PFHxS	94		50 - 150
13C4 PFOS	81		50 ₋ 150
d3-NMeFOSAA	94		50 ₋ 150
d5-NEtFOSAA	98		50 - 150
13C3 HFPO-DA	66		50 - 150

Lab Sample ID: LCSD 320-522308/3-A

Matrix: Water

Analysis Batch: 522804

				Prep Ty	pe: Tot	al/NA
				Prep Ba	tch: 52	22308
)				%Rec.		RPD
ifier	Unit	D	%Rec	Limits	RPD	Limit
	na/l		102	72 120	6	30

Client Sample ID: Lab Control Sample Dup

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorohexanoic acid (PFHxA)	40.0	40.7		ng/L		102	72 - 129	6	30
Perfluoroheptanoic acid (PFHpA)	40.0	39.8		ng/L		99	72 - 130	5	30
Perfluorooctanoic acid (PFOA)	40.0	40.8		ng/L		102	71 - 133	2	30

Eurofins TestAmerica, Sacramento

Page 28 of 43

Job ID: 320-78371-1

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCSD 320-522308/3-A

Matrix: Water

Analysis Batch: 522804

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 522308

	Spike	LCSD				%Rec.		RPD	
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorononanoic acid (PFNA)	40.0	46.7		ng/L		117	69 - 130	6	30
Perfluorodecanoic acid (PFDA)	40.0	38.3		ng/L		96	71 - 129	2	30
Perfluoroundecanoic acid (PFUnA)	40.0	44.1		ng/L		110	69 - 133	2	30
Perfluorododecanoic acid (PFDoA)	40.0	40.0		ng/L		100	72 - 134	6	30
Perfluorotridecanoic acid (PFTriA)	40.0	44.7		ng/L		112	65 - 144	3	30
Perfluorotetradecanoic acid (PFTeA)	40.0	43.1		ng/L		108	71 - 132	1	30
Perfluorobutanesulfonic acid (PFBS)	35.4	36.4		ng/L		103	72 - 130	0	30
Perfluorohexanesulfonic acid (PFHxS)	36.4	36.6		ng/L		100	68 - 131	1	30
Perfluorooctanesulfonic acid (PFOS)	37.1	42.0		ng/L		113	65 - 140	4	30
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	40.0	41.9		ng/L		105	65 - 136	4	30
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	40.0	40.9		ng/L		102	61 - 135	3	30
9-Chlorohexadecafluoro-3-oxan onane-1-sulfonic acid	37.3	40.1		ng/L		108	77 - 137	2	30
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	40.0	53.2	*+	ng/L		133	72 - 132	5	30
11-Chloroeicosafluoro-3-oxaund ecane-1-sulfonic acid	37.7	43.5		ng/L		116	76 - 136	2	30
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	37.7	42.7		ng/L		113	81 - 141	2	30

LCSD LCSD

MB MB

	2002 2002	
Isotope Dilution	%Recovery Qualifie	er Limits
13C2 PFHxA	77	50 - 150
13C4 PFHpA	87	50 - 150
13C4 PFOA	92	50 - 150
13C5 PFNA	76	50 - 150
13C2 PFDA	89	50 - 150
13C2 PFUnA	81	50 - 150
13C2 PFDoA	91	50 - 150
13C2 PFTeDA	101	50 ₋ 150
13C3 PFBS	77	50 - 150
1802 PFHxS	93	50 - 150
13C4 PFOS	79	50 - 150
d3-NMeFOSAA	92	50 - 150
d5-NEtFOSAA	99	50 - 150
13C3 HFPO-DA	66	50 ₋ 150

Lab Sample ID: MB 320-523724/1-A

Matrix: Water

Analysis Batch: 524271

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 523724

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.58	ng/L		09/10/21 04:46	09/11/21 17:43	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.25	ng/L		09/10/21 04:46	09/11/21 17:43	1

Eurofins TestAmerica, Sacramento

Page 29 of 43

6

3

6

8

46

11

16

14

15

9/15/2021

Client: Shannon & Wilson, Inc Job ID: 320-78371-1 Project/Site: AKN PFAS

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: MB 320-523724/1-A

Matrix: Water

Analysis Batch: 524271

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 523724

7									
		MB				_			
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanoic acid (PFOA)	ND		2.0	0.85	ng/L		09/10/21 04:46	09/11/21 17:43	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.27	ng/L		09/10/21 04:46	09/11/21 17:43	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.31	ng/L		09/10/21 04:46	09/11/21 17:43	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		09/10/21 04:46	09/11/21 17:43	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55	ng/L		09/10/21 04:46	09/11/21 17:43	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		09/10/21 04:46	09/11/21 17:43	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.73	ng/L		09/10/21 04:46	09/11/21 17:43	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20	ng/L		09/10/21 04:46	09/11/21 17:43	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.57	ng/L		09/10/21 04:46	09/11/21 17:43	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.54	ng/L		09/10/21 04:46	09/11/21 17:43	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		5.0	1.2	ng/L		09/10/21 04:46	09/11/21 17:43	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		5.0	1.3	ng/L		09/10/21 04:46	09/11/21 17:43	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		2.0	0.24	ng/L		09/10/21 04:46	09/11/21 17:43	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		4.0	1.5	ng/L		09/10/21 04:46	09/11/21 17:43	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		2.0	0.32	ng/L		09/10/21 04:46	09/11/21 17:43	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.40	ng/L		09/10/21 04:46	09/11/21 17:43	1
	MR	MB							

MB	MB				
%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
88		50 - 150	09/10/21 04:46	09/11/21 17:43	1
89		50 - 150	09/10/21 04:46	09/11/21 17:43	1
95		50 - 150	09/10/21 04:46	09/11/21 17:43	1
80		50 - 150	09/10/21 04:46	09/11/21 17:43	1
87		50 - 150	09/10/21 04:46	09/11/21 17:43	1
86		50 - 150	09/10/21 04:46	09/11/21 17:43	1
97		50 - 150	09/10/21 04:46	09/11/21 17:43	1
86		50 - 150	09/10/21 04:46	09/11/21 17:43	1
84		50 - 150	09/10/21 04:46	09/11/21 17:43	1
90		50 - 150	09/10/21 04:46	09/11/21 17:43	1
82		50 - 150	09/10/21 04:46	09/11/21 17:43	1
92		50 - 150	09/10/21 04:46	09/11/21 17:43	1
94		50 - 150	09/10/21 04:46	09/11/21 17:43	1
87		50 - 150	09/10/21 04:46	09/11/21 17:43	1
	### Recovery ### 88 ### 89 ### 95 ### 86 ### 90 ### 82 ### 92 ### 94	89 95 80 87 86 97 86 84 90 82 92	%Recovery Qualifier Limits 88 50 - 150 89 50 - 150 95 50 - 150 80 50 - 150 87 50 - 150 86 50 - 150 97 50 - 150 86 50 - 150 84 50 - 150 90 50 - 150 82 50 - 150 92 50 - 150 94 50 - 150	%Recovery Qualifier Limits Prepared 88 50 - 150 09/10/21 04:46 89 50 - 150 09/10/21 04:46 95 50 - 150 09/10/21 04:46 80 50 - 150 09/10/21 04:46 87 50 - 150 09/10/21 04:46 86 50 - 150 09/10/21 04:46 86 50 - 150 09/10/21 04:46 84 50 - 150 09/10/21 04:46 82 50 - 150 09/10/21 04:46 82 50 - 150 09/10/21 04:46 92 50 - 150 09/10/21 04:46 94 50 - 150 09/10/21 04:46	%Recovery Qualifier Limits Prepared Analyzed 88 50 - 150 09/10/21 04:46 09/11/21 17:43 89 50 - 150 09/10/21 04:46 09/11/21 17:43 95 50 - 150 09/10/21 04:46 09/11/21 17:43 80 50 - 150 09/10/21 04:46 09/11/21 17:43 87 50 - 150 09/10/21 04:46 09/11/21 17:43 97 50 - 150 09/10/21 04:46 09/11/21 17:43 86 50 - 150 09/10/21 04:46 09/11/21 17:43 84 50 - 150 09/10/21 04:46 09/11/21 17:43 90 50 - 150 09/10/21 04:46 09/11/21 17:43 82 50 - 150 09/10/21 04:46 09/11/21 17:43 92 50 - 150 09/10/21 04:46 09/11/21 17:43 94 50 - 150 09/10/21 04:46 09/11/21 17:43 09/10/21 04:46 09/11/21 17:43 09/10/21 04:46 09/11/21 17:43

Lab Sample ID: LCS 320-523724/2-A

Matrix: Water

Analysis Batch: 524271

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Prep Batch: 523724

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorohexanoic acid (PFHxA)	40.0	44.1		ng/L		110	72 - 129	
Perfluoroheptanoic acid (PFHpA)	40.0	44.8		ng/L		112	72 - 130	
Perfluorooctanoic acid (PFOA)	40.0	46.2		ng/L		116	71 - 133	
Perfluorononanoic acid (PFNA)	40.0	49.3		ng/L		123	69 - 130	
Perfluorodecanoic acid (PFDA)	40.0	38.9		ng/L		97	71 - 129	
Perfluoroundecanoic acid	40.0	44.6		ng/L		111	69 - 133	
(PFUnA)								

Eurofins TestAmerica, Sacramento

Page 30 of 43

Client: Shannon & Wilson, Inc
Project/Site: AKN PFAS

Job ID: 320-78371-1

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCS 320-523724/2-A

Matrix: Water

acid (ADONA)

Analysis Batch: 524271

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 523724

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorododecanoic acid	40.0	45.3		ng/L		113	72 - 134	
(PFDoA)								
Perfluorotridecanoic acid	40.0	48.4		ng/L		121	65 - 144	
(PFTriA)								
Perfluorotetradecanoic acid	40.0	44.1		ng/L		110	71 - 132	
(PFTeA)								
Perfluorobutanesulfonic acid	35.4	37.5		ng/L		106	72 ₋ 130	
(PFBS)								
Perfluorohexanesulfonic acid	36.4	41.7		ng/L		115	68 - 131	
(PFHxS)								
Perfluorooctanesulfonic acid	37.1	42.1		ng/L		113	65 - 140	
(PFOS)								
N-methylperfluorooctanesulfona	40.0	41.9		ng/L		105	65 - 136	
midoacetic acid (NMeFOSAA)								
N-ethylperfluorooctanesulfonami	40.0	39.0		ng/L		97	61 - 135	
doacetic acid (NEtFOSAA)	07.0	40.4		/1		440	77 407	
9-Chlorohexadecafluoro-3-oxan	37.3	43.1		ng/L		116	77 - 137	
onane-1-sulfonic acid	40.0						70. 400	
Hexafluoropropylene Oxide	40.0	44.2		ng/L		111	72 - 132	
Dimer Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaund	37.7	44.3		ng/l		118	76 - 136	
ecane-1-sulfonic acid	31.1	44.3		ng/L		110	10-130	
4,8-Dioxa-3H-perfluorononanoic	37.7	47.0		ng/L		125	81 - 141	
4,0-Dioxa-3i i-periluorononanoid	31.1	47.0		ng/L		123	01-141	

LCS LCS

Isotope Dilution	%Recovery	Qualifier	Limits
13C2 PFHxA	84		50 - 150
13C4 PFHpA	84		50 - 150
13C4 PFOA	87		50 - 150
13C5 PFNA	76		50 - 150
13C2 PFDA	85		50 - 150
13C2 PFUnA	85		50 - 150
13C2 PFDoA	88		50 - 150
13C2 PFTeDA	84		50 - 150
13C3 PFBS	76		50 - 150
1802 PFHxS	76		50 - 150
13C4 PFOS	75		50 - 150
d3-NMeFOSAA	87		50 - 150
d5-NEtFOSAA	100		50 - 150
13C3 HFPO-DA	81		50 - 150

Lab Sample ID: LCSD 320-523724/3-A

Client Sample ID: Lab Control Sample Dup

Matrix: Water
Analysis Batch: 524271

Prep Type: Total/NA Prep Batch: 523724

7									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorohexanoic acid (PFHxA)	40.0	42.9		ng/L		107	72 - 129	3	30
Perfluoroheptanoic acid (PFHpA)	40.0	45.9		ng/L		115	72 - 130	2	30
Perfluorooctanoic acid (PFOA)	40.0	45.7		ng/L		114	71 - 133	1	30
Perfluorononanoic acid (PFNA)	40.0	48.8		ng/L		122	69 - 130	1	30
Perfluorodecanoic acid (PFDA)	40.0	41.2		ng/L		103	71 - 129	6	30

Eurofins TestAmerica, Sacramento

Page 31 of 43

9

3

Ė

6

8

46

11

16

14

QC Sample Results

Client: Shannon & Wilson, Inc Job ID: 320-78371-1 Project/Site: AKN PFAS

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCSD 320-523724/3-A

Matrix: Water

acid (ADONA)

Analysis Batch: 524271

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 523724

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluoroundecanoic acid	40.0	45.8		ng/L		115	69 - 133	3	30
(PFUnA)									
Perfluorododecanoic acid	40.0	44.4		ng/L		111	72 - 134	2	30
(PFDoA)									
Perfluorotridecanoic acid	40.0	45.9		ng/L		115	65 - 144	5	30
(PFTriA)									
Perfluorotetradecanoic acid	40.0	43.3		ng/L		108	71 - 132	2	30
(PFTeA)									
Perfluorobutanesulfonic acid	35.4	38.1		ng/L		108	72 - 130	2	30
(PFBS)									
Perfluorohexanesulfonic acid	36.4	39.2		ng/L		108	68 - 131	6	30
(PFHxS)									
Perfluorooctanesulfonic acid	37.1	40.5		ng/L		109	65 - 140	4	30
(PFOS)									
N-methylperfluorooctanesulfona	40.0	44.2		ng/L		111	65 - 136	5	30
midoacetic acid (NMeFOSAA)									
N-ethylperfluorooctanesulfonami	40.0	40.5		ng/L		101	61 - 135	4	30
doacetic acid (NEtFOSAA)									
9-Chlorohexadecafluoro-3-oxan	37.3	39.2		ng/L		105	77 - 137	9	30
onane-1-sulfonic acid									
Hexafluoropropylene Oxide	40.0	43.8		ng/L		109	72 - 132	1	30
Dimer Acid (HFPO-DA)									
11-Chloroeicosafluoro-3-oxaund	37.7	39.5		ng/L		105	76 - 136	11	30
ecane-1-sulfonic acid									
4,8-Dioxa-3H-perfluorononanoic	37.7	42.1		ng/L		112	81 - 141	11	30

LCSD LCSD

	LOOD	LOOD	
Isotope Dilution	%Recovery	Qualifier	Limits
13C2 PFHxA	91		50 - 150
13C4 PFHpA	89		50 - 150
13C4 PFOA	89		50 - 150
13C5 PFNA	82		50 - 150
13C2 PFDA	91		50 - 150
13C2 PFUnA	93		50 - 150
13C2 PFDoA	97		50 - 150
13C2 PFTeDA	84		50 - 150
13C3 PFBS	86		50 - 150
1802 PFHxS	89		50 - 150
13C4 PFOS	88		50 - 150
d3-NMeFOSAA	94		50 - 150
d5-NEtFOSAA	101		50 - 150
13C3 HFPO-DA	88		50 - 150

QC Association Summary

Client: Shannon & Wilson, Inc Job ID: 320-78371-1 Project/Site: AKN PFAS

LCMS

Prep Batch: 522308

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-78371-1	21AKN-MW-05-15	Total/NA	Water	3535	
320-78371-2	21AKN-MW-105-15	Total/NA	Water	3535	
320-78371-3	21AKN-MW-05-85	Total/NA	Water	3535	
320-78371-4	21AKN-MW-05-85F	Total/NA	Water	3535	
320-78371-5	21AKN-MW-04-45	Total/NA	Water	3535	
320-78371-6	21AKN-MW-04-85	Total/NA	Water	3535	
320-78371-7	21AKN-MW-04-85F	Total/NA	Water	3535	
320-78371-8 - DL	21AKN-SW-09	Total/NA	Water	3535	
320-78371-8	21AKN-SW-09	Total/NA	Water	3535	
MB 320-522308/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-522308/2-A	Lab Control Sample	Total/NA	Water	3535	
LCSD 320-522308/3-A	Lab Control Sample Dup	Total/NA	Water	3535	

Analysis Batch: 522804

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-78371-1	21AKN-MW-05-15	Total/NA	Water	EPA 537(Mod)	522308
320-78371-2	21AKN-MW-105-15	Total/NA	Water	EPA 537(Mod)	522308
320-78371-3	21AKN-MW-05-85	Total/NA	Water	EPA 537(Mod)	522308
320-78371-4	21AKN-MW-05-85F	Total/NA	Water	EPA 537(Mod)	522308
320-78371-5	21AKN-MW-04-45	Total/NA	Water	EPA 537(Mod)	522308
320-78371-6	21AKN-MW-04-85	Total/NA	Water	EPA 537(Mod)	522308
320-78371-7	21AKN-MW-04-85F	Total/NA	Water	EPA 537(Mod)	522308
320-78371-8	21AKN-SW-09	Total/NA	Water	EPA 537(Mod)	522308
MB 320-522308/1-A	Method Blank	Total/NA	Water	EPA 537(Mod)	522308
LCS 320-522308/2-A	Lab Control Sample	Total/NA	Water	EPA 537(Mod)	522308
LCSD 320-522308/3-A	Lab Control Sample Dup	Total/NA	Water	EPA 537(Mod)	522308

Prep Batch: 523724

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-78371-9	21AKN-Drum-01	Total/NA	Water	3535	
320-78371-10	21AKN-Drum-101	Total/NA	Water	3535	
320-78371-11	21AKN-Drum-03	Total/NA	Water	3535	
320-78371-12	21AKN-Drum-04	Total/NA	Water	3535	
320-78371-13	21AKN-Drum-02	Total/NA	Water	3535	
320-78371-14	21AKN-Drum-06	Total/NA	Water	3535	
320-78371-15	21AKN-Drum-07	Total/NA	Water	3535	
320-78371-16	21AKN-Drum-08	Total/NA	Water	3535	
320-78371-17	21AKN-Drum-10	Total/NA	Water	3535	
MB 320-523724/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-523724/2-A	Lab Control Sample	Total/NA	Water	3535	
LCSD 320-523724/3-A	Lab Control Sample Dup	Total/NA	Water	3535	

Analysis Batch: 524180

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-78371-8 - DL	21AKN-SW-09	Total/NA	Water	EPA 537(Mod)	522308

Analysis Batch: 524271

Lab Sample ID 320-78371-9	Client Sample ID 21AKN-Drum-01	Prep Type Total/NA	Matrix Water	Method EPA 537(Mod)	Prep Batch 523724
320-78371-10	21AKN-Drum-101	Total/NA	Water	EPA 537(Mod)	523724
320-78371-11	21AKN-Drum-03	Total/NA	Water	EPA 537(Mod)	523724

Eurofins TestAmerica, Sacramento

QC Association Summary

Client: Shannon & Wilson, Inc
Project/Site: AKN PFAS

Job ID: 320-78371-1

LCMS (Continued)

Analysis Batch: 524271 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-78371-13	21AKN-Drum-02	Total/NA	Water	EPA 537(Mod)	523724
320-78371-14	21AKN-Drum-06	Total/NA	Water	EPA 537(Mod)	523724
320-78371-15	21AKN-Drum-07	Total/NA	Water	EPA 537(Mod)	523724
320-78371-16	21AKN-Drum-08	Total/NA	Water	EPA 537(Mod)	523724
320-78371-17	21AKN-Drum-10	Total/NA	Water	EPA 537(Mod)	523724
MB 320-523724/1-A	Method Blank	Total/NA	Water	EPA 537(Mod)	523724
LCS 320-523724/2-A	Lab Control Sample	Total/NA	Water	EPA 537(Mod)	523724
LCSD 320-523724/3-A	Lab Control Sample Dup	Total/NA	Water	EPA 537(Mod)	523724

Analysis Batch: 524585

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-78371-12	21AKN-Drum-04	Total/NA	Water	EPA 537(Mod)	523724

3

4

5

7

8

9

10

14

Job ID: 320-78371-1

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS

Client Sample ID: 21AKN-MW-05-15

Date Collected: 08/28/21 14:11 Date Received: 09/01/21 15:57 Lab Sample ID: 320-78371-1

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			272.6 mL	10.0 mL	522308	09/03/21 04:59	HK	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			522804	09/06/21 21:51	RS1	TAL SAC

Initial

Amount

269.6 mL

Final

Amount

10.0 mL

Batch

Client Sample ID: 21AKN-MW-105-15

Run

Date Collected: 08/28/21 14:01 Date Received: 09/01/21 15:57

Prep Type

Total/NA

Batch

Type

Prep

Batch

3535

Method

Lab Sample ID: 320-78371-2 **Matrix: Water**

Prepared Number or Analyzed Analyst Lab 522308 09/03/21 04:59 HK TAL SAC TAL SAC

Total/NA Analysis EPA 537(Mod) 522804 09/06/21 22:00 RS1 1 Client Sample ID: 21AKN-MW-05-85

Dil

Factor

Date Collected: 08/28/21 17:48 Date Received: 09/01/21 15:57

Lab Sample ID: 320-78371-3

Matrix: Water

Batch Batch Dil Initial Final Batch Prepared Method Amount Number or Analyzed **Prep Type** Type Run **Factor** Amount Analyst Lab Total/NA Prep 3535 262.9 mL 10.0 mL 522308 09/03/21 04:59 HK TAL SAC Total/NA Analysis EPA 537(Mod) 522804 09/06/21 22:10 RS1 TAL SAC 1

Client Sample ID: 21AKN-MW-05-85F

Date Collected: 08/28/21 17:50 Date Received: 09/01/21 15:57

Lab Sample ID: 320-78371-4

Lab Sample ID: 320-78371-5

Lab Sample ID: 320-78371-6

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			270.7 mL	10.0 mL	522308	09/03/21 04:59	HK	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			522804	09/06/21 22:19	RS1	TAL SAC

Client Sample ID: 21AKN-MW-04-45

Date Collecte	ed: 08/29/21 <i>1</i>	15:19						Matrix: Water
Date Receive	ed: 09/01/21 1	5:57						
Γ	Ratch	Ratch	Dil	Initial	Final	Ratch	Propared	

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			279.6 mL	10.0 mL	522308	09/03/21 04:59	HK	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			522804	09/06/21 22:29	RS1	TAL SAC

Client Sample ID: 21AKN-MW-04-85

Date Collected: 08/29/21 16:53

Date Received: 09/01/21 15:57

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			274.2 mL	10.0 mL	522308	09/03/21 04:59	HK	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			522804	09/06/21 22:38	RS1	TAL SAC

Eurofins TestAmerica, Sacramento

Page 35 of 43

2

Job ID: 320-78371-1

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS

Client Sample ID: 21AKN-MW-04-85F

Date Collected: 08/29/21 16:55 Date Received: 09/01/21 15:57 Lab Sample ID: 320-78371-7

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			271.7 mL	10.0 mL	522308	09/03/21 04:59	HK	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			522804	09/06/21 22:47	RS1	TAL SAC

Client Sample ID: 21AKN-SW-09 Lab Sample ID: 320-78371-8

Date Collected: 08/29/21 13:50 Date Received: 09/01/21 15:57 .ab Sample ID: 320-76371-6

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			269.3 mL	10.0 mL	522308	09/03/21 04:59	HK	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			522804	09/06/21 22:57	RS1	TAL SAC
Total/NA	Prep	3535	DL		269.3 mL	10.0 mL	522308	09/03/21 04:59	HK	TAL SAC
Total/NA	Analysis	EPA 537(Mod)	DL	10			524180	09/11/21 00:23	K1S	TAL SAC

Client Sample ID: 21AKN-Drum-01 Lab Sample ID: 320-78371-9

Date Collected: 08/30/21 20:45 Date Received: 09/01/21 15:57 Matrix: Water

Matrix: Water

Batch Dil Initial Final Batch Prepared Method Number **Prep Type** Туре Run **Factor** Amount Amount or Analyzed Analyst Lab Total/NA Prep 3535 268 mL 10.0 mL 523724 09/10/21 04:46 NSS TAL SAC Total/NA Analysis EPA 537(Mod) 524271 09/11/21 18:19 D1R TAL SAC 1

Client Sample ID: 21AKN-Drum-101 Lab Sample ID: 320-78371-10

Date Collected: 08/30/21 20:35 Date Received: 09/01/21 15:57 Matrix: Water

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			275.3 mL	10.0 mL	523724	09/10/21 04:46	NSS	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			524271	09/11/21 18:29	D1R	TAL SAC

Client Sample ID: 21AKN-Drum-03 Lab Sample ID: 320-78371-11

Date Collected: 08/30/21 21:05 Date Received: 09/01/21 15:57

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			267.4 mL	10.0 mL	523724	09/10/21 04:46	NSS	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			524271	09/11/21 18:38	D1R	TAL SAC

Client Sample ID: 21AKN-Drum-04 Lab Sample ID: 320-78371-12

Date Collected: 08/30/21 21:30 Date Received: 09/01/21 15:57

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analvst	Lab
Total/NA	Prep	3535		1 40101	279.2 mL	10.0 mL	523724	09/10/21 04:46		TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			524585	09/13/21 15:43	S1M	TAL SAC

Eurofins TestAmerica, Sacramento

Page 36 of 43

9/15/2021

5

7

9

1 U

12

14

15

TAL SAC

Matrix: Water

Matrix: Water

Job ID: 320-78371-1

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS

Client Sample ID: 21AKN-Drum-02

Date Collected: 08/30/21 21:00 Date Received: 09/01/21 15:57

Lab Sample ID: 320-78371-13 **Matrix: Water**

Batch Batch Batch Dil Initial Final Prepared Number Method or Analyzed **Prep Type** Type Run **Factor Amount** Amount Analyst Lab 523724 09/10/21 04:46 NSS TAL SAC Total/NA Prep 3535 274.1 mL 10.0 mL Total/NA EPA 537(Mod) 524271 09/11/21 18:47 D1R TAL SAC Analysis 1

Client Sample ID: 21AKN-Drum-06

Date Collected: 08/30/21 22:00 Date Received: 09/01/21 15:57

Lab Sample ID: 320-78371-14

Matrix: Water

Batch Batch Dil Initial Final Batch Prepared Method **Amount** Amount Number or Analyzed **Prep Type** Type Run **Factor** Analyst Lab Total/NA Prep 3535 268.5 mL 10.0 mL 523724 09/10/21 04:46 NSS TAL SAC Total/NA Analysis EPA 537(Mod) 524271 09/11/21 18:56 D1R TAL SAC 1

Client Sample ID: 21AKN-Drum-07

Date Collected: 08/30/21 22:05 Date Received: 09/01/21 15:57

Lab Sample ID: 320-78371-15

Matrix: Water

10

Batch Batch Dil Initial Final Batch **Prepared** or Analyzed Method Number **Prep Type** Type Run **Factor Amount** Amount Analyst Lab Total/NA Prep 3535 274 mL 10.0 mL 523724 09/10/21 04:46 NSS TAL SAC Total/NA Analysis EPA 537(Mod) 524271 09/11/21 19:05 D1R TAL SAC 1

Client Sample ID: 21AKN-Drum-08

Date Collected: 08/30/21 22:40

Date Received: 09/01/21 15:57

Lab Sample ID: 320-78371-16

Lab Sample ID: 320-78371-17

Matrix: Water

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			273.2 mL	10.0 mL	523724	09/10/21 04:46	NSS	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			524271	09/11/21 19:32	D1R	TAL SAC

Client Sample ID: 21AKN-Drum-10

Date Collected: 08/31/21 10:30

Date Received: 09/01/21 15:57

	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			278.1 mL	10.0 mL	523724	09/10/21 04:46	NSS	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			524271	09/11/21 19:42	D1R	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Eurofins TestAmerica, Sacramento

Accreditation/Certification Summary

Client: Shannon & Wilson, Inc

Job ID: 320-78371-1

Project/Site: AKN PFAS

Laboratory: Eurofins TestAmerica, Sacramento

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	17-020	02-20-24

3

4

6

ا

9

11

12

14

Method Summary

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS

 Method
 Method Description
 Protocol
 Laboratory

 EPA 537(Mod)
 PFAS for QSM 5.3, Table B-15
 EPA
 TAL SAC

 3535
 Solid-Phase Extraction (SPE)
 SW846
 TAL SAC

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Job ID: 320-78371-1

А

4

6

7

9

4 4

12

4 /

Sample Summary

Client: Shannon & Wilson, Inc
Project/Site: AKN PFAS

Job ID: 320-78371-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
320-78371-1	21AKN-MW-05-15	Water	08/28/21 14:11	09/01/21 15:57
320-78371-2	21AKN-MW-105-15	Water	08/28/21 14:01	09/01/21 15:57
320-78371-3	21AKN-MW-05-85	Water	08/28/21 17:48	09/01/21 15:57
20-78371-4	21AKN-MW-05-85F	Water	08/28/21 17:50	09/01/21 15:57
20-78371-5	21AKN-MW-04-45	Water	08/29/21 15:19	09/01/21 15:57
20-78371-6	21AKN-MW-04-85	Water	08/29/21 16:53	09/01/21 15:57
20-78371-7	21AKN-MW-04-85F	Water	08/29/21 16:55	09/01/21 15:57
20-78371-8	21AKN-SW-09	Water	08/29/21 13:50	09/01/21 15:57
20-78371-9	21AKN-Drum-01	Water	08/30/21 20:45	09/01/21 15:57
0-78371-10	21AKN-Drum-101	Water	08/30/21 20:35	09/01/21 15:57
0-78371-11	21AKN-Drum-03	Water	08/30/21 21:05	09/01/21 15:57
0-78371-12	21AKN-Drum-04	Water	08/30/21 21:30	09/01/21 15:57
20-78371-13	21AKN-Drum-02	Water	08/30/21 21:00	09/01/21 15:57
0-78371-14	21AKN-Drum-06	Water	08/30/21 22:00	09/01/21 15:57
20-78371-15	21AKN-Drum-07	Water	08/30/21 22:05	09/01/21 15:57
0-78371-16	21AKN-Drum-08	Water	08/30/21 22:40	09/01/21 15:57
0-78371-17	21AKN-Drum-10	Water	08/31/21 10:30	09/01/21 15:57

So.

No.

56

13 14 15

Client: Shannon & Wilson, Inc

Job Number: 320-78371-1

Login Number: 78371

List Source: Eurofins TestAmerica, Sacramento

List Number: 1 Creator: Her, David A

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	1519064
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Laboratory Data Review Checklist

Completed By:	
Ashley Jaramillo	
Title:	
Senior Chemist	
Date:	
September 23, 2021	
Consultant Firm:	
Shannon & Wilson, Inc.	
Laboratory Name:	
Eurofins / TestAmerica Laboratories, Inc. (TestAmerica)	
Laboratory Report Number:	
320-78371-1	
Laboratory Report Date:	
September 15, 2021	
CS Site Name:	
ADOT&PF King Salmon Airport Statewide PFAS	
ADEC File Number:	
2569.38.033	
Hazard Identification Number:	
26981	

	320-78371-1
Lal	boratory Report Date:
	September 15, 2021
CS	Site Name:
	ADOT&PF King Salmon Airport Statewide PFAS
	Note: Any N/A or No box checked must have an explanation in the comments box.
1.	Laboratory
	a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?
	Yes \boxtimes No \square N/A \square Comments:
	The DEC certified TestAmerica of West Sacramento, CA for the analysis of per- and polyfluorinated alkyl substances (PFAS) on February 11, 2021 by LCMSMS compliant with QSM Version 5.3 Table B-15. These reported analytes were included in the DEC's Contaminated Sites Laboratory Approval 17-020.
	b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
	$Yes \square No \square N/A \boxtimes Comments:$
	The samples were not transferred to another "network" laboratory or sub-contracted to an alternate laboratory
2.	Chain of Custody (CoC)
	a. CoC information completed, signed, and dated (including released/received by)?
	$Yes \boxtimes No \square N/A \square$ Comments:
	b. Correct analyses requested?
	Yes⊠ No□ N/A□ Comments:
3.	<u>Laboratory Sample Receipt Documentation</u>
	a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?
	$Yes \boxtimes No \square N/A \square$ Comments:
	b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?
	$Yes \boxtimes No \square N/A \square$ Comments:

320-78371-1
Laboratory Report Date:
September 15, 2021
CS Site Name:
ADOT&PF King Salmon Airport Statewide PFAS
c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)? Yes⊠ No□ N/A□ Comments:
The sample receipt form notes that the samples arrived in good condition, and where required, properly preserved and on ice were received in good condition.
d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?
Yes□ No□ N/A⊠ Comments:
No discrepancies identified, therefore no documentation needed.
e. Data quality or usability affected?
Comments:
Not applicable, see above.
4. <u>Case Narrative</u>
a. Present and understandable?
Yes \boxtimes No \square N/A \square Comments:
b. Discrepancies, errors, or QC failures identified by the lab? Yes⊠ No□ N/A□ Comments:
Some results for samples 21AKN-SW-09 were reported from the analysis of a diluted extract due to high concentration of the target analyte in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits. Data quality and/or usability not affected.
The Isotope Dilution Analyte (IDA) recoveries associated with the following samples are below the method recommended limit: 21AKN-MW-04-45 and 21AKN-Drum-10. Generally, data quality is not

considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA

in the sample. See Section 6.c. for details regarding data quality and/or usability, as applicable.

320-78371-1
Laboratory Report Date:
September 15, 2021
CS Site Name:
ADOT&PF King Salmon Airport Statewide PFAS
The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 320-522308 and analytical batch 320-522804 recovered outside control limits for the following analytes: HFPO-DA. This analyte was biased high in the LCS and LCSD and was not detected in the associated samples; therefore, the data have been reported. See Section 6.b. for details regarding data quality and/or usability, as applicable.
Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-522308. Data quality and/or usability not affected.
The following samples were yellow and contained a thin layer of sediment at the bottom of the bottle prior to extraction: 21AKN-MW-05-15 and 21AKN-MW-105-15. Data quality and/or usability not affected.
535: The following samples were gray and contained a thin layer of sediment at the bottom of the bottle prior to extraction: 21AKN-MW-05-85, 21AKN-MW-05-85F, 21AKN-MW-04-85 and 21AKN-MW-04-85F. Data quality and/or usability not affected.
During the solid phase extraction process, the following sample contained non-settable particulates which clogged the solid phase extraction column: 21AKN-MW-05-85. Data quality and/or usability not affected.
Insufficient sample volume was available to perform a MS/MSD associated with preparation batch 320-523724.
The following samples were light brown with sediment in the sample bottle prior to extraction: 21AKN-Drum-04, 21AKN-Drum-02, 21AKN-Drum-06, 21AKN-Drum-07, 21AKN-Drum-08 and 21AKN-Drum-10.
c. Were all corrective actions documented?
Yes \square No \square N/A \boxtimes Comments: Corrective actions were not required.

Comments:

d. What is the effect on data quality/usability according to the case narrative?

Case narrative does not discuss effect on data quality, it only discusses discrepancies and what was done considering them, as applicable. Any notable data quality issues mentioned in the case narrative are discussed above in Section 4.b. or elsewhere within this DEC checklist.

[320-78371-1
Lab	oratory Report Date:
	September 15, 2021
CS S	Site Name:
	ADOT&PF King Salmon Airport Statewide PFAS
5. <u>s</u>	Samples Results
	a. Correct analyses performed/reported as requested on COC?
	$Yes \boxtimes No \square N/A \square$ Comments:
	b. All applicable holding times met?
	Yes⊠ No□ N/A□ Comments:
	All and a managed and a demonstrate backers.
	c. All soils reported on a dry weight basis?
	Yes□ No□ N/A⊠ Comments: Soil samples were not submitted with this work order.
	d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?
	Yes \boxtimes No \square N/A \square Comments:
	Analytical sensitivity was evaluated to verify that reporting limits (RLs) met applicable DEC groundwater cleanup levels for non-detect results, as appropriate. RLs met applicable regulatory levels.
	e. Data quality or usability affected?
	Not applicable, see above.
6.	QC Samples
	a. Method Blank
	i. One method blank reported per matrix, analysis and 20 samples?
	Yes \boxtimes No \square N/A \square Comments:

	320-78371-1	
La	boratory Report Date:	
	September 15, 2021	
CS	Site Name:	
	ADOT&PF King Salmon Airport	Statewide PFAS

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?

Yes \boxtimes No \square N/A \square Comments:

No analytes were detected in method blank samples at concentrations exceeding the RL; however, the following PFAS were detected at concentrations below the RL in preparatory batch 320-522308: 11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid, ADONA, 9-chlorohexadecafluoro-3-oxaunonane 1-sulfonic acid, PFBS, PFDA, PFHA, PFHxS, PFNA, PFOS, and PFOA.

- 11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid, ADONA, 9-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid, PFDA, and PFHpA were not detected in any associated project sample. Data qualification not required, and data quality/and for usability not affected.
- PFBS was detected greater than ten times the concentration detected in the method blank sample. Data qualification not required, and data quality/and for usability not affected.
- PFHxS was detected in the following associated samples at concentrations below the RL and less than five-times the concentration detected in the method blank sample: 21AKN-MW-04-85 and 21AKN-MW-04-85F. Therefore, the PFHxS results of these samples are considered not-detected due to potential laboratory cross-contamination and are flagged 'B' at the RL in the analytical tables.
- Additionally, PFHxS was detected in the following associated sample at a concentration within ten-times the concentration detected in the method blank sample: 21AKN-MW-05-85. Therefore, the PFHxS result in this sample is considered a biased high estimate due to potential laboratory cross-contamination and is flagged 'JH' at the reported concentration in the analytical tables.
- PFNA was detected in the following associated samples at a concentration below the RL and less than five-times the concentration detected in the method blank sample: 21AKN-MW-105-15 and 21AKN-MW-05-15. Therefore, the PFNA results in these samples are considered not-detected due to potential laboratory cross-contamination and are flagged 'B' at the reported concentration in the analytical tables.
- PFOA was detected in the following associated samples at concentrations below the RL and less than five-times the concentration detected in the method blank sample: 21AKN-MW-04-85 and 21AKN-MW-04-85F. Therefore, the PFOA results of these samples are considered not-detected due to potential laboratory cross-contamination and are flagged 'B' at the RL in the analytical tables.

320-78371-1
aboratory Report Date:
September 15, 2021
CS Site Name:
S Site Name.
ADOT&PF King Salmon Airport Statewide PFAS
 PFOS was detected in the following associated samples at concentrations below the RL and less than five-times the concentration detected in the method blank sample: 21AKN-MW-05-85 and 21AKN-MW-04-85. Therefore, the PFOS results of these samples are considered not-detected due to potential laboratory cross-contamination and are flagged 'B' at the reported concentration in the analytical tables. Additionally, PFOS was detected in the following associated sample at a concentration above the RL and less than five-times the concentration detected in the method blank sample: 21AKN-MW-05-85F. Therefore, the PFOS result of this sample is considered not-detected due to potential laboratory cross-contamination and is flagged 'B' at the reported value.
iii. If above LOQ or project specified objectives, what samples are affected? Comments:
Yes, see above.
iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes \boxtimes No \square N/A \square Comments:
See above.
v. Data quality or usability affected? Comments:
The data quality and/or usability was not affected; see above.
b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 i. Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
$Yes \boxtimes No \square N/A \square$ Comments:
 ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples? Yes□ No□ N/A⊠ Comments:

Metals and/or inorganics were not analyzed as part of this work order.

320-78371-1
Laboratory Report Date:
September 15, 2021
CS Site Name:
ADOT&PF King Salmon Airport Statewide PFAS
 iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages) Yes□ No⊠ N/A□ Comments:
The LCS associated with preparation batch 320-522308 had a high recovery failure for HFPO-DA. HFPO-DA was not detected in any associated project sample. Data qualification not required, and data quality/and for usability not affected.
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
$Yes \boxtimes No \square N/A \square$ Comments:
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
See above.
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes□ No□ N/A⊠ Comments:
See above.
vii. Data quality or usability affected? (Use comment box to explain.) Comments:
See above.
c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project
i. Organics – One MS/MSD reported per matrix, analysis and 20 samples?
Yes□ No⊠ N/A□ Comments:
Project accuracy and precision were measured via the LCS/LCSD.

320-78371-1
Laboratory Report Date:
September 15, 2021
CS Site Name:
ADOT&PF King Salmon Airport Statewide PFAS
ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples?
$Yes \square No \square N/A \boxtimes Comments:$
Metals and/or inorganics were not analyzed as part of this work order.
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?
Yes□ No□ N/A⊠ Comments:
MS/MSD samples were not reported in this work order.
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.
Yes \square No \square N/A \boxtimes Comments:
MS/MSD samples were not reported in this work order.
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
Not applicable, see above.
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
Yes□ No□ N/A⊠ Comments:
See above.
vii. Data quality or usability affected? (Use comment box to explain.) Comments:
The data quality and/or usability was not affected; see above.
d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only
i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?
Yes \boxtimes No \square N/A \square Comments:

320-78371-1
Laboratory Report Date:
September 15, 2021
CS Site Name:
ADOT&PF King Salmon Airport Statewide PFAS
 ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages) Yes□ No⊠ N/A□ Comments:
 The IDAs for analytes for the following analytes were recovered low in the noted samples: PFTeA - 21AKN-Drum-10: PFTeA was not detected in the associated project sample, is considered an estimate with no direction of bias, and has been flagged 'J' in the analytical tables. PFBS - 21AKN-MW-04-45: PFBS was detected in the associated sample, is considered an estimate with no direction of, and has been flagged 'J' in the analytical tables. HPFO-DA - 21AKN-MW-04-45: HPFO-DA was not detected in the associated project sample, is considered an estimate with no direction of bias, and has been flagged 'J' in the analytical tables.
iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?
Yes⊠ No□ N/A□ Comments:
iv. Data quality or usability affected? Comments:
See above.
e. Trip Blanks
 i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)
$Yes \square No \square N/A \boxtimes Comments:$
PFAS are not volatile compounds. A trip blank is not required for the requested analysis.
ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)
Yes \square No \square N/A \boxtimes Comments:

See above.

20-78371-	·1
ratory Rep	port Date:
eptember	15, 2021
ite Name:	
DOT&PF	King Salmon Airport Statewide PFAS
iii	All results less than LOQ and project specified objectives?
	Yes \square No \square N/A \boxtimes Comments:
See abo	ve.
iv.	If above LOQ or project specified objectives, what samples are affected? Comments:
Not app	olicable, see above.
v.	Data quality or usability affected? Comments:
Not app	licable, see above.
f. Fiel	d Duplicate
i.	One field duplicate submitted per matrix, analysis and 10 project samples?
21AKN-	Yes \boxtimes No \square N/A \boxtimes Comments: -MW-105-15 and 21AKN-Drum-101 were field duplicates of 21AKN-MW-05-15 and 21AKN-D1, respectively.
ii.	Submitted blind to lab?
,	Yes \boxtimes No \square N/A \square Comments:
iii.	Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$
	Where $R_1 = $ Sample Concentration $R_2 = $ Field Duplicate Concentration
,	$Yes \boxtimes No \square N/A \square$ Comments:
	calculable, analytical results met the comparison criterion (≤ 30% for soil) for the field
iv.	Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:
Not ann	plicable, see above.

320-78371-1
Laboratory Report Date:
September 15, 2021
CS Site Name:
ADOT&PF King Salmon Airport Statewide PFAS
g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?
Yes \square No \square N/A \boxtimes Comments:
Decontamination or equipment blank were not required for this project.
i. All results less than LOQ and project specified objectives?
Yes \square No \square N/A \boxtimes Comments:
See above.
ii. If above LOQ or project specified objectives, what samples are affected? Comments:
Not applicable, see above.
iii. Data quality or usability affected? Comments:
Not applicable, see above.
7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
a. Defined and appropriate?
Yes \square No \square N/A \boxtimes Comments:
There were no additional flags/qualifiers required for this work order.

Page 12 May 2020

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-78376-1 Client Project/Site: PFAS AKN

For:

Shannon & Wilson, Inc 2355 Hill Rd. Fairbanks, Alaska 99709-5244

Attn: Michael X Jaramillo

Jinda C. Javn

Authorized for release by: 9/15/2021 3:16:57 PM Linda C. Laver, Senior Project Manager (916)374-4362 Linda.Laver@Eurofinset.com

Designee for

David Alltucker, Project Manager I (916)374-4383

David.Alltucker@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

7

8

4.6

11

1/

15

Client: Shannon & Wilson, Inc Project/Site: PFAS AKN Laboratory Job ID: 320-78376-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Isotope Dilution Summary	12
QC Sample Results	13
QC Association Summary	17
Lab Chronicle	18
Certification Summary	20
Method Summary	21
Sample Summary	22
Chain of Custody	23
Receipt Checklists	24

4

5

7

a

10

12

4 /

Definitions/Glossary

Client: Shannon & Wilson, Inc

Job ID: 320-78376-1

Project/Site: PFAS AKN

Qualifiers

_		
С	N	IS

Qualifier	Qualifier Description
*5-	Isotope dilution analyte is outside acceptance limits, low biased.
I	Value is EMPC (estimated maximum possible concentration).
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number

MQL Method Quantitation Limit NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

9/15/2021

Case Narrative

Client: Shannon & Wilson, Inc
Project/Site: PFAS AKN

Job ID: 320-78376-1

Job ID: 320-78376-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Job Narrative 320-78376-1

Receipt

The samples were received on 9/1/2021 3:56 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.3° C.

LCMS

Method EPA 537(Mod): The "I" qualifier means the transition mass ratio for the indicated analyte was outside of the established ratio limits. The qualitative identification of the analyte has some degree of uncertainty, and the reported value may have some high bias. However, analyst judgment was used to positively identify the analyte. 21AKN-SB-05(3.1'-3.6') (320-78376-1), (320-78376-A-1-B MS) and (320-78376-A-1-C MSD)

Method EPA 537(Mod): The Isotope Dilution Analyte (IDA) recoveries associated with the following samples are below the method recommended limit: 21AKN-SB-05(3.1'-3.6') (320-78376-1), 21AKN-SB-05(4.2'-4.7') (320-78376-2), 21AKN-SB-105(58'-63') (320-78376-A), (320-78376-A-1-B MS) and (320-78376-A-1-C MSD). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample(s).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

5

6

9

11

14

1

Detection Summary

Client: Shannon & Wilson, Inc Job ID: 320-78376-1

Project/Site: PFAS AKN

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	0.081	J	0.24	0.038	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	0.095	J	0.24	0.065	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.13	J	0.24	0.035	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	0.34	1	0.24	0.053	ug/Kg	1	₩	EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-SB-05(4.2'-4.7')

Analyte	Result Qualifier	RL	MDL (Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	0.039 J	0.23	0.036 ι	ug/Kg		₩	EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	0.065 J	0.23	0.061 ເ	ug/Kg	1	₽	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.069 J	0.23	0.033 ι	ug/Kg	1	₩	EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-SB-05(58'-63') Lab Sample ID: 320-78376-3

No Detections.

Client Sample ID: 21AKN-SB-105(58'-63')

Lab Sample ID: 320-78376-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorooctanesulfonic acid (PFOS)	0.048	J	0.22	0.047	ug/Kg	1	₩	EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-SB-05(70'-70.5') Lab Sample ID: 320-78376-5

No Detections.

Client Sample ID: 21AKN-SB-05(82.8-83.3)

Lab Sample ID: 320-78376-6

No Detections.

This Detection Summary does not include radiochemical test results.

9/15/2021

3

0

Lab Sample ID: 320-78376-2

8

10

11

13

Client: Shannon & Wilson, Inc Job ID: 320-78376-1 Project/Site: PFAS AKN

Client Sample ID: 21AKN-SB-05(3.1'-3.6')

Lab Sample ID: 320-78376-1 Date Collected: 08/23/21 13:01 **Matrix: Solid**

Percent Solids: 81.9 Date Received: 09/01/21 15:56

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	0.081	J	0.24	0.038	ug/Kg	₽	09/06/21 18:24	09/10/21 13:54	
Perfluoroheptanoic acid (PFHpA)	ND		0.24	0.046	ug/Kg	₽	09/06/21 18:24	09/10/21 13:54	
Perfluorooctanoic acid (PFOA)	0.095	J	0.24	0.065	ug/Kg	₩	09/06/21 18:24	09/10/21 13:54	•
Perfluorononanoic acid (PFNA)	ND		0.24	0.027	ug/Kg	₩	09/06/21 18:24	09/10/21 13:54	
Perfluorodecanoic acid (PFDA)	ND		0.24	0.059	ug/Kg	₩	09/06/21 18:24	09/10/21 13:54	
Perfluoroundecanoic acid (PFUnA)	ND		0.24	0.051	ug/Kg	₩	09/06/21 18:24	09/10/21 13:54	
Perfluorododecanoic acid (PFDoA)	ND		0.24	0.037	ug/Kg	₩	09/06/21 18:24	09/10/21 13:54	
Perfluorotridecanoic acid (PFTriA)	ND		0.24	0.026	ug/Kg	₩	09/06/21 18:24	09/10/21 13:54	
Perfluorotetradecanoic acid (PFTeA)	ND		0.24	0.045	ug/Kg	₽	09/06/21 18:24	09/10/21 13:54	
Perfluorobutanesulfonic acid (PFBS)	ND		0.24	0.046	ug/Kg	₽	09/06/21 18:24	09/10/21 13:54	
Perfluorohexanesulfonic acid	0.13	J	0.24	0.035	ug/Kg	₩	09/06/21 18:24	09/10/21 13:54	
(PFHxS)									
Perfluorooctanesulfonic acid	0.34	I	0.24	0.053	ug/Kg	₩	09/06/21 18:24	09/10/21 13:54	•
(PFOS)							00/00/04 40 04	00/40/04 40 54	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.24		ug/Kg			09/10/21 13:54	,
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.24		ug/Kg			09/10/21 13:54	
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		0.24	0.043	ug/Kg	☼	09/06/21 18:24	09/10/21 13:54	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.24	0.050	ug/Kg	₽	09/06/21 18:24	09/10/21 13:54	
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		0.24	0.038	ug/Kg	₩	09/06/21 18:24	09/10/21 13:54	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.24	0.048	ug/Kg	₩	09/06/21 18:24	09/10/21 13:54	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C2 PFHxA	71		50 - 150				09/06/21 18:24	09/10/21 13:54	
13C4 PFHpA	66		50 - 150				09/06/21 18:24	09/10/21 13:54	
13C4 PFOA	68		50 ₋ 150				09/06/21 18:24	09/10/21 13:54	
13C5 PFNA	71		50 - 150				09/06/21 18:24	09/10/21 13:54	
13C2 PFDA	70		50 ₋ 150				09/06/21 18:24	09/10/21 13:54	
13C2 PFUnA	68		50 ₋ 150				09/06/21 18:24	09/10/21 13:54	
13C2 PFDoA	67		50 - 150				09/06/21 18:24	09/10/21 13:54	
13C2 PFTeDA	48	*5-	50 ₋ 150				09/06/21 18:24	09/10/21 13:54	
13C3 PFBS	64		50 - 150					09/10/21 13:54	
1802 PFHxS	62		50 - 150					09/10/21 13:54	
13C4 PFOS	63		50 ₋ 150					09/10/21 13:54	
d3-NMeFOSAA	71		50 - 150					09/10/21 13:54	
d5-NEtFOSAA	77		50 - 150					09/10/21 13:54	
13C3 HFPO-DA	60		50 - 150					09/10/21 13:54	
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Percent Moisture	18.1	_	0.1	0.1	%	_	_	09/02/21 11:27	
Percent Solids	81.9		0.1	0.1	%			09/02/21 11:27	

9/15/2021

Client: Shannon & Wilson, Inc Job ID: 320-78376-1 Project/Site: PFAS AKN

Client Sample ID: 21AKN-SB-05(4.2'-4.7')

Lab Sample ID: 320-78376-2 Date Collected: 08/23/21 12:55 **Matrix: Solid**

Date Received: 09/01/21 15:56 Percent Solids: 82.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	0.039	J	0.23	0.036	ug/Kg	<u></u>	09/06/21 18:24	09/10/21 14:21	
Perfluoroheptanoic acid (PFHpA)	ND		0.23	0.044	ug/Kg	₩	09/06/21 18:24	09/10/21 14:21	•
Perfluorooctanoic acid (PFOA)	0.065	J	0.23	0.061	ug/Kg	₩	09/06/21 18:24	09/10/21 14:21	•
Perfluorononanoic acid (PFNA)	ND		0.23	0.025	ug/Kg	₩	09/06/21 18:24	09/10/21 14:21	· · · · · · · · ·
Perfluorodecanoic acid (PFDA)	ND		0.23	0.055	ug/Kg	≎	09/06/21 18:24	09/10/21 14:21	•
Perfluoroundecanoic acid (PFUnA)	ND		0.23	0.048	ug/Kg	₩	09/06/21 18:24	09/10/21 14:21	1
Perfluorododecanoic acid (PFDoA)	ND		0.23	0.034	ug/Kg		09/06/21 18:24	09/10/21 14:21	
Perfluorotridecanoic acid (PFTriA)	ND		0.23	0.024	ug/Kg	₩	09/06/21 18:24	09/10/21 14:21	1
Perfluorotetradecanoic acid (PFTeA)	ND		0.23	0.043	ug/Kg	₩	09/06/21 18:24	09/10/21 14:21	1
Perfluorobutanesulfonic acid (PFBS)	ND		0.23	0.044	ug/Kg	₩	09/06/21 18:24	09/10/21 14:21	1
Perfluorohexanesulfonic acid	0.069	J	0.23		ug/Kg	₩	09/06/21 18:24	09/10/21 14:21	1
(PFHxS)					0 0				
Perfluorooctanesulfonic acid (PFOS)	ND		0.23	0.049	ug/Kg	₩	09/06/21 18:24	09/10/21 14:21	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.23	0.026	ug/Kg	₽	09/06/21 18:24	09/10/21 14:21	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.23	0.055	ug/Kg	₩	09/06/21 18:24	09/10/21 14:21	,
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		0.23	0.040	ug/Kg	₩	09/06/21 18:24	09/10/21 14:21	,
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.23	0.047	ug/Kg	₩	09/06/21 18:24	09/10/21 14:21	,
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		0.23		ug/Kg	₩	09/06/21 18:24	09/10/21 14:21	•
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.23	0.045	ug/Kg	₩	09/06/21 18:24	09/10/21 14:21	,
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	58		50 - 150				09/06/21 18:24	09/10/21 14:21	
13C4 PFHpA	50		50 - 150				09/06/21 18:24	09/10/21 14:21	1
13C4 PFOA	51		50 - 150				09/06/21 18:24	09/10/21 14:21	
13C5 PFNA	56		50 - 150				09/06/21 18:24	09/10/21 14:21	
13C2 PFDA	60		50 - 150				09/06/21 18:24	09/10/21 14:21	
13C2 PFUnA	58		50 - 150				09/06/21 18:24	09/10/21 14:21	
13C2 PFDoA	47	*5-	50 - 150				09/06/21 18:24	09/10/21 14:21	
13C2 PFTeDA	31	*5-	50 ₋ 150				09/06/21 18:24	09/10/21 14:21	
13C3 PFBS	57		50 ₋ 150				09/06/21 18:24	09/10/21 14:21	
1802 PFHxS	54		50 - 150				09/06/21 18:24	09/10/21 14:21	
13C4 PFOS	54		50 - 150				09/06/21 18:24	09/10/21 14:21	
d3-NMeFOSAA	53		50 ₋ 150				09/06/21 18:24	09/10/21 14:21	
d5-NEtFOSAA	56		50 - 150				09/06/21 18:24	09/10/21 14:21	
13C3 HFPO-DA	52		50 - 150					09/10/21 14:21	
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	17.5		0.1	0.1	%			09/02/21 11:27	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	17.5		0.1	0.1	%			09/02/21 11:27	1
Percent Solids	82.5		0.1	0.1	%			09/02/21 11:27	1

Client: Shannon & Wilson, Inc Job ID: 320-78376-1

Project/Site: PFAS AKN

Client Sample ID: 21AKN-SB-05(58'-63')

Lab Sample ID: 320-78376-3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perfluorohexanoic acid (PFHxA)	ND		0.23	0.035	ug/Kg		09/06/21 18:24	09/10/21 14:30	
Perfluoroheptanoic acid (PFHpA)	ND		0.23	0.043	ug/Kg	₽	09/06/21 18:24	09/10/21 14:30	
Perfluorooctanoic acid (PFOA)	ND		0.23	0.060	ug/Kg	₽	09/06/21 18:24	09/10/21 14:30	
Perfluorononanoic acid (PFNA)	ND		0.23	0.025	ug/Kg	₩	09/06/21 18:24	09/10/21 14:30	
Perfluorodecanoic acid (PFDA)	ND		0.23	0.055	ug/Kg	₽	09/06/21 18:24	09/10/21 14:30	
Perfluoroundecanoic acid (PFUnA)	ND		0.23	0.048	ug/Kg	₩	09/06/21 18:24	09/10/21 14:30	
Perfluorododecanoic acid (PFDoA)	ND		0.23	0.034	ug/Kg	₽	09/06/21 18:24	09/10/21 14:30	
Perfluorotridecanoic acid (PFTriA)	ND		0.23	0.024	ug/Kg	₽	09/06/21 18:24	09/10/21 14:30	
Perfluorotetradecanoic acid (PFTeA)	ND		0.23	0.042	ug/Kg	₩	09/06/21 18:24	09/10/21 14:30	
Perfluorobutanesulfonic acid (PFBS)	ND		0.23	0.043	ug/Kg	₽	09/06/21 18:24	09/10/21 14:30	
Perfluorohexanesulfonic acid (PFHxS)	ND		0.23	0.033	ug/Kg	₩	09/06/21 18:24	09/10/21 14:30	
Perfluorooctanesulfonic acid (PFOS)	ND		0.23	0.049	ug/Kg	₩	09/06/21 18:24	09/10/21 14:30	
N-methylperfluorooctanesulfonamidoa	ND		0.23	0.026	ug/Kg	₽	09/06/21 18:24	09/10/21 14:30	
cetic acid (NMeFOSAA)									
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.23		ug/Kg	₩	09/06/21 18:24	09/10/21 14:30	
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		0.23	0.040	ug/Kg	₩	09/06/21 18:24	09/10/21 14:30	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.23	0.047	ug/Kg	₩	09/06/21 18:24	09/10/21 14:30	
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		0.23	0.035	ug/Kg	₩	09/06/21 18:24	09/10/21 14:30	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.23	0.044	ug/Kg	₩	09/06/21 18:24	09/10/21 14:30	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C2 PFHxA	68		50 - 150				09/06/21 18:24	09/10/21 14:30	
13C4 PFHpA	69		50 - 150				09/06/21 18:24	09/10/21 14:30	
13C4 PFOA	74		50 - 150				09/06/21 18:24	09/10/21 14:30	
13C5 PFNA	67		50 - 150				09/06/21 18:24	09/10/21 14:30	
13C2 PFDA	72		50 - 150				09/06/21 18:24	09/10/21 14:30	
13C2 PFUnA	68		50 - 150				09/06/21 18:24	09/10/21 14:30	
13C2 PFDoA	71		50 - 150				09/06/21 18:24	09/10/21 14:30	
13C2 PFTeDA	64		50 - 150				09/06/21 18:24	09/10/21 14:30	
13C3 PFBS	64		50 - 150				09/06/21 18:24	09/10/21 14:30	
1802 PFHxS	68		50 - 150				09/06/21 18:24	09/10/21 14:30	
13C4 PFOS	65		50 - 150				09/06/21 18:24	09/10/21 14:30	
d3-NMeFOSAA	78		50 - 150				09/06/21 18:24	09/10/21 14:30	
d5-NEtFOSAA	79		50 - 150				09/06/21 18:24	09/10/21 14:30	
13C3 HFPO-DA	60		50 - 150				09/06/21 18:24	09/10/21 14:30	
General Chemistry									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Percent Moisture	12.7		0.1	0.1	%			09/02/21 11:27	
Percent Moisture Percent Solids	87.3		0.1	0.1				09/02/21 11:27	

2

3

6

Q

10

12

14

15

9/15/2021

Client: Shannon & Wilson, Inc Job ID: 320-78376-1 Project/Site: PFAS AKN

Date Received: 09/01/21 15:56

Lab Sample ID: 320-78376-4 Client Sample ID: 21AKN-SB-105(58'-63') Date Collected: 08/24/21 10:20

Matrix: Solid Percent Solids: 83.4

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 Result Qualifier Analyte RL **MDL** Unit D Prepared Analyzed Dil Fac Perfluorohexanoic acid (PFHxA) ND 0.22 0.034 ug/Kg 09/06/21 18:24 09/10/21 14:39 ND Perfluoroheptanoic acid (PFHpA) 0.22 0.042 ug/Kg 09/06/21 18:24 09/10/21 14:39 Perfluorooctanoic acid (PFOA) ND 0.22 0.058 ug/Kg 09/06/21 18:24 09/10/21 14:39 Perfluorononanoic acid (PFNA) ND 09/06/21 18:24 09/10/21 14:39 0.22 0.024 ug/Kg Perfluorodecanoic acid (PFDA) ND 0.22 0.053 ug/Kg 09/06/21 18:24 09/10/21 14:39 Perfluoroundecanoic acid (PFUnA) ND 0.22 0.046 ug/Kg 09/06/21 18:24 09/10/21 14:39 Perfluorododecanoic acid (PFDoA) ND 0.22 0.033 ug/Kg 09/06/21 18:24 09/10/21 14:39 Perfluorotridecanoic acid (PFTriA) ND 0.22 0.023 ug/Kg © 09/06/21 18:24 09/10/21 14:39 Perfluorotetradecanoic acid (PFTeA) ND 0.22 0.041 ug/Kg 09/06/21 18:24 09/10/21 14:39 Perfluorobutanesulfonic acid (PFBS) ND 0.22 0.042 ug/Kg 09/06/21 18:24 09/10/21 14:39 Perfluorohexanesulfonic acid (PFHxS) ND 0.22 0.032 ug/Kg 09/06/21 18:24 09/10/21 14:39 Perfluorooctanesulfonic acid 0.22 0.047 ug/Kg 09/06/21 18:24 09/10/21 14:39 0.048 J (PFOS) N-methylperfluorooctanesulfonamidoa ND 0.025 ug/Kg © 09/06/21 18:24 09/10/21 14:39 0.22 cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac ND 0.22 0.053 ug/Kg © 09/06/21 18:24 09/10/21 14:39 etic acid (NEtFOSAA) ND 0.22 © 09/06/21 18:24 09/10/21 14:39 9-Chlorohexadecafluoro-3-oxanonan 0.039 ug/Kg e-1-sulfonic acid ND 0.22 © 09/06/21 18:24 09/10/21 14:39 0.045 ug/Kg Hexafluoropropylene Oxide Dimer Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaundecan ND 0.22 0.034 ug/Kg 09/06/21 18:24 09/10/21 14:39 e-1-sulfonic acid ND 0.22 0.043 ug/Kg © 09/06/21 18:24 09/10/21 14:39 4,8-Dioxa-3H-perfluorononanoic acid

(ADONA)				
Isotope Dilution	%Recovery Qua	alifier Limits	Prepared A.	nalyzed Dil Fac
13C2 PFHxA	56	50 - 150	09/06/21 18:24 09/1	0/21 14:39 1
13C4 PFHpA	58	50 - 150	09/06/21 18:24 09/1	0/21 14:39 1
13C4 PFOA	60	50 - 150	09/06/21 18:24 09/1	0/21 14:39 1
13C5 PFNA	54	50 - 150	09/06/21 18:24 09/1	0/21 14:39 1
13C2 PFDA	54	50 - 150	09/06/21 18:24 09/1	0/21 14:39 1
13C2 PFUnA	55	50 - 150	09/06/21 18:24 09/1	0/21 14:39 1
13C2 PFDoA	62	50 - 150	09/06/21 18:24 09/1	0/21 14:39 1
13C2 PFTeDA	57	50 - 150	09/06/21 18:24 09/1	0/21 14:39 1
13C3 PFBS	55	50 - 150	09/06/21 18:24 09/1	0/21 14:39 1
1802 PFHxS	57	50 - 150	09/06/21 18:24 09/1	0/21 14:39 1
13C4 PFOS	54	50 - 150	09/06/21 18:24 09/1	0/21 14:39 1
d3-NMeFOSAA	59	50 - 150	09/06/21 18:24 09/1	0/21 14:39 1
d5-NEtFOSAA	64	50 - 150	09/06/21 18:24 09/1	0/21 14:39 1
13C3 HFPO-DA	49 *5-	50 - 150	09/06/21 18:24 09/1	0/21 14:39 1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	16.6		0.1	0.1	%			09/02/21 11:27	1
Percent Solids	83.4		0.1	0.1	%			09/02/21 11:27	1

Client: Shannon & Wilson, Inc Job ID: 320-78376-1 Project/Site: PFAS AKN

Client Sample ID: 21AKN-SB-05(70'-70.5') Lab Sample ID: 320-78376-5 Date Collected: 08/27/21 10:30 **Matrix: Solid**

Date Received: 09/01/21 15:56 Percent Solids: 88.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		0.20	0.031	ug/Kg		09/06/21 18:24	09/10/21 14:48	
Perfluoroheptanoic acid (PFHpA)	ND		0.20	0.039	ug/Kg	₽	09/06/21 18:24	09/10/21 14:48	
Perfluorooctanoic acid (PFOA)	ND		0.20	0.054	ug/Kg	☆	09/06/21 18:24	09/10/21 14:48	
Perfluorononanoic acid (PFNA)	ND		0.20	0.022	ug/Kg	☼	09/06/21 18:24	09/10/21 14:48	
Perfluorodecanoic acid (PFDA)	ND		0.20	0.049	ug/Kg	₩	09/06/21 18:24	09/10/21 14:48	
Perfluoroundecanoic acid (PFUnA)	ND		0.20	0.043	ug/Kg	₩	09/06/21 18:24	09/10/21 14:48	
Perfluorododecanoic acid (PFDoA)	ND		0.20	0.030	ug/Kg	₩	09/06/21 18:24	09/10/21 14:48	
Perfluorotridecanoic acid (PFTriA)	ND		0.20	0.021	ug/Kg	₽	09/06/21 18:24	09/10/21 14:48	
Perfluorotetradecanoic acid (PFTeA)	ND		0.20	0.038	ug/Kg	₩	09/06/21 18:24	09/10/21 14:48	
Perfluorobutanesulfonic acid (PFBS)	ND		0.20	0.039	ug/Kg	☼	09/06/21 18:24	09/10/21 14:48	
Perfluorohexanesulfonic acid (PFHxS)	ND		0.20	0.029	ug/Kg	☼	09/06/21 18:24	09/10/21 14:48	
Perfluorooctanesulfonic acid (PFOS)	ND		0.20	0.044	ug/Kg	₩	09/06/21 18:24	09/10/21 14:48	
N-methylperfluorooctanesulfonamidoa	ND		0.20	0.023	ug/Kg	☆	09/06/21 18:24	09/10/21 14:48	
cetic acid (NMeFOSAA)					-				
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.20		ug/Kg	₩	09/06/21 18:24	09/10/21 14:48	
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		0.20	0.036	ug/Kg	₩	09/06/21 18:24	09/10/21 14:48	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.20	0.042	ug/Kg	₩	09/06/21 18:24	09/10/21 14:48	
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		0.20	0.031	ug/Kg	₩	09/06/21 18:24	09/10/21 14:48	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.20	0.040	ug/Kg	₩	09/06/21 18:24	09/10/21 14:48	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C2 PFHxA	69		50 - 150				09/06/21 18:24	09/10/21 14:48	
13C4 PFHpA	72		50 - 150				09/06/21 18:24	09/10/21 14:48	
13C4 PFOA	76		50 - 150				09/06/21 18:24	09/10/21 14:48	
13C5 PFNA	74		50 - 150				09/06/21 18:24	09/10/21 14:48	
13C2 PFDA	74		50 - 150				09/06/21 18:24	09/10/21 14:48	
13C2 PFUnA	71		50 - 150				09/06/21 18:24	09/10/21 14:48	
13C2 PFDoA	73		50 - 150				09/06/21 18:24	09/10/21 14:48	
13C2 PFTeDA	59		50 - 150				09/06/21 18:24	09/10/21 14:48	
13C3 PFBS	66		50 - 150				09/06/21 18:24	09/10/21 14:48	
1802 PFHxS	69		50 - 150				09/06/21 18:24	09/10/21 14:48	
13C4 PFOS	69		50 - 150				09/06/21 18:24	09/10/21 14:48	
d3-NMeFOSAA	73		50 - 150				09/06/21 18:24	09/10/21 14:48	
d5-NEtFOSAA	74		50 - 150				09/06/21 18:24	09/10/21 14:48	
13C3 HFPO-DA	66		50 - 150				09/06/21 18:24	09/10/21 14:48	
General Chemistry									
Analyte		Qualifier	RL_	MDL		D	Prepared	Analyzed	Dil Fa
Percent Moisture	11.6		0.1	0.1	%			09/02/21 11:27	•
Percent Solids	88.4		0.1	0.1				09/02/21 11:27	

Client: Shannon & Wilson, Inc Job ID: 320-78376-1 Project/Site: PFAS AKN

Client Sample ID: 21AKN-SB-05(82.8-83.3)

Lab Sample ID: 320-78376-6 Date Collected: 08/27/21 14:40 **Matrix: Solid**

Date Received: 09/01/21 15:56 Percent Solids: 83.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		0.23	0.035	ug/Kg	-	09/06/21 18:24	09/10/21 14:57	1
Perfluoroheptanoic acid (PFHpA)	ND		0.23	0.043	ug/Kg	₩	09/06/21 18:24	09/10/21 14:57	1
Perfluorooctanoic acid (PFOA)	ND		0.23	0.060	ug/Kg	☆	09/06/21 18:24	09/10/21 14:57	1
Perfluorononanoic acid (PFNA)	ND		0.23	0.025	ug/Kg	₩	09/06/21 18:24	09/10/21 14:57	1
Perfluorodecanoic acid (PFDA)	ND		0.23	0.054	ug/Kg	₩	09/06/21 18:24	09/10/21 14:57	1
Perfluoroundecanoic acid (PFUnA)	ND		0.23	0.047	ug/Kg	₩	09/06/21 18:24	09/10/21 14:57	1
Perfluorododecanoic acid (PFDoA)	ND		0.23	0.034	ug/Kg	₽	09/06/21 18:24	09/10/21 14:57	1
Perfluorotridecanoic acid (PFTriA)	ND		0.23	0.024	ug/Kg	≎	09/06/21 18:24	09/10/21 14:57	1
Perfluorotetradecanoic acid (PFTeA)	ND		0.23	0.042	ug/Kg	₽	09/06/21 18:24	09/10/21 14:57	1
Perfluorobutanesulfonic acid (PFBS)	ND		0.23	0.043	ug/Kg	₽	09/06/21 18:24	09/10/21 14:57	1
Perfluorohexanesulfonic acid (PFHxS)	ND		0.23	0.033	ug/Kg	₩	09/06/21 18:24	09/10/21 14:57	1
Perfluorooctanesulfonic acid (PFOS)	ND		0.23	0.048	ug/Kg	☼	09/06/21 18:24	09/10/21 14:57	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.23	0.026	ug/Kg	₩	09/06/21 18:24	09/10/21 14:57	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.23	0.054	ug/Kg	₩	09/06/21 18:24	09/10/21 14:57	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		0.23	0.039	ug/Kg	₩	09/06/21 18:24	09/10/21 14:57	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.23	0.046	ug/Kg	₩	09/06/21 18:24	09/10/21 14:57	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		0.23	0.035	ug/Kg	₩	09/06/21 18:24	09/10/21 14:57	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.23	0.044	ug/Kg	₩	09/06/21 18:24	09/10/21 14:57	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	61		50 - 150				09/06/21 18:24	09/10/21 14:57	1
13C4 PFHpA	61		50 - 150				09/06/21 18:24	09/10/21 14:57	1
13C4 PFOA	59		50 - 150				09/06/21 18:24	09/10/21 14:57	1
13C5 PFNA	61		50 - 150				09/06/21 18:24	09/10/21 14:57	1
13C2 PFDA	59		50 - 150				09/06/21 18:24	09/10/21 14:57	1
13C2 PFUnA	61		50 - 150				09/06/21 18:24	09/10/21 14:57	1
13C2 PFDoA	62		50 - 150				09/06/21 18:24	09/10/21 14:57	1
13C2 PFTeDA	59		50 - 150				09/06/21 18:24	09/10/21 14:57	1
13C3 PFBS	58		50 - 150				09/06/21 18:24	09/10/21 14:57	1
1802 PFHxS	59		50 - 150				09/06/21 18:24	09/10/21 14:57	1
13C4 PFOS	55		50 - 150				09/06/21 18:24	09/10/21 14:57	1
d3-NMeFOSAA	61		50 - 150				09/06/21 18:24	09/10/21 14:57	1
d5-NEtFOSAA	64		50 - 150				09/06/21 18:24	09/10/21 14:57	1
13C3 HFPO-DA	58		50 - 150				09/06/21 18:24	09/10/21 14:57	1
General Chemistry		015			1124	_	D oor '	A	D:: -
Analyte		Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil Fac
Percent Moisture	16.1		0.1	0.1				09/02/21 11:27	1
Percent Solids	83.9		0.1	0.1	%			09/02/21 11:27	1

Job ID: 320-78376-1

Client: Shannon & Wilson, Inc Project/Site: PFAS AKN

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Matrix: Solid Prep Type: Total/NA

_			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PFHxA	C4PFHA	PFOA	PFNA	PFDA	PFUnA	PFDoA	PFTDA
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)
320-78376-1	21AKN-SB-05(3.1'-3.6')	71	66	68	71	70	68	67	48 *5-
320-78376-1 MS	21AKN-SB-05(3.1'-3.6')	76	67	73	72	76	75	69	49 *5-
320-78376-1 MSD	21AKN-SB-05(3.1'-3.6')	70	61	68	68	72	69	65	46 *5-
320-78376-2	21AKN-SB-05(4.2'-4.7')	58	50	51	56	60	58	47 *5-	31 *5-
320-78376-3	21AKN-SB-05(58'-63')	68	69	74	67	72	68	71	64
320-78376-4	21AKN-SB-105(58'-63')	56	58	60	54	54	55	62	57
320-78376-5	21AKN-SB-05(70'-70.5')	69	72	76	74	74	71	73	59
320-78376-6	21AKN-SB-05(82.8-83.3)	61	61	59	61	59	61	62	59
LCS 320-522831/2-A	Lab Control Sample	62	61	64	57	60	60	64	56
MB 320-522831/1-A	Method Blank	70	73	73	71	70	69	73	60
			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		C3PFBS	PFHxS	PFOS	d3NMFOS	d5NEFOS	HFPODA		
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)		
320-78376-1	21AKN-SB-05(3.1'-3.6')	64	62	63	71	77	60		
320-78376-1 MS	21AKN-SB-05(3.1'-3.6')	67	69	64	71	76	66		
320-78376-1 MSD	21AKN-SB-05(3.1'-3.6')	66	64	65	74	73	64		
320-78376-2	21AKN-SB-05(4.2'-4.7')	57	54	54	53	56	52		

		C3PFBS	PFHxS	PFOS	d3NMFOS	d5NEFOS	HFPODA
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)
320-78376-1	21AKN-SB-05(3.1'-3.6')	64	62	63	71	77	60
320-78376-1 MS	21AKN-SB-05(3.1'-3.6')	67	69	64	71	76	66
320-78376-1 MSD	21AKN-SB-05(3.1'-3.6')	66	64	65	74	73	64
320-78376-2	21AKN-SB-05(4.2'-4.7')	57	54	54	53	56	52
320-78376-3	21AKN-SB-05(58'-63')	64	68	65	78	79	60
20-78376-4	21AKN-SB-105(58'-63')	55	57	54	59	64	49 *5-
20-78376-5	21AKN-SB-05(70'-70.5')	66	69	69	73	74	66
20-78376-6	21AKN-SB-05(82.8-83.3)	58	59	55	61	64	58
LCS 320-522831/2-A	Lab Control Sample	58	59	60	61	68	59
/IB 320-522831/1-A	Method Blank	72	70	66	73	79	71

Surrogate Legend

PFHxA = 13C2 PFHxA

C4PFHA = 13C4 PFHpA

PFOA = 13C4 PFOA

PFNA = 13C5 PFNA

PFDA = 13C2 PFDA

PFUnA = 13C2 PFUnA

PFDoA = 13C2 PFDoA

PFTDA = 13C2 PFTeDA

C3PFBS = 13C3 PFBS

PFHxS = 18O2 PFHxS PFOS = 13C4 PFOS

d3NMFOS = d3-NMeFOSAA

d5NEFOS = d5-NEtFOSAA

HFPODA = 13C3 HFPO-DA

Eurofins TestAmerica, Sacramento

Page 12 of 24

-

3

4

0

8

10

12

15

Client: Shannon & Wilson, Inc Job ID: 320-78376-1 Project/Site: PFAS AKN

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Lab Sample ID: MB 320-522831/1-A

Matrix: Solid

Analysis Batch: 523909

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 522831

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		0.20	0.031	ug/Kg		09/06/21 18:24	09/10/21 13:35	1
Perfluoroheptanoic acid (PFHpA)	ND		0.20	0.038	ug/Kg		09/06/21 18:24	09/10/21 13:35	1
Perfluorooctanoic acid (PFOA)	ND		0.20	0.053	ug/Kg		09/06/21 18:24	09/10/21 13:35	1
Perfluorononanoic acid (PFNA)	ND		0.20	0.022	ug/Kg		09/06/21 18:24	09/10/21 13:35	1
Perfluorodecanoic acid (PFDA)	ND		0.20	0.048	ug/Kg		09/06/21 18:24	09/10/21 13:35	1
Perfluoroundecanoic acid (PFUnA)	ND		0.20	0.042	ug/Kg		09/06/21 18:24	09/10/21 13:35	1
Perfluorododecanoic acid (PFDoA)	ND		0.20	0.030	ug/Kg		09/06/21 18:24	09/10/21 13:35	1
Perfluorotridecanoic acid (PFTriA)	ND		0.20	0.021	ug/Kg		09/06/21 18:24	09/10/21 13:35	1
Perfluorotetradecanoic acid (PFTeA)	ND		0.20	0.037	ug/Kg		09/06/21 18:24	09/10/21 13:35	1
Perfluorobutanesulfonic acid (PFBS)	ND		0.20	0.038	ug/Kg		09/06/21 18:24	09/10/21 13:35	1
Perfluorohexanesulfonic acid (PFHxS)	ND		0.20	0.029	ug/Kg		09/06/21 18:24	09/10/21 13:35	1
Perfluorooctanesulfonic acid (PFOS)	ND		0.20	0.043	ug/Kg		09/06/21 18:24	09/10/21 13:35	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.20	0.023	ug/Kg		09/06/21 18:24	09/10/21 13:35	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.20	0.048	ug/Kg		09/06/21 18:24	09/10/21 13:35	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		0.20	0.035	ug/Kg		09/06/21 18:24	09/10/21 13:35	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.20	0.041	ug/Kg		09/06/21 18:24	09/10/21 13:35	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		0.20	0.031	ug/Kg		09/06/21 18:24	09/10/21 13:35	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.20	0.039	ug/Kg		09/06/21 18:24	09/10/21 13:35	1

ИВ	MB	
----	----	--

	IVID IVID				
Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	70	50 - 150	09/06/21 18:24	09/10/21 13:35	1
13C4 PFHpA	73	50 - 150	09/06/21 18:24	09/10/21 13:35	1
13C4 PFOA	73	50 - 150	09/06/21 18:24	09/10/21 13:35	1
13C5 PFNA	71	50 - 150	09/06/21 18:24	09/10/21 13:35	1
13C2 PFDA	70	50 - 150	09/06/21 18:24	09/10/21 13:35	1
13C2 PFUnA	69	50 - 150	09/06/21 18:24	09/10/21 13:35	1
13C2 PFDoA	73	50 - 150	09/06/21 18:24	09/10/21 13:35	1
13C2 PFTeDA	60	50 - 150	09/06/21 18:24	09/10/21 13:35	1
13C3 PFBS	72	50 - 150	09/06/21 18:24	09/10/21 13:35	1
18O2 PFHxS	70	50 - 150	09/06/21 18:24	09/10/21 13:35	1
13C4 PFOS	66	50 - 150	09/06/21 18:24	09/10/21 13:35	1
d3-NMeFOSAA	73	50 - 150	09/06/21 18:24	09/10/21 13:35	1
d5-NEtFOSAA	79	50 - 150	09/06/21 18:24	09/10/21 13:35	1
13C3 HFPO-DA	71	50 - 150	09/06/21 18:24	09/10/21 13:35	1

Lab Sample ID: LCS 320-522831/2-A

Matrix: Solid

Analysis Batch: 523909

Client Sample	D: Lab Control Sa	mple
	Pron Type: Tota	I/NI A

Prep Batch: 522831

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorohexanoic acid (PFHxA)	2.00	1.98		ug/Kg		99	70 - 132	
Perfluoroheptanoic acid (PFHpA)	2.00	2.20		ug/Kg		110	71 - 131	
Perfluorooctanoic acid (PFOA)	2.00	2.10		ug/Kg		105	69 - 133	
Perfluorononanoic acid (PFNA)	2.00	2.38		ug/Kg		119	72 - 129	

Eurofins TestAmerica, Sacramento

Page 13 of 24

Client: Shannon & Wilson, Inc Job ID: 320-78376-1 Project/Site: PFAS AKN

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCS 320-522831/2-A

Matrix: Solid

Analysis Batch: 523909

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 522831 %Rec.

	Spike	LCS LCS			%Rec.
Analyte	Added	Result Qualifier	r Unit	D %Rec	Limits
Perfluorodecanoic acid (PFDA)	2.00	1.98	ug/Kg	99	69 - 133
Perfluoroundecanoic acid (PFUnA)	2.00	2.17	ug/Kg	108	64 - 136
Perfluorododecanoic acid (PFDoA)	2.00	2.18	ug/Kg	109	69 - 135
Perfluorotridecanoic acid (PFTriA)	2.00	2.09	ug/Kg	104	66 - 139
Perfluorotetradecanoic acid (PFTeA)	2.00	2.22	ug/Kg	111	69 - 133
Perfluorobutanesulfonic acid (PFBS)	1.77	1.96	ug/Kg	111	72 - 128
Perfluorohexanesulfonic acid (PFHxS)	1.82	2.06	ug/Kg	113	67 - 130
Perfluorooctanesulfonic acid (PFOS)	1.86	1.91	ug/Kg	103	68 - 136
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	2.00	1.97	ug/Kg	99	63 - 144
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	2.00	1.94	ug/Kg	97	61 - 139
9-Chlorohexadecafluoro-3-oxan onane-1-sulfonic acid	1.86	1.88	ug/Kg	101	75 - 135
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	2.00	1.98	ug/Kg	99	77 - 137
11-Chloroeicosafluoro-3-oxaund ecane-1-sulfonic acid	1.88	1.96	ug/Kg	104	76 - 136
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	1.88	1.98	ug/Kg	105	79 - 139

LCS LCS

	LUS	LUJ	
Isotope Dilution	%Recovery	Qualifier	Limits
13C2 PFHxA	62		50 - 150
13C4 PFHpA	61		50 - 150
13C4 PFOA	64		50 - 150
13C5 PFNA	57		50 - 150
13C2 PFDA	60		50 - 150
13C2 PFUnA	60		50 - 150
13C2 PFDoA	64		50 - 150
13C2 PFTeDA	56		50 - 150
13C3 PFBS	58		50 - 150
1802 PFHxS	59		50 - 150
13C4 PFOS	60		50 - 150
d3-NMeFOSAA	61		50 - 150
d5-NEtFOSAA	68		50 - 150
13C3 HFPO-DA	59		50 - 150

Lab Sample ID: 320-78376-1 MS

Matrix: Solid

Client Sample ID: 21AKN-SB-05(3.1'-3.6')

Ö

Prep Type: Total/NA Prep Batch: 522831

Analysis Batch: 523909 Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits <u>−</u> Perfluorohexanoic acid (PFHxA) 0.081 J 2.37 2.32 94 70 - 132 ug/Kg Perfluoroheptanoic acid (PFHpA) ND 2.37 2.69 ug/Kg ☼ 114 71 - 131 Perfluorooctanoic acid (PFOA) 0.095 J 2.37 2.66 ug/Kg 108 69 - 133

Eurofins TestAmerica, Sacramento

Page 14 of 24

9/15/2021

Client: Shannon & Wilson, Inc Job ID: 320-78376-1

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: 320-78376-1 MS

Matrix: Solid

Analysis Batch: 523909

Project/Site: PFAS AKN

Client Sample ID: 21AKN-SB-05(3.1'-3.6')

Prep Type: Total/NA

Prep Batch: 522831

Analyte	•	Sample Qualifier	Spike Added		MS Qualifier	Unit	D	%Rec	%Rec. Limits
Perfluorononanoic acid (PFNA)	ND		2.37	2.77		ug/Kg	— <u></u>	117	72 - 129
Perfluorodecanoic acid (PFDA)	ND		2.37	2.28		ug/Kg		96	69 - 133
Perfluoroundecanoic acid (PFUnA)	ND		2.37	2.72		ug/Kg	☼	115	64 - 136
Perfluorododecanoic acid (PFDoA)	ND		2.37	2.45		ug/Kg	₩	103	69 - 135
Perfluorotridecanoic acid (PFTriA)	ND		2.37	2.23		ug/Kg	☼	94	66 - 139
Perfluorotetradecanoic acid (PFTeA)	ND		2.37	2.51		ug/Kg	₩	106	69 - 133
Perfluorobutanesulfonic acid (PFBS)	ND		2.09	2.30		ug/Kg	₽	110	72 - 128
Perfluorohexanesulfonic acid (PFHxS)	0.13	J	2.15	2.40		ug/Kg	₩	105	67 - 130
Perfluorooctanesulfonic acid (PFOS)	0.34	I	2.20	2.98	1	ug/Kg	₩	120	68 - 136
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	ND		2.37	2.77		ug/Kg	☼	117	63 - 144
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	ND		2.37	2.67		ug/Kg	₩	113	61 - 139
9-Chlorohexadecafluoro-3-oxan onane-1-sulfonic acid	ND		2.21	2.59		ug/Kg	₩	117	75 - 135
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		2.37	2.42		ug/Kg	₽	102	77 - 137
11-Chloroeicosafluoro-3-oxaund ecane-1-sulfonic acid	ND		2.23	2.25		ug/Kg	₩	101	76 - 136
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.23	2.32		ug/Kg	₩	104	79 - 139

MS MS

	IVIS	IVIS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C2 PFHxA	76		50 - 150
13C4 PFHpA	67		50 ₋ 150
13C4 PFOA	73		50 ₋ 150
13C5 PFNA	72		50 - 150
13C2 PFDA	76		50 - 150
13C2 PFUnA	75		50 - 150
13C2 PFDoA	69		50 - 150
13C2 PFTeDA	49	*5-	50 ₋ 150
13C3 PFBS	67		50 - 150
1802 PFHxS	69		50 ₋ 150
13C4 PFOS	64		50 - 150
d3-NMeFOSAA	71		50 - 150
d5-NEtFOSAA	76		50 - 150
13C3 HFPO-DA	66		50 - 150

Lab Sample ID: 320-78376-1 MSD

Matrix: Solid

Client Sample ID: 21AKN-SB-05(3.1'-3.6')

Prep Type: Total/NA

Analysis Batch: 523909									Prep Ba	atch: 52	22831
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorohexanoic acid (PFHxA)	0.081	J	2.18	2.23		ug/Kg		99	70 - 132	4	30
Perfluoroheptanoic acid (PFHpA)	ND		2.18	2.39		ug/Kg	☆	110	71 - 131	12	30

Eurofins TestAmerica, Sacramento

Page 15 of 24

QC Sample Results

Client: Shannon & Wilson, Inc Job ID: 320-78376-1 Project/Site: PFAS AKN

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: 320-78376-1 MSD Client Sample ID: 21AKN-SB-05(3.1'-3.6')

Matrix: Solid

acid (ADONA)

Analysis Batch: 523909

Prep Type: Total/NA

Prep Batch: 522831

Analyte	•	Sample Qualifier	Spike Added	MSD Result	MSD Qualifier	Unit	D	%Rec	%Rec. Limits	RPD	RPD Limit
Perfluorooctanoic acid (PFOA)	0.095		2.18	2.41		ug/Kg	<u>_</u>	106	69 - 133	10	30
Perfluorononanoic acid (PFNA)	ND		2.18	2.43		ug/Kg		112	72 - 129	13	30
Perfluorodecanoic acid (PFDA)	ND		2.18	2.16		ug/Kg	☆	99	69 - 133	6	30
Perfluoroundecanoic acid (PFUnA)	ND		2.18	2.46		ug/Kg	₩	113	64 - 136	10	30
Perfluorododecanoic acid (PFDoA)	ND		2.18	2.17		ug/Kg	₩	100	69 - 135	12	30
Perfluorotridecanoic acid (PFTriA)	ND		2.18	2.02		ug/Kg	₩	93	66 - 139	10	30
Perfluorotetradecanoic acid (PFTeA)	ND		2.18	2.26		ug/Kg	₩	104	69 - 133	11	30
Perfluorobutanesulfonic acid (PFBS)	ND		1.92	2.12		ug/Kg	₩	110	72 - 128	8	30
Perfluorohexanesulfonic acid (PFHxS)	0.13	J	1.98	2.26		ug/Kg	₩	108	67 - 130	6	30
Perfluorooctanesulfonic acid (PFOS)	0.34	I	2.02	2.52	1	ug/Kg	₩	108	68 - 136	17	30
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	ND		2.18	2.29		ug/Kg	₩	105	63 - 144	19	30
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	ND		2.18	2.45		ug/Kg	₩	112	61 - 139	9	30
9-Chlorohexadecafluoro-3-oxan onane-1-sulfonic acid	ND		2.03	2.08		ug/Kg	☼	103	75 - 135	22	30
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		2.18	2.14		ug/Kg	☼	98	77 - 137	12	30
11-Chloroeicosafluoro-3-oxaund ecane-1-sulfonic acid	ND		2.05	1.94		ug/Kg	☼	94	76 - 136	15	30
4,8-Dioxa-3H-perfluorononanoic	ND		2.05	2.04		ug/Kg	≎	99	79 - 139	13	30

MSD MSD

Isotope Dilution	%Recovery	Qualifier	Limits
13C2 PFHxA	70		50 - 150
13C4 PFHpA	61		50 - 150
13C4 PFOA	68		50 - 150
13C5 PFNA	68		50 - 150
13C2 PFDA	72		50 - 150
13C2 PFUnA	69		50 - 150
13C2 PFDoA	65		50 - 150
13C2 PFTeDA	46	*5-	50 - 150
13C3 PFBS	66		50 - 150
1802 PFHxS	64		50 - 150
13C4 PFOS	65		50 - 150
d3-NMeFOSAA	74		50 - 150
d5-NEtFOSAA	73		50 - 150
13C3 HFPO-DA	64		50 - 150

QC Association Summary

Client: Shannon & Wilson, Inc Job ID: 320-78376-1 Project/Site: PFAS AKN

LCMS

Prep Batch: 522831

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-78376-1	21AKN-SB-05(3.1'-3.6')	Total/NA	Solid	SHAKE	
320-78376-2	21AKN-SB-05(4.2'-4.7')	Total/NA	Solid	SHAKE	
320-78376-3	21AKN-SB-05(58'-63')	Total/NA	Solid	SHAKE	
320-78376-4	21AKN-SB-105(58'-63')	Total/NA	Solid	SHAKE	
320-78376-5	21AKN-SB-05(70'-70.5')	Total/NA	Solid	SHAKE	
320-78376-6	21AKN-SB-05(82.8-83.3)	Total/NA	Solid	SHAKE	
MB 320-522831/1-A	Method Blank	Total/NA	Solid	SHAKE	
LCS 320-522831/2-A	Lab Control Sample	Total/NA	Solid	SHAKE	
320-78376-1 MS	21AKN-SB-05(3.1'-3.6')	Total/NA	Solid	SHAKE	
320-78376-1 MSD	21AKN-SB-05(3.1'-3.6')	Total/NA	Solid	SHAKE	

Analysis Batch: 523909

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-78376-1	21AKN-SB-05(3.1'-3.6')	Total/NA	Solid	EPA 537(Mod)	522831
320-78376-2	21AKN-SB-05(4.2'-4.7')	Total/NA	Solid	EPA 537(Mod)	522831
320-78376-3	21AKN-SB-05(58'-63')	Total/NA	Solid	EPA 537(Mod)	522831
320-78376-4	21AKN-SB-105(58'-63')	Total/NA	Solid	EPA 537(Mod)	522831
320-78376-5	21AKN-SB-05(70'-70.5')	Total/NA	Solid	EPA 537(Mod)	522831
320-78376-6	21AKN-SB-05(82.8-83.3)	Total/NA	Solid	EPA 537(Mod)	522831
MB 320-522831/1-A	Method Blank	Total/NA	Solid	EPA 537(Mod)	522831
LCS 320-522831/2-A	Lab Control Sample	Total/NA	Solid	EPA 537(Mod)	522831
320-78376-1 MS	21AKN-SB-05(3.1'-3.6')	Total/NA	Solid	EPA 537(Mod)	522831
320-78376-1 MSD	21AKN-SB-05(3.1'-3.6')	Total/NA	Solid	EPA 537(Mod)	522831

General Chemistry

Analysis Batch: 522075

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-78376-1	21AKN-SB-05(3.1'-3.6')	Total/NA	Solid	D 2216	-
320-78376-2	21AKN-SB-05(4.2'-4.7')	Total/NA	Solid	D 2216	
320-78376-3	21AKN-SB-05(58'-63')	Total/NA	Solid	D 2216	
320-78376-4	21AKN-SB-105(58'-63')	Total/NA	Solid	D 2216	
320-78376-5	21AKN-SB-05(70'-70.5')	Total/NA	Solid	D 2216	
320-78376-6	21AKN-SB-05(82.8-83.3)	Total/NA	Solid	D 2216	

Job ID: 320-78376-1

Client: Shannon & Wilson, Inc Project/Site: PFAS AKN

Client Sample ID: 21AKN-SB-05(3.1'-3.6')

Date Collected: 08/23/21 13:01 Date Received: 09/01/21 15:56 Lab Sample ID: 320-78376-1

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			522075	09/02/21 11:27	KDB	TAL SAC

Client Sample ID: 21AKN-SB-05(3.1'-3.6')

Date Collected: 08/23/21 13:01 Date Received: 09/01/21 15:56 Lab Sample ID: 320-78376-1 **Matrix: Solid**

Percent Solids: 81.9

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.00 g	10.0 mL	522831	09/06/21 18:24	AM	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			523909	09/10/21 13:54	JY1	TAL SAC

Client Sample ID: 21AKN-SB-05(4.2'-4.7')

Date Collected: 08/23/21 12:55 Date Received: 09/01/21 15:56

Lab Sample ID: 320-78376-2

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		<u> </u>			522075	09/02/21 11:27	KDB	TAL SAC

Client Sample ID: 21AKN-SB-05(4.2'-4.7')

Date Collected: 08/23/21 12:55 Date Received: 09/01/21 15:56

Lab Sample ID: 320-78376-2 **Matrix: Solid**

Lab Sample ID: 320-78376-3

Percent Solids: 82.5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.27 g	10.0 mL	522831	09/06/21 18:24	AM	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			523909	09/10/21 14:21	JY1	TAL SAC

Client Sample ID: 21AKN-SB-05(58'-63')

Date Collected: 08/24/21 10:30

Total/NA

Date Receiv	ved: 09/01/21 1	5:56									
	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	

Client Sample ID: 21AKN-SB-05(58'-63')

D 2216

Analysis

Date Collected: 08/24/21 10:30

Date Received: 09/01/21 15:56

Number	or Analyzed	Analyst	Lab	
522075	09/02/21 11:27	KDB	TAL SAC	

Lab Sample ID: 320-78376-3 Matrix: Solid Percent Solids: 87.3

Lab Sample ID: 320-78376-4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.02 g	10.0 mL	522831	09/06/21 18:24	AM	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			523909	09/10/21 14:30	JY1	TAL SAC

Client Sample ID: 21AKN-SB-105(58'-63')

Date Collected: 08/24/21 10:20

Date Received: 09/01/21 15:56

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			522075	09/02/21 11:27	KDB	TAL SAC

Eurofins TestAmerica, Sacramento

Page 18 of 24

9/15/2021

Matrix: Solid

Job ID: 320-78376-1

Matrix: Solid

Client: Shannon & Wilson, Inc Project/Site: PFAS AKN

Plient Sample ID: 21AKN SR 105/59' 62'\

Client Sample ID: 21AKN-SB-105(58'-63')

Lab Sample ID: 320-78376-4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.44 g	10.0 mL	522831	09/06/21 18:24	AM	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			523909	09/10/21 14:39	JY1	TAL SAC

Client Sample ID: 21AKN-SB-05(70'-70.5') Lab Sample ID: 320-78376-5

Date Collected: 08/27/21 10:30
Date Received: 09/01/21 15:56

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			522075	09/02/21 11:27	KDB	TAL SAC

Client Sample ID: 21AKN-SB-05(70'-70.5')

Lab Sample ID: 320-78376-5

Date Collected: 08/27/21 10:30 Matrix: Solid
Date Received: 09/01/21 15:56 Percent Solids: 88.4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.57 g	10.0 mL	522831	09/06/21 18:24	AM	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			523909	09/10/21 14:48	JY1	TAL SAC

Client Sample ID: 21AKN-SB-05(82.8-83.3)

Lab Sample ID: 320-78376-6

Date Collected: 08/27/21 14:40 Matrix: Solid

Date Received: 09/01/21 15:56

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			522075	09/02/21 11:27	KDB	TAL SAC

Client Sample ID: 21AKN-SB-05(82.8-83.3)

Lab Sample ID: 320-78376-6

Date Collected: 08/27/21 14:40

Date Received: 09/01/21 15:56

Matrix: Solid
Percent Solids: 83.9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.29 g	10.0 mL	522831	09/06/21 18:24	AM	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			523909	09/10/21 14:57	JY1	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

1

5

6

8

10

12

14

1 5

15

Accreditation/Certification Summary

Client: Shannon & Wilson, Inc Job ID: 320-78376-1 Project/Site: PFAS AKN

Laboratory: Eurofins TestAmerica, Sacramento

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pro	ogram	Identification Number	Expiration Date	
Alaska (UST)	Sta	ate	17-020	02-20-24	
The following analytes	s are included in this repo	ort, but the laboratory is r	not certified by the governing authority.	This list may include analytes	for wh
the agency does not d	•	ort, but the laboratory is r	not certified by the governing authority.	This list may include analytes	s for wh
0 ,	•	ort, but the laboratory is r Matrix	not certified by the governing authority. Analyte	This list may include analytes	s for wh
the agency does not o	offer certification.	•	, , ,	This list may include analytes	s for wh

Method Summary

Client: Shannon & Wilson, Inc Project/Site: PFAS AKN Job ID: 320-78376-1

Method	Method Description	Protocol	Laboratory
EPA 537(Mod)	PFAS for QSM 5.3, Table B-15	EPA	TAL SAC
D 2216	Percent Moisture	ASTM	TAL SAC
SHAKE	Shake Extraction with Ultrasonic Bath Extraction	SW846	TAL SAC

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

1

6

8

10

11

12

14

15

Sample Summary

Client: Shannon & Wilson, Inc
Project/Site: PFAS AKN

Job ID: 320-78376-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
320-78376-1	21AKN-SB-05(3.1'-3.6')	Solid	08/23/21 13:01	09/01/21 15:56
320-78376-2	21AKN-SB-05(4.2'-4.7')	Solid	08/23/21 12:55	09/01/21 15:56
320-78376-3	21AKN-SB-05(58'-63')	Solid	08/24/21 10:30	09/01/21 15:56
320-78376-4	21AKN-SB-105(58'-63')	Solid	08/24/21 10:20	09/01/21 15:56
320-78376-5	21AKN-SB-05(70'-70.5')	Solid	08/27/21 10:30	09/01/21 15:56
320-78376-6	21AKN-SB-05(82.8-83.3)	Solid	08/27/21 14:40	09/01/21 15:56

3

4

10

11

12

14

No.

5

7

8

10

11 12

13

14

Client: Shannon & Wilson, Inc

Job Number: 320-78376-1

Login Number: 78376

List Source: Eurofins TestAmerica, Sacramento

List Number: 1 Creator: Her, David A

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	1504549
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Laboratory Data Review Checklist

Completed By:		
Michael Jaramillo		
itle:		
Senior Chemist		
rate:		
09/23/2021		
onsultant Firm:		
Shannon & Wilson, Inc.		
aboratory Name:		
Eurofins / TestAmerica Laboratories, Inc. (TestAmerica)		
aboratory Report Number:		
320-78376-1		
aboratory Report Date:		
9/15/2021		
S Site Name:		
ADOT&PF King Salmon Airport Statewide PFAS		
ADEC File Number:		
2569.38.033		
azard Identification Number:		
26981		

320-78376-1
Laboratory Report Date:
9/15/2021
CS Site Name:
Note: Any N/A or No box checked must have an explanation in the comments box.
1. <u>Laboratory</u>
a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?
Yes \boxtimes No \square N/A \square Comments:
The DEC certified TestAmerica of West Sacramento, CA for the analysis of per- and polyfluorinated alkyl substances (PFAS) on February 11, 2021 by LCMSMS compliant with QSM Version 5.3 Table B-15. These reported analytes were included in the DEC's Contaminated Sites Laboratory Approval 17-020.
b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
Yes \square No \square N/A \boxtimes Comments:
Samples were not transferred to another "network" laboratory or sub-contracted to an alternate laboratory.
2. Chain of Custody (CoC)
a. CoC information completed, signed, and dated (including released/received by)?
Yes \boxtimes No \square N/A \square Comments:
b. Correct analyses requested?
Yes \boxtimes No \square N/A \square Comments:
3. <u>Laboratory Sample Receipt Documentation</u>
a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?
Yes \boxtimes No \square N/A \square Comments:
b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?
Yes \square No \square N/A \boxtimes Comments:
Analysis of PFAS does not require chemical preservation.

320-78376-1	
Laboratory Report Date:	
9/15/2021	
CS Site Name:	
•	en, leaking (Methanol), zero headspace (VOC vials)? ments:
	mples arrived in good condition, and where required, properly
3 1	they documented? For example, incorrect sample erature outside of acceptable range, insufficient or missing
$Yes \square No \square N/A \boxtimes Com$	ments:
There were no discrepancies noted by the	laboratory.
e. Data quality or usability affected?	
Com	ments:
Not applicable, see above.	
4. <u>Case Narrative</u>	
a. Present and understandable?	
Yes⊠ No□ N/A□ Com	ments:
b. Discrepancies, errors, or QC failures Yes⊠ No□ N/A□ Con	identified by the lab?
in the project sample 21AKN-SB-05(3.1 (MSD) associated with this sample and of the analyte has some degree of uncertused to positively identify the analyte.	ass ratio was outside of the established ratio limits for PFOS '-3.6'), and the matrix spike (MS) and matrix spike duplicate preparation batch 320-522831. The qualitative identification rainty with possible high bias. However, analyst judgment was Consequently, the PFOS result in in sample 21AKN-SB-I estimate and hs been flagged 'JH' in the analytical tables.

recommended limit: 21AKN-SB-05(3.1'-3.6'), 21AKN-SB-05(4.2'-4.7'), 21AKN-SB-105(58'-63') and the MS and MSD samples associated with preparation batch 320-522831. Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the samples. See Section 6.c. for details regarding data quality and/or usability, as applicable.

The isotope dilution analyte (IDA) recovery associated with the following samples is below the

Page 3 May 2020

	320-78376-1
Lab	poratory Report Date:
	9/15/2021
CS	Site Name:
	c. Were all corrective actions documented?
	Yes \boxtimes No \square N/A \boxtimes Comments:
	Corrective actions not required.
	d. What is the effect on data quality/usability according to the case narrative?
	Comments:
	Any notable data quality issues mentioned in the case narrative are discussed above in Section 4.b. or elsewhere within this DEC checklist.
5.	Samples Results
	a. Correct analyses performed/reported as requested on COC?
	Yes \boxtimes No \square N/A \square Comments:
	b. All applicable holding times met?
	$Yes \boxtimes No \square N/A \square$ Comments:
	c. All soils reported on a dry weight basis?
	Yes⊠ No□ N/A□ Comments:
	d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?
	$Yes \boxtimes No \square N/A \square$ Comments:
	Analytical sensitivity was evaluated to verify that reporting limits (RLs) met applicable DEC soil cleanup levels for non-detect results, as appropriate. RLs met applicable regulatory levels.
	e. Data quality or usability affected?
	Not applicable, see above

320-78376-1
Laboratory Report Date:
9/15/2021
CS Site Name:
ble Pulle.
5. QC Samples
a. Method Blank
i. One method blank reported per matrix, analysis and 20 samples?
$Yes \boxtimes No \square N/A \square$ Comments:
ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?
Yes⊠ No□ N/A□ Comments:
iii. If above LOQ or project specified objectives, what samples are affected? Comments:
Not applicable, see above.
iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
Yes \square No \square N/A \boxtimes Comments:
See above.
v. Data quality or usability affected? Comments:
Not applicable, see above.
b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 i. Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
Yes□ No⊠ N/A□ Comments:
An LCS was reported for PFAS analysis.
ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
Yes□ No□ N/A⊠ Comments:
Metals and inorganics were not analyzed as part of this work order.

320-78376-1
boratory Report Date:
9/15/2021
S Site Name:
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
$Yes \boxtimes No \square N/A \square$ Comments:
iv. Precision – All relative percent differences (RPD) reported and less than method or laborate limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and o sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laborator QC pages)
Yes⊠ No□ N/A□ Comments:
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
Not applicable, see above.
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
Yes \square No \square N/A \boxtimes Comments:
See above.
vii. Data quality or usability affected? (Use comment box to explain.) Comments:
Not applicable, see above.
 c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project i. Organics – One MS/MSD reported per matrix, analysis and 20 samples? Yes ⋈ No ⋈ N/A ⋈ Comments:
 ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples? Yes□ No□ N/A⊠ Comments:
Metals and/or inorganics were not analyzed as part of this work order.

aboratory Report Date: 9/15/2021 S Site Name: iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? Yes No N/A Comments: iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. Yes No N/A Comments: v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: Not applicable, see above. vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes No N/A Comments: See above. vii. Data quality or usability affected? (Use comment box to explain.) Comments: Not applicable, see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples? Yes No N/A Comments:	32	0-78376-1
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? Yes No N/A Comments: iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. Yes No N/A Comments: v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: Not applicable, see above. vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes No N/A Comments: See above. vii. Data quality or usability affected? (Use comment box to explain.) Comments: Not applicable, see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?	abora	atory Report Date:
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? Yes ☒ No ☐ N/A ☐ Comments: iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. Yes ☒ No ☐ N/A ☐ Comments: v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: Not applicable, see above. vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes ☐ No ☐ N/A ☒ Comments: See above. vii. Data quality or usability affected? (Use comment box to explain.) Comments: Not applicable, see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?	9/1	5/2021
project specified objectives, if applicable? Yes⊠ No□ N/A□ Comments: iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. Yes⊠ No□ N/A□ Comments: v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: Not applicable, see above. vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes□ No□ N/A☒ Comments: See above. vii. Data quality or usability affected? (Use comment box to explain.) Comments: Not applicable, see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?	S Sit	e Name:
 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. Yes ⋈ No ⋈ N/A ⋈ Comments: v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: Not applicable, see above. vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes ⋈ No ⋈ N/A ⋈ Comments: See above. vii. Data quality or usability affected? (Use comment box to explain.) Comments: Not applicable, see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples? 		
limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. Yes No□ N/A□ Comments: v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: Not applicable, see above. vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes□ No□ N/A☒ Comments: See above. vii. Data quality or usability affected? (Use comment box to explain.) Comments: Not applicable, see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?	ı	Yes⊠ No□ N/A□ Comments:
limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. Yes No□ N/A□ Comments: v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: Not applicable, see above. vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes□ No□ N/A☒ Comments: See above. vii. Data quality or usability affected? (Use comment box to explain.) Comments: Not applicable, see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?		
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: Not applicable, see above. vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes□ No□ N/A☒ Comments: See above. vii. Data quality or usability affected? (Use comment box to explain.) Comments: Not applicable, see above. d. Surrogates − Organics Only or Isotope Dilution Analytes (IDA) − Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses − field, QC and laboratory samples?		limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or
Not applicable, see above. vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes□ No□ N/A☒ Comments: See above. vii. Data quality or usability affected? (Use comment box to explain.) Comments: Not applicable, see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?		$Yes \boxtimes No \square N/A \square$ Comments:
Not applicable, see above. vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes□ No□ N/A☒ Comments: See above. vii. Data quality or usability affected? (Use comment box to explain.) Comments: Not applicable, see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?		
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes□ No□ N/A⊠ Comments: See above. vii. Data quality or usability affected? (Use comment box to explain.) Comments: Not applicable, see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?	·	
Yes□ No□ N/A⊠ Comments: See above. vii. Data quality or usability affected? (Use comment box to explain.) Comments: Not applicable, see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?		Not applicable, see above.
Vii. Data quality or usability affected? (Use comment box to explain.) Comments: Not applicable, see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?	,	
vii. Data quality or usability affected? (Use comment box to explain.) Comments: Not applicable, see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?		
 d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples? 		vii. Data quality or usability affected? (Use comment box to explain.)
 i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples? 		Not applicable, see above.
samples?	•	d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only
Yes \boxtimes No \square N/A \square Comments:		
		Yes \boxtimes No \square N/A \square Comments:

320-78376-1	
Laboratory Report Date:	
9/15/2021	
CS Site Name:	
ii. Accuracy – All percent recoveries (%R) reported and within method project specified objectives, if applicable? (AK Petroleum methods samples and 60-120 %R for QC samples; all other analyses see the	s 50-150 %R for field
Yes \square No \boxtimes N/A \square Comments: The IDAs percent recoveries for the following analytes were below the QC	criteria in the noted
samples:	criteria in the noted
 PFTeA - 21AKN-SB-05(3.1'-3.6') and 21AKN-SB-05(4.2'-4.7'): PF the associated project samples, is considered an estimate with no di been flagged 'J' in the analytical tables. PFDoA - 21AKN-SB-05(4.2'-4.7') - PFDoA was not detected in the 	rection of bias, and has
samples, is considered an estimate with no direction of bias, and ha	
 analytical tables. HFPO-DA - 21AKN-SB-05(58'-63') – HFPO-DA was not detected samples, is considered an estimate with no direction of bias, and ha analytical tables. 	
iii. Do the sample results with failed surrogate/IDA recoveries have da flags clearly defined?	ata flags? If so, are the data
Yes \boxtimes No \square N/A \square Comments:	
iv. Data quality or usability affected? Comments:	
See above.	
e. Trip Blanks	
 i. One trip blank reported per matrix, analysis and for each cooler co (If not, enter explanation below.) 	ntaining volatile samples?
Yes \square No \square N/A \boxtimes Comments:	
PFAS are not volatile compounds; therefore, a trip blank is not required.	
ii. Is the cooler used to transport the trip blank and VOA samples clea (If not, a comment explaining why must be entered below)	arly indicated on the COC?
$Yes \square No \square N/A \boxtimes Comments:$	
See above.	

Page 8 May 2020

320-78376-1	
Laboratory Report Date:	
9/15/2021	
CS Site Name:	
iii. All results les	s than LOQ and project specified objectives?
Yes□ No□	$N/A \boxtimes$ Comments:
See above.	
iv. If above LOC	Or project specified objectives, what samples are affected? Comments:
Not applicable, see ab	ove.
v. Data quality of	or usability affected? Comments:
Not applicable, see ab	ove.
f. Field Duplicate	
i. One field dup	licate submitted per matrix, analysis and 10 project samples?
Yes⊠ No□	$N/A\square$ Comments:
ii. Submitted blir	nd to lab?
Yes⊠ No□	
	1AKN-SB-05(58'-63') / 21AKN-SB-105(58'-63') were included with this work
(Recommende	Il relative percent differences (RPD) less than specified project objectives? ed: 30% water, 50% soil) PD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$
	Where $R_1 = $ Sample Concentration $R_2 = $ Field Duplicate Concentration
Yes□ No□	N/A⊠ Comments:
_	could not be calculated due to non-detect results observed in the field duplicate and/or usability were not affected.
iv. Data quality o	or usability affected? (Use the comment box to explain why or why not.) Comments:
See above.	

320-78376-1
Laboratory Report Date:
9/15/2021
CS Site Name:
g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?
$Yes \square No \square N/A \boxtimes Comments:$
Reusable sampling equipment was not used, so an equipment blank was not necessary.
i. All results less than LOQ and project specified objectives?
$Yes \square No \square N/A \boxtimes Comments:$
See above.
ii. If above LOQ or project specified objectives, what samples are affected? Comments:
Not applicable, see above.
iii. Data quality or usability affected? Comments:
Not applicable, see above.
7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
a. Defined and appropriate?
$Yes \square No \square N/A \boxtimes Comments:$
Other flags not required.

Page 10 May 2020

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-78378-1 Client Project/Site: AKN PFAS

For:

Shannon & Wilson, Inc 2355 Hill Rd. Fairbanks, Alaska 99709-5244

Attn: Michael X Jaramillo

Jinda C. Javen

Authorized for release by: 9/15/2021 3:25:48 PM Linda C. Laver, Senior Project Manager (916)374-4362 Linda.Laver@Eurofinset.com

Designee for

David Alltucker, Project Manager I (916)374-4383

David Alltucker@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

4

O

9

11

14

4 /

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS Laboratory Job ID: 320-78378-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Isotope Dilution Summary	11
QC Sample Results	12
QC Association Summary	15
Lab Chronicle	16
Certification Summary	17
Method Summary	18
Sample Summary	19
Chain of Custody	20
Receipt Checklists	21

2

4

8

9

11

16

14

Definitions/Glossary

Client: Shannon & Wilson, Inc Job ID: 320-78378-1

Project/Site: AKN PFAS

Qualifiers

-	_		_
	~	ΝЛ	С
_	L	IVI	

Qualifier	Qualifier Description
*+	LCS and/or LCSD is outside acceptance limits, high biased.
*5-	Isotope dilution analyte is outside acceptance limits, low biased.
В	Compound was found in the blank and sample.
I	Value is EMPC (estimated maximum possible concentration).
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

NC

ND

Not Calculated

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit

, ,
Negative / Absent
Positive / Present
Practical Quantitation Limit
Presumptive
Quality Control
Relative Error Ratio (Radiochemistry)
Reporting Limit or Requested Limit (Radiochemistry)
Relative Percent Difference, a measure of the relative difference between two points
Toxicity Equivalent Factor (Dioxin)
Toxicity Equivalent Quotient (Dioxin)
Too Numerous To Count

Not Detected at the reporting limit (or MDL or EDL if shown)

Case Narrative

Client: Shannon & Wilson, Inc Job ID: 320-78378-1
Project/Site: AKN PFAS

Job ID: 320-78378-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Job Narrative 320-78378-1

Receipt

The samples were received on 9/1/2021 3:56 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.3° C.

LCMS

Method EPA 537(Mod): Some results for samples 21AKN-MW-01 (320-78378-1), 21AKN-MW-101 (320-78378-2) and 21AKN-MW-03 (320-78378-4) were reported from the analysis of a diluted extract due to high concentration of the target analyte in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits.

Method EPA 537(Mod): The Isotope Dilution Analyte (IDA) recovery associated with the following samples are below the method recommended limits: 21AKN-MW-01 (320-78378-1) and 21AKN-MW-02 (320-78378-3). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the samples.

Method EPA 537(Mod): The "I" qualifier means the transition mass ratio for the indicated analyte was outside of the established ratio limit. The qualitative identification of the analyte has some degree of uncertainty, and the reported value may have some high bias. However, analyst judgment was used to positively identify the analyte. 21AKN-MW-02 (320-78378-3)

Method EPA 537(Mod): The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 320-522308 and analytical batch 320-522804 recovered outside control limits for the following analytes: Hexafluoropropylene Oxide Dimer Acid (HFPO-DA). This analyte was biased high in the LCS and LCSD and was not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-522308.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

5

6

1

10

11

13

14

Client: Shannon & Wilson, Inc
Project/Site: AKN PFAS

Job ID: 320-78378-1

Client Sample ID: 21AKN-MW-01

Lab Sample ID: 320-78378-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	70		1.9	0.54	ng/L	1	_	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	34	В	1.9	0.23	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	180	В	1.9	0.79	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	1.9	В	1.9	0.25	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	18	В	1.9	0.19	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS) - DL	380	В	9.3	2.6	ng/L	5		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS) - DL	360	В	9.3	2.5	ng/L	5		EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-MW-101

Lab Sample ID: 320-78378-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	63		1.9	0.56	ng/L		_	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	29	В	1.9	0.24	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	170	В	1.9	0.82	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	1.8	JB	1.9	0.26	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	18	В	1.9	0.19	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS) - DL	370	В	9.6	2.7	ng/L	5		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS) - DL	360	В	9.6	2.6	ng/L	5		EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-MW-02

Lab Sample ID: 320-78378-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Perfluorohexanoic acid (PFHxA)	7.7		1.9	0.54	ng/L	1	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.5	JB	1.9	0.23	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	35	В	1.9	0.80	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	0.87	JIB	1.9	0.25	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	7.3	В	1.9	0.19	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	200	В	1.9	0.53	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	56	В	1.9	0.51	ng/L	1	EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-MW-03

Lab Sample ID: 320-78378-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluoroheptanoic acid (PFHpA)	190	В	1.9	0.24	ng/L	1	_	EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	250	В	1.9	0.80	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	270	В	1.9	0.25	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorodecanoic acid (PFDA)	0.39	JB	1.9	0.29	ng/L	1		EPA 537(Mod)	Total/NA
Perfluoroundecanoic acid (PFUnA)	2.3		1.9	1.0	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanoic acid (PFHxA) - DL	1300		19	5.5	ng/L	10		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS) - DL	390	В	19	1.9	ng/L	10		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS) - DL	2100	В	19	5.4	ng/L	10		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS) - DL	800	В	19	5.1	ng/L	10		EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-EB-03

Lab Sample ID: 320-78378-5

No Detections.

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Sacramento

9/15/2021

Page 5 of 21

2

3

4

6

Q Q

40

11

13

Client: Shannon & Wilson, Inc Job ID: 320-78378-1

Project/Site: AKN PFAS

Date Received: 09/01/21 15:56

Client Sample ID: 21AKN-MW-01

Lab Sample ID: 320-78378-1 Date Collected: 08/25/21 15:08

Matrix: Water

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 Analyte Result Qualifier RL **MDL** Unit Dil Fac Prepared Analyzed Perfluorohexanoic acid (PFHxA) 1.9 0.54 ng/L 09/03/21 04:59 09/06/21 20:17 70 Perfluoroheptanoic acid (PFHpA) 34 B 1.9 0.23 ng/L 09/03/21 04:59 09/06/21 20:17 Perfluorooctanoic acid (PFOA) 180 B 1.9 0.79 ng/L 09/03/21 04:59 09/06/21 20:17 Perfluorononanoic acid (PFNA) 0.25 ng/L 09/03/21 04:59 09/06/21 20:17 В 1.9 1.9 Perfluorodecanoic acid (PFDA) ND 1.9 0.29 ng/L 09/03/21 04:59 09/06/21 20:17 ND Perfluoroundecanoic acid (PFUnA) 1.9 1.0 ng/L 09/03/21 04:59 09/06/21 20:17 Perfluorododecanoic acid (PFDoA) ND 1.9 0.51 ng/L 09/03/21 04:59 09/06/21 20:17 Perfluorotridecanoic acid (PFTriA) ND 1.9 09/03/21 04:59 09/06/21 20:17 1.2 ng/L Perfluorotetradecanoic acid (PFTeA) 09/03/21 04:59 09/06/21 20:17 ND 1.9 0.68 ng/L Perfluorobutanesulfonic acid 18 B 1.9 0.19 ng/L 09/03/21 04:59 09/06/21 20:17 (PFBS) N-methylperfluorooctanesulfonamidoa ND 4.6 09/03/21 04:59 09/06/21 20:17 1.1 ng/L cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac ND 4.6 1.2 ng/L 09/03/21 04:59 09/06/21 20:17 etic acid (NEtFOSAA) ND 0.22 ng/L 09/03/21 04:59 09/06/21 20:17 9-Chlorohexadecafluoro-3-oxanonan 1.9 e-1-sulfonic acid Hexafluoropropylene Oxide Dimer ND *+ 3.7 1.4 ng/L 09/03/21 04:59 09/06/21 20:17 Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaundecan ND 1.9 0.30 ng/L 09/03/21 04:59 09/06/21 20:17 e-1-sulfonic acid 4,8-Dioxa-3H-perfluorononanoic acid ND 1.9 0.37 ng/L 09/03/21 04:59 09/06/21 20:17 (ADONA)

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	66	50 - 150	09/03/21 04:59	09/06/21 20:17	1
13C4 PFHpA	57	50 - 150	09/03/21 04:59	09/06/21 20:17	1
13C4 PFOA	92	50 - 150	09/03/21 04:59	09/06/21 20:17	1
13C5 PFNA	70	50 - 150	09/03/21 04:59	09/06/21 20:17	1
13C2 PFDA	88	50 - 150	09/03/21 04:59	09/06/21 20:17	1
13C2 PFUnA	81	50 - 150	09/03/21 04:59	09/06/21 20:17	1
13C2 PFDoA	93	50 - 150	09/03/21 04:59	09/06/21 20:17	1
13C2 PFTeDA	117	50 - 150	09/03/21 04:59	09/06/21 20:17	1
13C3 PFBS	60	50 - 150	09/03/21 04:59	09/06/21 20:17	1
13C4 PFOS	77	50 - 150	09/03/21 04:59	09/06/21 20:17	1
d3-NMeFOSAA	81	50 - 150	09/03/21 04:59	09/06/21 20:17	1
d5-NEtFOSAA	89	50 - 150	09/03/21 04:59	09/06/21 20:17	1
13C3 HFPO-DA	49 *5-	50 - 150	09/03/21 04:59	09/06/21 20:17	1

Method: EPA 537(Mod) - PFA	S for QSM 5	.3, Table B	-15 - DL						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanesulfonic acid (PFHxS)	380	В	9.3	2.6	ng/L		09/03/21 04:59	09/10/21 23:55	5
Perfluorooctanesulfonic acid (PFOS)	360	В	9.3	2.5	ng/L		09/03/21 04:59	09/10/21 23:55	5
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1802 PFHxS	92		50 - 150				09/03/21 04:59	09/10/21 23:55	5
13C4 PFOS	86		50 - 150				09/03/21 04:59	09/10/21 23:55	5

Page 6 of 21

9/15/2021

Client: Shannon & Wilson, Inc Job ID: 320-78378-1

Project/Site: AKN PFAS

Client Sample ID: 21AKN-MW-101

Lab Sample ID: 320-78378-2 Date Collected: 08/25/21 14:58

Matrix: Water Date Received: 09/01/21 15:56

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	63		1.9	0.56	ng/L		09/03/21 04:59	09/06/21 20:26	
Perfluoroheptanoic acid (PFHpA)	29	В	1.9	0.24	ng/L		09/03/21 04:59	09/06/21 20:26	•
Perfluorooctanoic acid (PFOA)	170	В	1.9	0.82	ng/L		09/03/21 04:59	09/06/21 20:26	•
Perfluorononanoic acid (PFNA)	1.8	JB	1.9	0.26	ng/L		09/03/21 04:59	09/06/21 20:26	
Perfluorodecanoic acid (PFDA)	ND		1.9	0.30	ng/L		09/03/21 04:59	09/06/21 20:26	
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.1	ng/L		09/03/21 04:59	09/06/21 20:26	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.53	ng/L		09/03/21 04:59	09/06/21 20:26	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.2	ng/L		09/03/21 04:59	09/06/21 20:26	•
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.70	ng/L		09/03/21 04:59	09/06/21 20:26	
Perfluorobutanesulfonic acid (PFBS)	18	В	1.9	0.19	ng/L		09/03/21 04:59	09/06/21 20:26	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.8	1.2	ng/L		09/03/21 04:59	09/06/21 20:26	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.8	1.2	ng/L		09/03/21 04:59	09/06/21 20:26	•
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.9	0.23	ng/L		09/03/21 04:59	09/06/21 20:26	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	*+	3.8	1.4	ng/L		09/03/21 04:59	09/06/21 20:26	1
1-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.9	0.31	ng/L		09/03/21 04:59	09/06/21 20:26	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.38	ng/L		09/03/21 04:59	09/06/21 20:26	1
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	68		50 - 150				09/03/21 04:59	09/06/21 20:26	
13C4 PFHpA	59		50 - 150				09/03/21 04:59	09/06/21 20:26	
13C4 PFOA	94		50 - 150				09/03/21 04:59	09/06/21 20:26	
13C5 PFNA	69		50 - 150				09/03/21 04:59	09/06/21 20:26	
13C2 PFDA	90		50 - 150				09/03/21 04:59	09/06/21 20:26	
13C2 PFUnA	77		50 - 150				09/03/21 04:59	09/06/21 20:26	
13C2 PFDoA	98		50 - 150				09/03/21 04:59	09/06/21 20:26	1
13C2 PFTeDA	120		50 - 150				09/03/21 04:59	09/06/21 20:26	1
13C3 PFBS	60		50 - 150				09/03/21 04:59	09/06/21 20:26	
13C4 PFOS	80		50 - 150				09/03/21 04:59	09/06/21 20:26	
d3-NMeFOSAA	90		50 ₋ 150				09/03/21 04:59	09/06/21 20:26	1
d5-NEtFOSAA	94		50 ₋ 150				09/03/21 04:59	09/06/21 20:26	1
13C3 HFPO-DA	53		50 - 150				09/03/21 04:59	09/06/21 20:26	
Method: EPA 537(Mod) - PFAS		•							
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanesulfonic acid (PFHxS)	370	В	9.6	2.7	ng/L		09/03/21 04:59	09/11/21 00:04	5
		D	9.6		na/l			00/11/21 00:04	

Method: EPA 53	87(Mod) - PFAS	for QSM 5	.3, Table B	-15 - DL						
Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanesi (PFHxS)	ulfonic acid	370	В	9.6	2.7	ng/L		09/03/21 04:59	09/11/21 00:04	5
Perfluorooctanesu (PFOS)	ulfonic acid	360	В	9.6	2.6	ng/L		09/03/21 04:59	09/11/21 00:04	5
Isotope Dilution		%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1802 PFHxS		93		50 - 150				09/03/21 04:59	09/11/21 00:04	5
13C4 PFOS		79		50 - 150				09/03/21 04:59	09/11/21 00:04	5

9/15/2021

Page 7 of 21

Client: Shannon & Wilson, Inc Job ID: 320-78378-1

Project/Site: AKN PFAS

Client Sample ID: 21AKN-MW-02 Lab Sample ID: 320-78378-3 Date Collected: 08/25/21 16:18

Matrix: Water

Date Received: 09/01/21 15:56 Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	7.7		1.9	0.54	ng/L		09/03/21 04:59	09/06/21 20:36	1
Perfluoroheptanoic acid (PFHpA)	1.5	JB	1.9	0.23	ng/L		09/03/21 04:59	09/06/21 20:36	1
Perfluorooctanoic acid (PFOA)	35	В	1.9	0.80	ng/L		09/03/21 04:59	09/06/21 20:36	1
Perfluorononanoic acid (PFNA)	0.87	JIB	1.9	0.25	ng/L		09/03/21 04:59	09/06/21 20:36	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.29	ng/L		09/03/21 04:59	09/06/21 20:36	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.0	ng/L		09/03/21 04:59	09/06/21 20:36	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.51	ng/L		09/03/21 04:59	09/06/21 20:36	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.2	ng/L		09/03/21 04:59	09/06/21 20:36	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.68	ng/L		09/03/21 04:59	09/06/21 20:36	1
Perfluorobutanesulfonic acid (PFBS)	7.3	В	1.9	0.19	ng/L		09/03/21 04:59	09/06/21 20:36	1
Perfluorohexanesulfonic acid (PFHxS)	200	В	1.9	0.53	ng/L		09/03/21 04:59	09/06/21 20:36	1
Perfluorooctanesulfonic acid (PFOS)	56	В	1.9	0.51	ng/L		09/03/21 04:59	09/06/21 20:36	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.7	1.1	ng/L		09/03/21 04:59	09/06/21 20:36	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.7	1.2	ng/L		09/03/21 04:59	09/06/21 20:36	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.9	0.22	ng/L		09/03/21 04:59	09/06/21 20:36	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	*+	3.7	1.4	ng/L		09/03/21 04:59	09/06/21 20:36	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.9	0.30	ng/L		09/03/21 04:59	09/06/21 20:36	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.37	ng/L		09/03/21 04:59	09/06/21 20:36	1

Isotope Dilution	%Recovery (Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	61		50 - 150	09/03/21 04:59	09/06/21 20:36	1
13C4 PFHpA	54		50 - 150	09/03/21 04:59	09/06/21 20:36	1
13C4 PFOA	96		50 - 150	09/03/21 04:59	09/06/21 20:36	1
13C5 PFNA	66		50 - 150	09/03/21 04:59	09/06/21 20:36	1
13C2 PFDA	87		50 - 150	09/03/21 04:59	09/06/21 20:36	1
13C2 PFUnA	78		50 - 150	09/03/21 04:59	09/06/21 20:36	1
13C2 PFDoA	98		50 - 150	09/03/21 04:59	09/06/21 20:36	1
13C2 PFTeDA	123		50 - 150	09/03/21 04:59	09/06/21 20:36	1
13C3 PFBS	52		50 - 150	09/03/21 04:59	09/06/21 20:36	1
1802 PFHxS	81		50 - 150	09/03/21 04:59	09/06/21 20:36	1
13C4 PFOS	74		50 - 150	09/03/21 04:59	09/06/21 20:36	1
d3-NMeFOSAA	83		50 - 150	09/03/21 04:59	09/06/21 20:36	1
d5-NEtFOSAA	92		50 - 150	09/03/21 04:59	09/06/21 20:36	1
13C3 HFPO-DA	47 *	*5-	50 - 150	09/03/21 04:59	09/06/21 20:36	1

Client: Shannon & Wilson, Inc Job ID: 320-78378-1

Project/Site: AKN PFAS

Isotope Dilution

13C2 PFHxA

13C3 PFBS

1802 PFHxS

13C4 PFOS

Client Sample ID: 21AKN-MW-03

Lab Sample ID: 320-78378-4 Date Collected: 08/25/21 17:20 **Matrix: Water**

Date Received: 09/01/21 15:56

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid (PFHpA)	190	В	1.9	0.24	ng/L		09/03/21 04:59	09/06/21 20:45	1
Perfluorooctanoic acid (PFOA)	250	В	1.9	0.80	ng/L		09/03/21 04:59	09/06/21 20:45	1
Perfluorononanoic acid (PFNA)	270	В	1.9	0.25	ng/L		09/03/21 04:59	09/06/21 20:45	1
Perfluorodecanoic acid (PFDA)	0.39	JB	1.9	0.29	ng/L		09/03/21 04:59	09/06/21 20:45	1
Perfluoroundecanoic acid (PFUnA)	2.3		1.9	1.0	ng/L		09/03/21 04:59	09/06/21 20:45	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.52	ng/L		09/03/21 04:59	09/06/21 20:45	•
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.2	ng/L		09/03/21 04:59	09/06/21 20:45	
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.69	ng/L		09/03/21 04:59	09/06/21 20:45	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.7	1.1	ng/L		09/03/21 04:59	09/06/21 20:45	,
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.7	1.2	ng/L		09/03/21 04:59	09/06/21 20:45	,
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.9	0.23	ng/L		09/03/21 04:59	09/06/21 20:45	•
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	*+	3.8	1.4	ng/L		09/03/21 04:59	09/06/21 20:45	•
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.9	0.30	ng/L		09/03/21 04:59	09/06/21 20:45	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.38	ng/L		09/03/21 04:59	09/06/21 20:45	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	69		50 - 150				09/03/21 04:59	09/06/21 20:45	•
13C4 PFHpA	53		50 - 150				09/03/21 04:59	09/06/21 20:45	
13C4 PFOA	92		50 - 150				09/03/21 04:59	09/06/21 20:45	
13C5 PFNA	71		50 - 150				09/03/21 04:59	09/06/21 20:45	
13C2 PFDA	92		50 - 150				09/03/21 04:59	09/06/21 20:45	
13C2 PFUnA	92		50 ₋ 150				09/03/21 04:59	09/06/21 20:45	
•	92		00 - 700						
	114		50 - 150				09/03/21 04:59	09/06/21 20:45	
13C2 PFDoA								09/06/21 20:45 09/06/21 20:45	
13C2 PFDoA 13C2 PFTeDA	114		50 - 150				09/03/21 04:59		
13C2 PFDoA 13C2 PFTeDA 13C4 PFOS	114 137		50 - 150 50 - 150				09/03/21 04:59 09/03/21 04:59	09/06/21 20:45	
13C2 PFDoA 13C2 PFTeDA 13C4 PFOS d3-NMeFOSAA	114 137 79		50 - 150 50 - 150 50 - 150				09/03/21 04:59 09/03/21 04:59 09/03/21 04:59	09/06/21 20:45 09/06/21 20:45	
13C2 PFDoA 13C2 PFTeDA 13C4 PFOS d3-NMeFOSAA d5-NEtFOSAA	114 137 79 91		50 - 150 50 - 150 50 - 150 50 - 150				09/03/21 04:59 09/03/21 04:59 09/03/21 04:59 09/03/21 04:59	09/06/21 20:45 09/06/21 20:45 09/06/21 20:45	
13C2 PFDoA 13C2 PFTeDA 13C4 PFOS d3-NMeFOSAA d5-NEtFOSAA 13C3 HFPO-DA	114 137 79 91 99 64		50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150				09/03/21 04:59 09/03/21 04:59 09/03/21 04:59 09/03/21 04:59	09/06/21 20:45 09/06/21 20:45 09/06/21 20:45 09/06/21 20:45	
13C2 PFDoA 13C2 PFTeDA 13C4 PFOS d3-NMeFOSAA d5-NEtFOSAA 13C3 HFPO-DA Method: EPA 537(Mod) - PFAS	114 137 79 91 99 64		50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150	MDL	Unit	D	09/03/21 04:59 09/03/21 04:59 09/03/21 04:59 09/03/21 04:59	09/06/21 20:45 09/06/21 20:45 09/06/21 20:45 09/06/21 20:45	Dil Fa
13C2 PFDoA 13C2 PFTeDA 13C4 PFOS d3-NMeFOSAA d5-NEtFOSAA 13C3 HFPO-DA Method: EPA 537(Mod) - PFAS Analyte	114 137 79 91 99 64	.3, Table B	50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150		Unit	<u>D</u>	09/03/21 04:59 09/03/21 04:59 09/03/21 04:59 09/03/21 04:59 09/03/21 04:59	09/06/21 20:45 09/06/21 20:45 09/06/21 20:45 09/06/21 20:45 09/06/21 20:45	
13C2 PFDoA 13C2 PFTeDA 13C4 PFOS d3-NMeFOSAA d5-NEtFOSAA 13C3 HFPO-DA Method: EPA 537(Mod) - PFAS Analyte Perfluorohexanoic acid (PFHxA) Perfluorobutanesulfonic acid	114 137 79 91 99 64 S for QSM 5 Result	.3, Table B Qualifier	50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 -15 - DL RL	5.5		<u>D</u>	09/03/21 04:59 09/03/21 04:59 09/03/21 04:59 09/03/21 04:59 09/03/21 04:59 Prepared 09/03/21 04:59	09/06/21 20:45 09/06/21 20:45 09/06/21 20:45 09/06/21 20:45 09/06/21 20:45 Analyzed	Dil Fa
13C2 PFDoA 13C2 PFTDA 13C2 PFTEDA 13C4 PFOS d3-NMEFOSAA d5-NEtFOSAA 13C3 HFPO-DA Method: EPA 537(Mod) - PFAS Analyte Perfluorohexanoic acid (PFHxA) Perfluorobutanesulfonic acid (PFBS) Perfluorohexanesulfonic acid (PFHxS)	114 137 79 91 99 64 S for QSM 5 Result 1300	.3, Table B Qualifier B	50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 -15 - DL RL 19	5.5 1.9	ng/L	<u>D</u>	09/03/21 04:59 09/03/21 04:59 09/03/21 04:59 09/03/21 04:59 09/03/21 04:59 Prepared 09/03/21 04:59 09/03/21 04:59	09/06/21 20:45 09/06/21 20:45 09/06/21 20:45 09/06/21 20:45 09/06/21 20:45 Analyzed 09/11/21 00:14	Dil Fa

Analyzed

Prepared

09/03/21 04:59 09/11/21 00:14

09/03/21 04:59 09/11/21 00:14

09/03/21 04:59 09/11/21 00:14

09/03/21 04:59 09/11/21 00:14

Limits

50 - 150

50 - 150

50 - 150

50 - 150

%Recovery Qualifier

90

80

97

78

Dil Fac

10

10

10

Client: Shannon & Wilson, Inc Job ID: 320-78378-1

Project/Site: AKN PFAS

Date Received: 09/01/21 15:56

Client Sample ID: 21AKN-EB-03 Lab Sample ID: 320-78378-5 Date Collected: 08/25/21 18:00

Matrix: Water

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 Analyte Result Qualifier RL **MDL** Unit Dil Fac Prepared Analyzed Perfluorohexanoic acid (PFHxA) ND 1.9 0.54 ng/L 09/03/21 04:59 09/06/21 20:55 Perfluoroheptanoic acid (PFHpA) ND 09/03/21 04:59 09/06/21 20:55 1.9 0.23 ng/L Perfluorooctanoic acid (PFOA) ND 1.9 0.79 ng/L 09/03/21 04:59 09/06/21 20:55 Perfluorononanoic acid (PFNA) ND 0.25 ng/L 09/03/21 04:59 09/06/21 20:55 1.9 Perfluorodecanoic acid (PFDA) ND 1.9 0.29 ng/L 09/03/21 04:59 09/06/21 20:55 Perfluoroundecanoic acid (PFUnA) ND 1.9 1.0 ng/L 09/03/21 04:59 09/06/21 20:55 Perfluorododecanoic acid (PFDoA) ND 1.9 0.51 ng/L 09/03/21 04:59 09/06/21 20:55 Perfluorotridecanoic acid (PFTriA) ND 1.9 09/03/21 04:59 09/06/21 20:55 1.2 ng/L Perfluorotetradecanoic acid (PFTeA) ND 1.9 0.68 ng/L 09/03/21 04:59 09/06/21 20:55 Perfluorobutanesulfonic acid (PFBS) ND 1.9 0.19 ng/L 09/03/21 04:59 09/06/21 20:55 Perfluorohexanesulfonic acid (PFHxS) ND 1.9 0.53 ng/L 09/03/21 04:59 09/06/21 20:55 Perfluorooctanesulfonic acid (PFOS) ND 1.9 0.50 ng/L 09/03/21 04:59 09/06/21 20:55 N-methylperfluorooctanesulfonamidoa ND 4.6 1.1 ng/L 09/03/21 04:59 09/06/21 20:55 cetic acid (NMeFOSAA) 09/03/21 04:59 09/06/21 20:55 ND N-ethylperfluorooctanesulfonamidoac 4.6 1.2 ng/L etic acid (NEtFOSAA) 9-Chlorohexadecafluoro-3-oxanonan ND 1.9 0.22 ng/L 09/03/21 04:59 09/06/21 20:55 e-1-sulfonic acid ND *+ 3.7 1.4 ng/L 09/03/21 04:59 09/06/21 20:55 Hexafluoropropylene Oxide Dimer Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaundecan ND 1.9 0.30 ng/L 09/03/21 04:59 09/06/21 20:55 e-1-sulfonic acid ND 09/03/21 04:59 09/06/21 20:55 4,8-Dioxa-3H-perfluorononanoic acid 1.9 0.37 ng/L (ADONA)

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	84	50 - 150	09/03/21 04:59	9/06/21 20:55	1
13C4 PFHpA	84	50 - 150	09/03/21 04:59 09	9/06/21 20:55	1
13C4 PFOA	94	50 - 150	09/03/21 04:59 09	9/06/21 20:55	1
13C5 PFNA	82	50 - 150	09/03/21 04:59 09	9/06/21 20:55	1
13C2 PFDA	89	50 - 150	09/03/21 04:59 09	9/06/21 20:55	1
13C2 PFUnA	86	50 - 150	09/03/21 04:59 09	9/06/21 20:55	1
13C2 PFDoA	89	50 - 150	09/03/21 04:59 09	9/06/21 20:55	1
13C2 PFTeDA	105	50 - 150	09/03/21 04:59 09	9/06/21 20:55	1
13C3 PFBS	83	50 - 150	09/03/21 04:59 09	9/06/21 20:55	1
1802 PFHxS	95	50 - 150	09/03/21 04:59 09	9/06/21 20:55	1
13C4 PFOS	82	50 - 150	09/03/21 04:59 09	9/06/21 20:55	1
d3-NMeFOSAA	87	50 - 150	09/03/21 04:59 09	9/06/21 20:55	1
d5-NEtFOSAA	100	50 - 150	09/03/21 04:59 09	9/06/21 20:55	1
13C3 HFPO-DA	74	50 ₋ 150	09/03/21 04:59 09	9/06/21 20:55	1

Isotope Dilution Summary

Client: Shannon & Wilson, Inc Job ID: 320-78378-1 Project/Site: AKN PFAS

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Matrix: Water Prep Type: Total/NA

_			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PFHxA	C4PFHA	PFOA	PFNA	PFDA	PFUnA	PFDoA	PFTDA
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)
320-78378-1	21AKN-MW-01	66	57	92	70	88	81	93	117
320-78378-1 - DL	21AKN-MW-01								
320-78378-2	21AKN-MW-101	68	59	94	69	90	77	98	120
320-78378-2 - DL	21AKN-MW-101								
320-78378-3	21AKN-MW-02	61	54	96	66	87	78	98	123
320-78378-4	21AKN-MW-03	69	53	92	71	92	92	114	137
320-78378-4 - DL	21AKN-MW-03	90							
320-78378-5	21AKN-EB-03	84	84	94	82	89	86	89	105
LCS 320-522308/2-A	Lab Control Sample	83	83	92	83	86	82	91	96
LCSD 320-522308/3-A	Lab Control Sample Dup	77	87	92	76	89	81	91	101
MB 320-522308/1-A	Method Blank	84	90	94	79	89	85	95	102
			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		C3PFBS	PFHxS	PFOS	d3NMFOS	d5NEFOS	HFPODA		
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)		
320-78378-1	21AKN-MW-01	60		77	81	89	49 *5-		
320-78378-1 - DL	21AKN-MW-01		92	86					
320-78378-2	21AKN-MW-101	60		80	90	94	53		
320-78378-2 - DL	21AKN-MW-101		93	79					
320-78378-3	21AKN-MW-02	52	81	74	83	92	47 *5-		
320-78378-4	21AKN-MW-03			79	91	99	64		
320-78378-4 - DL	21AKN-MW-03	80	97	78					
320-78378-5	21AKN-EB-03	83	95	82	87	100	74		
LCS 320-522308/2-A	Lab Control Sample	81	94	81	94	98	66		
LCSD 320-522308/3-A	Lab Control Sample Dup	77	93	79	92	99	66		
MB 320-522308/1-A	Method Blank	73	91	86	93	104	72		

Surrogate Legend

PFHxA = 13C2 PFHxA

C4PFHA = 13C4 PFHpA

PFOA = 13C4 PFOA

PFNA = 13C5 PFNA

PFDA = 13C2 PFDA

PFUnA = 13C2 PFUnA

PFDoA = 13C2 PFDoA

PFTDA = 13C2 PFTeDA C3PFBS = 13C3 PFBS

PFHxS = 18O2 PFHxS

PFOS = 13C4 PFOS

d3NMFOS = d3-NMeFOSAA

d5NEFOS = d5-NEtFOSAA

HFPODA = 13C3 HFPO-DA

Eurofins TestAmerica, Sacramento

Client: Shannon & Wilson, Inc Job ID: 320-78378-1 Project/Site: AKN PFAS

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Lab Sample ID: MB 320-522308/1-A

Matrix: Water

Analysis Batch: 522804

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 522308

•	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.58	ng/L		09/03/21 04:59	09/06/21 19:49	1
Perfluoroheptanoic acid (PFHpA)	0.582	J	2.0	0.25	ng/L		09/03/21 04:59	09/06/21 19:49	1
Perfluorooctanoic acid (PFOA)	0.888	J	2.0	0.85	ng/L		09/03/21 04:59	09/06/21 19:49	1
Perfluorononanoic acid (PFNA)	0.665	J	2.0	0.27	ng/L		09/03/21 04:59	09/06/21 19:49	1
Perfluorodecanoic acid (PFDA)	0.599	J	2.0	0.31	ng/L		09/03/21 04:59	09/06/21 19:49	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		09/03/21 04:59	09/06/21 19:49	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55	ng/L		09/03/21 04:59	09/06/21 19:49	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		09/03/21 04:59	09/06/21 19:49	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.73	ng/L		09/03/21 04:59	09/06/21 19:49	1
Perfluorobutanesulfonic acid (PFBS)	0.542	J	2.0	0.20	ng/L		09/03/21 04:59	09/06/21 19:49	1
Perfluorohexanesulfonic acid (PFHxS)	0.835	J	2.0	0.57	ng/L		09/03/21 04:59	09/06/21 19:49	1
Perfluorooctanesulfonic acid (PFOS)	0.890	J	2.0	0.54	ng/L		09/03/21 04:59	09/06/21 19:49	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		5.0	1.2	ng/L		09/03/21 04:59	09/06/21 19:49	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		5.0	1.3	ng/L		09/03/21 04:59	09/06/21 19:49	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	0.578	J	2.0	0.24	ng/L		09/03/21 04:59	09/06/21 19:49	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		4.0	1.5	ng/L		09/03/21 04:59	09/06/21 19:49	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	0.543	J	2.0	0.32	ng/L		09/03/21 04:59	09/06/21 19:49	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	0.556	J	2.0	0.40	ng/L		09/03/21 04:59	09/06/21 19:49	1

MD MD

	INIB	MB				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	84		50 - 150	09/03/21 04:59	09/06/21 19:49	1
13C4 PFHpA	90		50 - 150	09/03/21 04:59	09/06/21 19:49	1
13C4 PFOA	94		50 - 150	09/03/21 04:59	09/06/21 19:49	1
13C5 PFNA	79		50 - 150	09/03/21 04:59	09/06/21 19:49	1
13C2 PFDA	89		50 - 150	09/03/21 04:59	09/06/21 19:49	1
13C2 PFUnA	85		50 - 150	09/03/21 04:59	09/06/21 19:49	1
13C2 PFDoA	95		50 - 150	09/03/21 04:59	09/06/21 19:49	1
13C2 PFTeDA	102		50 - 150	09/03/21 04:59	09/06/21 19:49	1
13C3 PFBS	73		50 - 150	09/03/21 04:59	09/06/21 19:49	1
1802 PFHxS	91		50 - 150	09/03/21 04:59	09/06/21 19:49	1
13C4 PFOS	86		50 - 150	09/03/21 04:59	09/06/21 19:49	1
d3-NMeFOSAA	93		50 - 150	09/03/21 04:59	09/06/21 19:49	1
d5-NEtFOSAA	104		50 - 150	09/03/21 04:59	09/06/21 19:49	1
13C3 HFPO-DA	72		50 - 150	09/03/21 04:59	09/06/21 19:49	1

Lab Sample ID: LCS 320-522308/2-A

Matrix: Water

Analysis Batch: 522804

Client Sample ID	: Lab Control Sample
	Prep Type: Total/NA

Prep Batch: 522308

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorohexanoic acid (PFHxA)	40.0	38.5		ng/L		96	72 - 129	
Perfluoroheptanoic acid (PFHpA)	40.0	41.7		ng/L		104	72 - 130	
Perfluorooctanoic acid (PFOA)	40.0	40.0		ng/L		100	71 - 133	
Perfluorononanoic acid (PFNA)	40.0	43.8		ng/L		110	69 - 130	

Eurofins TestAmerica, Sacramento

Page 12 of 21

Client: Shannon & Wilson, Inc Job ID: 320-78378-1 Project/Site: AKN PFAS

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCS 320-522308/2-A

Matrix: Water

Analysis Batch: 522804

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 522308

	Spike	LCS LC	S		%Rec.	
Analyte	Added	Result Qu	alifier Unit	D %Rec	Limits	
Perfluorodecanoic acid (PFDA)	40.0	39.1	ng/L	98	71 - 129	
Perfluoroundecanoic acid	40.0	44.8	ng/L	112	69 - 133	
(PFUnA)						
Perfluorododecanoic acid	40.0	42.7	ng/L	107	72 - 134	
(PFDoA)						
Perfluorotridecanoic acid	40.0	43.2	ng/L	108	65 - 144	
(PFTriA)						
Perfluorotetradecanoic acid	40.0	42.4	ng/L	106	71 - 132	
(PFTeA)						
Perfluorobutanesulfonic acid	35.4	36.3	ng/L	103	72 - 130	
(PFBS)						
Perfluorohexanesulfonic acid	36.4	36.0	ng/L	99	68 - 131	
(PFHxS)	07.4	40.0		100	05 440	
Perfluorooctanesulfonic acid	37.1	40.2	ng/L	108	65 - 140	
(PFOS)	40.0	40.0		404		
N-methylperfluorooctanesulfona	40.0	40.2	ng/L	101	65 - 136	
midoacetic acid (NMeFOSAA)	40.0	42.0	ng/l	105	61 - 135	
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	40.0	42.0	ng/L	105	01-133	
9-Chlorohexadecafluoro-3-oxan	37.3	39.1	ng/L	105	77 - 137	
onane-1-sulfonic acid	37.3	39.1	Hg/L	103	77 - 137	
Hexafluoropropylene Oxide	40.0	55.9 *+	ng/L	140	72 - 132	
Dimer Acid (HFPO-DA)	40.0	00.0	ng/L	140	72-102	
11-Chloroeicosafluoro-3-oxaund	37.7	42.8	ng/L	114	76 - 136	
ecane-1-sulfonic acid						
4,8-Dioxa-3H-perfluorononanoic	37.7	43.5	ng/L	116	81 - 141	
acid (ADONA)			J			
` ,	108					

LCS LCS

	LUJ	LUS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C2 PFHxA	83		50 - 150
13C4 PFHpA	83		50 - 150
13C4 PFOA	92		50 - 150
13C5 PFNA	83		50 - 150
13C2 PFDA	86		50 - 150
13C2 PFUnA	82		50 - 150
13C2 PFDoA	91		50 - 150
13C2 PFTeDA	96		50 - 150
13C3 PFBS	81		50 - 150
1802 PFHxS	94		50 - 150
13C4 PFOS	81		50 - 150
d3-NMeFOSAA	94		50 - 150
d5-NEtFOSAA	98		50 - 150
13C3 HFPO-DA	66		50 - 150

Lab Sample ID: LCSD 320-522308/3-A

Matrix: Water

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 522308

Analysis Batch: 522804 Spike LCSD LCSD %Rec. **RPD** Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Perfluorohexanoic acid (PFHxA) 40.0 40.7 102 72 - 129 6 30 ng/L Perfluoroheptanoic acid (PFHpA) 40.0 39.8 ng/L 99 72 - 130 5 30 Perfluorooctanoic acid (PFOA) 40.0 40.8 ng/L 102 71 - 133 2 30

Eurofins TestAmerica, Sacramento

Page 13 of 21

QC Sample Results

Client: Shannon & Wilson, Inc Job ID: 320-78378-1 Project/Site: AKN PFAS

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCSD 320-522308/3-A

Matrix: Water

acid (ADONA)

Analysis Batch: 522804

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 522308

Analysis Batch: 522804							Prep Ba	atch: 52	22308
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorononanoic acid (PFNA)	40.0	46.7		ng/L		117	69 - 130	6	30
Perfluorodecanoic acid (PFDA)	40.0	38.3		ng/L		96	71 - 129	2	30
Perfluoroundecanoic acid	40.0	44.1		ng/L		110	69 - 133	2	30
(PFUnA)				-					
Perfluorododecanoic acid	40.0	40.0		ng/L		100	72 - 134	6	30
(PFDoA)									
Perfluorotridecanoic acid	40.0	44.7		ng/L		112	65 - 144	3	30
(PFTriA)									
Perfluorotetradecanoic acid	40.0	43.1		ng/L		108	71 - 132	1	30
(PFTeA)									
Perfluorobutanesulfonic acid	35.4	36.4		ng/L		103	72 - 130	0	30
(PFBS)									
Perfluorohexanesulfonic acid	36.4	36.6		ng/L		100	68 - 131	1	30
(PFHxS)	07.4	40.0				440	05 440		
Perfluorooctanesulfonic acid	37.1	42.0		ng/L		113	65 - 140	4	30
(PFOS)	40.0	41.9				105	65 - 136		30
N-methylperfluorooctanesulfona	40.0	41.9		ng/L		105	00 - 130	4	30
midoacetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonami	40.0	40.9		ng/L		102	61 - 135	3	30
doacetic acid (NEtFOSAA)	40.0	40.5		TIG/L		102	01-100	3	30
9-Chlorohexadecafluoro-3-oxan	37.3	40.1		ng/L		108	77 - 137	2	30
onane-1-sulfonic acid	01.0	10.1		119/12		100	77-107	_	00
Hexafluoropropylene Oxide	40.0	53.2	*+	ng/L		133	72 - 132	5	30
Dimer Acid (HFPO-DA)				3					
11-Chloroeicosafluoro-3-oxaund	37.7	43.5		ng/L		116	76 - 136	2	30
ecane-1-sulfonic acid				J					
4,8-Dioxa-3H-perfluorononanoic	37.7	42.7		ng/L		113	81 - 141	2	30

LCSD LCSD

	LCSD	LUSD	
Isotope Dilution	%Recovery	Qualifier	Limits
13C2 PFHxA			50 - 150
13C4 PFHpA	87		50 - 150
13C4 PFOA	92		50 - 150
13C5 PFNA	76		50 - 150
13C2 PFDA	89		50 - 150
13C2 PFUnA	81		50 - 150
13C2 PFDoA	91		50 - 150
13C2 PFTeDA	101		50 - 150
13C3 PFBS	77		50 - 150
18O2 PFHxS	93		50 - 150
13C4 PFOS	79		50 - 150
d3-NMeFOSAA	92		50 - 150
d5-NEtFOSAA	99		50 - 150
13C3 HFPO-DA	66		50 - 150

QC Association Summary

Client: Shannon & Wilson, Inc
Project/Site: AKN PFAS

Job ID: 320-78378-1

LCMS

Prep Batch: 522308

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-78378-1 - DL	21AKN-MW-01	Total/NA	Water	3535	
320-78378-1	21AKN-MW-01	Total/NA	Water	3535	
320-78378-2	21AKN-MW-101	Total/NA	Water	3535	
320-78378-2 - DL	21AKN-MW-101	Total/NA	Water	3535	
320-78378-3	21AKN-MW-02	Total/NA	Water	3535	
320-78378-4	21AKN-MW-03	Total/NA	Water	3535	
320-78378-4 - DL	21AKN-MW-03	Total/NA	Water	3535	
320-78378-5	21AKN-EB-03	Total/NA	Water	3535	
MB 320-522308/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-522308/2-A	Lab Control Sample	Total/NA	Water	3535	
LCSD 320-522308/3-A	Lab Control Sample Dup	Total/NA	Water	3535	

Analysis Batch: 522804

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-78378-1	21AKN-MW-01	Total/NA	Water	EPA 537(Mod)	522308
320-78378-2	21AKN-MW-101	Total/NA	Water	EPA 537(Mod)	522308
320-78378-3	21AKN-MW-02	Total/NA	Water	EPA 537(Mod)	522308
320-78378-4	21AKN-MW-03	Total/NA	Water	EPA 537(Mod)	522308
320-78378-5	21AKN-EB-03	Total/NA	Water	EPA 537(Mod)	522308
MB 320-522308/1-A	Method Blank	Total/NA	Water	EPA 537(Mod)	522308
LCS 320-522308/2-A	Lab Control Sample	Total/NA	Water	EPA 537(Mod)	522308
LCSD 320-522308/3-A	Lab Control Sample Dup	Total/NA	Water	EPA 537(Mod)	522308

Analysis Batch: 524180

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-78378-1 - DL	21AKN-MW-01	Total/NA	Water	EPA 537(Mod)	522308
320-78378-2 - DL	21AKN-MW-101	Total/NA	Water	EPA 537(Mod)	522308
320-78378-4 - DL	21AKN-MW-03	Total/NA	Water	EPA 537(Mod)	522308

3

4

O

8

9

10

13

14

Client Sample ID: 21AKN-MW-01

Date Collected: 08/25/21 15:08 Date Received: 09/01/21 15:56

Lab Sample ID: 320-78378-1

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			270.2 mL	10.0 mL	522308	09/03/21 04:59	HK	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			522804	09/06/21 20:17	RS1	TAL SAC
Total/NA	Prep	3535	DL		270.2 mL	10.0 mL	522308	09/03/21 04:59	HK	TAL SAC
Total/NA	Analysis	EPA 537(Mod)	DL	5			524180	09/10/21 23:55	K1S	TAL SAC

Client Sample ID: 21AKN-MW-101

Date Collected: 08/25/21 14:58 Date Received: 09/01/21 15:56

Lab Sample ID: 320-78378-2 **Matrix: Water**

Batch Batch Dil Initial Batch Final Prepared Method **Prep Type** Type **Factor Amount** Amount Number or Analyzed Analyst Run Lab Total/NA Prep 3535 260.6 mL 10.0 mL 522308 09/03/21 04:59 HK TAL SAC Total/NA TAL SAC Analysis EPA 537(Mod) 522804 09/06/21 20:26 RS1 1 Total/NA Prep 3535 DL 260.6 mL 10.0 mL 522308 09/03/21 04:59 HK TAL SAC Total/NA 524180 Analysis EPA 537(Mod) DL 5 09/11/21 00:04 K1S TAL SAC

Client Sample ID: 21AKN-MW-02

Date Collected: 08/25/21 16:18

Date Received: 09/01/21 15:56

Lab Sample ID: 320-78378-3 **Matrix: Water**

Lab Sample ID: 320-78378-4

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			267.2 mL	10.0 mL	522308	09/03/21 04:59	HK	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			522804	09/06/21 20:36	RS1	TAL SAC

Client Sample ID: 21AKN-MW-03

Date Collected: 08/25/21 17:20

Date Received: 09/01/21 15:56

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			265.7 mL	10.0 mL	522308	09/03/21 04:59	HK	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			522804	09/06/21 20:45	RS1	TAL SAC
Total/NA	Prep	3535	DL		265.7 mL	10.0 mL	522308	09/03/21 04:59	HK	TAL SAC
Total/NIA	Analysis	EDA 527/Mod	DI	10			E24100	00/11/21 00:14	V10	TALCAC

Date Received: 09/01/21 15:56

1010171171		0000			 	02200	00/00/21 01100			
Total/NA	Analysis	EPA 537(Mod)	DL	10		524180	09/11/21 00:14	K1S	TAL SAC	
Client Sampl	e ID: 21A	KN-EB-03				L	ab Sample	ID: 320)-78378-5	
Date Collected:	08/25/21 1	8:00						Ma	atrix: Water	

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			270.1 mL	10.0 mL	522308	09/03/21 04:59	HK	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			522804	09/06/21 20:55	RS1	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Accreditation/Certification Summary

Client: Shannon & Wilson, Inc Job ID: 320-78378-1

Project/Site: AKN PFAS

Laboratory: Eurofins TestAmerica, Sacramento

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	17-020	02-20-24

3

4

_

7

10

4 E

Method Summary

Client: Shannon & Wilson, Inc Project/Site: AKN PFAS

Job ID: 320-78378-1

Method	Method Description	Protocol	Laboratory
EPA 537(Mod)	PFAS for QSM 5.3, Table B-15	EPA	TAL SAC
3535	Solid-Phase Extraction (SPE)	SW846	TAL SAC

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

3

4

6

0

9

11

12

14

Sample Summary

Client: Shannon & Wilson, Inc
Project/Site: AKN PFAS

Job ID: 320-78378-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
320-78378-1	21AKN-MW-01	Water	08/25/21 15:08	09/01/21 15:56
320-78378-2	21AKN-MW-101	Water	08/25/21 14:58	09/01/21 15:56
320-78378-3	21AKN-MW-02	Water	08/25/21 16:18	09/01/21 15:56
320-78378-4	21AKN-MW-03	Water	08/25/21 17:20	09/01/21 15:56
320-78378-5	21AKN-FR-03	Water	08/25/21 18:00	09/01/21 15:56

g

No.

5

7

8

9

11

12 13

14

Client: Shannon & Wilson, Inc

Job Number: 320-78378-1

Login Number: 78378

List Source: Eurofins TestAmerica, Sacramento

List Number: 1 Creator: Her, David A

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td>•</td>	True	•
The cooler's custody seal, if present, is intact.	True	1504549
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Laboratory Data Review Checklist

Completed By:
Michael Jaramillo
ïtle:
Senior Chemist
Pate:
September 28, 2021
Consultant Firm:
Shannon & Wilson, Inc.
aboratory Name:
Eurofins / TestAmerica Laboratories, Inc. (TestAmerica)
aboratory Report Number:
320-78378-1
aboratory Report Date:
September 15, 2021
CS Site Name:
ADOT&PF King Salmon Airport Statewide PFAS
ADEC File Number:
2569.38.033
lazard Identification Number:
26981

	320-78378-1						
Lal	boratory Report Date:						
	September 15, 2021						
CS	Site Name:						
	ADOT&PF King Salmon Airport Statewide PFAS						
	Note: Any N/A or No box checked must have an explanation in the comments box.						
1.	Laboratory						
	a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?						
	Yes \boxtimes No \square N/A \square Comments:						
	The DEC certified TestAmerica of West Sacramento, CA for the analysis of per- and polyfluorinated alkyl substances (PFAS) on February 11, 2021 by LCMSMS compliant with QSM Version 5.3 Table B-15. These reported analytes were included in the DEC's Contaminated Sites Laboratory Approval 17-020.						
	b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?						
	$Yes \square No \square N/A \boxtimes Comments:$						
	The samples were not transferred to another "network" laboratory or sub-contracted to an alternate laboratory						
2. Chain of Custody (CoC)							
	a. CoC information completed, signed, and dated (including released/received by)?						
	$Yes \boxtimes No \square N/A \square$ Comments:						
	b. Correct analyses requested?						
	Yes⊠ No□ N/A□ Comments:						
3.	Laboratory Sample Receipt Documentation						
	a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?						
	$Yes \boxtimes No \square N/A \square$ Comments:						
b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTE Volatile Chlorinated Solvents, etc.)?							
	$Yes \boxtimes No \square N/A \square$ Comments:						

320-78378-1			
Laboratory Report Date:			
September 15, 2021			
CS Site Name:			
ADOT&PF King Salmon Airport Statewide PFAS			
 c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)? Yes⊠ No□ N/A□ Comments: 			
The sample receipt form notes that the samples arrived in good condition, and where required, properly preserved and on ice were received in good condition.			
d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?			
Yes \square No \square N/A \boxtimes Comments:			
No discrepancies identified, therefore no documentation needed.			
e. Data quality or usability affected?			
Comments:			
Not applicable, see above.			
4. <u>Case Narrative</u>			
a. Present and understandable?			
Yes \boxtimes No \square N/A \square Comments:			
1 es 🖂 1 NO 🗀 1 N/A 🗀 Comments.			
b. Discrepancies, errors, or QC failures identified by the lab?			
Yes \boxtimes No \square N/A \square Comments:			
Some results for samples 21AKN-MW-01, 21AKN-MW-101, and 21AKN-MW-02 were reported from the analysis of a diluted extract due to high concentration of the target analyte in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits. Data quality and/or usability not affected.			
The isotope dilution analyte (IDA) recoveries associated with the following samples are below the method recommended limit: 21AKN-MW-01 and 21AKN-MW-02. Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA			

in the sample. See Section 6.c. for details regarding data quality and/or usability, as applicable.

The "I" qualifier means the transition mass ratio for the indicated analyte was outside of the established ratio limit for PFNA in sample *21AKN-MW-02*. The qualitative identification of the analyte has some degree of uncertainty, and the reported value may have some high bias. However,

May 2020 Page 3

analyst judgment was used to positively identify the analyte.

320	0-78378-1				
Labora	atory Report Date:				
Sep	ptember 15, 2021				
CS Site	e Name:				
AD	OOT&PF King Salmon Airport Statewide PFAS				
	The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 320-522308 and analytical batch 320-522804 recovered outside control limits for the following analytes: HFPO-DA. This analyte was biased high in the LCS and LCSD and was not detected in the associated samples; therefore, the data have been reported. See Section 6.b. for details regarding data quality and/or usability, as applicable. Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD)				
L	associated with preparation batch 320-522308. Data quality and/or usability not affected. c. Were all corrective actions documented?				
	Yes \square No \square N/A \boxtimes Comments:				
	Corrective actions were not required.				
_	d. What is the effect on data quality/usability according to the case narrative?				
	Comments:				
	The PFNA in sample 21AKN-MW-02 is considered estimated, biased high, due to the transition mass ratio failure. However, the analyte was also affected by a method blank detection. Refer to Section 6.a. for further assessment.				
	In addition, the case narrative does not discuss effect on data quality, it only discusses discrepancies and what was done considering them, as applicable. Any notable data quality issues mentioned in the case narrative are discussed above in Section 4.b. or elsewhere within this DEC checklist.				
5. <u>Sar</u>	mples Results				
	a. Correct analyses performed/reported as requested on COC?				
	Yes⊠ No□ N/A□ Comments:				
L	b. All applicable holding times met?				
	Yes \boxtimes No \square N/A \square Comments:				
L	c. All soils reported on a dry weight basis?				
Γ	Yes \square No \square N/A \boxtimes Comments:				
	Soil samples were not submitted with this work order.				

320-78378-1	
Laboratory Report Date:	
September 15, 2021	
CS Site Name:	
ADOT&PF King Salmon Airport Statewide PFAS	
d. Are the reported LOQs less than the Cleanup Leve the project?	l or the minimum required detection level for
Yes \boxtimes No \square N/A \square Comments:	
Analytical sensitivity was evaluated to verify that reports groundwater cleanup levels for non-detect results, as a levels.	
e. Data quality or usability affected?	
Not applicable, see above.	
6. QC Samples	
a. Method Blank	
i. One method blank reported per matrix, analys	is and 20 samples?
Yes \boxtimes No \square N/A \square Comments:	•

320-78378-1		
aboratory Report Date:		
September 15, 2021		
CS Site Name:		
ADOT&PF King Salmon Airport Statewide PFAS		
ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?		
Yes \boxtimes No \square N/A \square Comments:		
No analytes were detected in method blank samples at concentrations exceeding the RL; however, the following PFAS were detected at concentrations below the RL in preparatory batch 320-522308: 11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid, ADONA, 9-chlorohexadecafluoro-3-oxanonane 1-sulfonic acid, PFBS, PFDA, PFHAS, PFNA, PFOS, and PFOA.		
• 11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid, ADONA, and 9-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid were not detected in any associated project sample. Data qualification not required, and data quality/and for usability not affected.		
 PFBS, PFHxS, PFOS, and PFOA were detected greater than ten times the concentration detected in the method blank sample. Data qualification not required, and data quality/and for usability not affected. 		
• PFDA was detected in sample 21AKN-MW-3 at a concentration below the RL and less than five-times the concentration detected in the method blank sample. Therefore, the PFDA result for this sample is considered not-detected due to potential laboratory cross-contamination and are flagged 'B' at the RL in the analytical tables.		
• PFHpA was detected in sample 21AKN-MW-2 at a concentration below the RL and less than five-times the concentration detected in the method blank sample. Therefore, the PFHpA result for this sample is considered not-detected due to potential laboratory cross-contamination and are flagged 'B' at the RL in the analytical tables.		
• PFNA was detected in samples 21AKN-MW-01, 21AKN-MW-101, and 21AKN-MW-02 at concentrations less than five-times the concentration detected in the method blank sample. Therefore, the PFNA results in these samples are considered not-detected due to potential laboratory cross-contamination and are flagged 'B' at the reported concentration in the analytical tables.		
iii. If above LOQ or project specified objectives, what samples are affected? Comments:		
Yes, see above.		
iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes⊠ No□ N/A□ Comments: See above		

320-78378-1			
Laboratory Report Date:			
September 15, 2021			
CS Site Name:			
ADOT&PF King Salmon Airport Statewide PFAS			
v. Data quality or usability affected? Comments:			
The data quality and/or usability was not affected; see above.			
b. Laboratory Control Sample/Duplicate (LCS/LCSD)			
 i. Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846) 			
$Yes \boxtimes No \square N/A \square$ Comments:			
 ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples? Yes□ No□ N/A⊠ Comments: 			
Metals and/or inorganics were not analyzed as part of this work order.			
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages) Yes□ No⊠ N/A□ Comments:			
The LCS associated with preparation batch 320-522308 had a high recovery failure for HFPO-DA. HFPO-DA was not detected in any associated project sample. Data qualification not required, and data quality/and for usability not affected.			
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)			
$Yes \boxtimes No \square N/A \square$ Comments:			
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:			

See above.

320-78378-1
Laboratory Report Date:
September 15, 2021
CS Site Name:
ADOT&PF King Salmon Airport Statewide PFAS
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
Yes \square No \square N/A \boxtimes Comments:
See above.
vii. Data quality or usability affected? (Use comment box to explain.) Comments:
See above.
 c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project i. Organics – One MS/MSD reported per matrix, analysis and 20 samples? Yes□ No⊠ N/A□ Comments:
Project accuracy and precision were measured via the LCS/LCSD.
ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples?Yes□ No□ N/A⊠ Comments:
Metals and/or inorganics were not analyzed as part of this work order.
 iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? Yes□ No□ N/A⊠ Comments:
MS/MSD samples were not reported in this work order.
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.
$Yes \square No \square N/A \boxtimes Comments:$
MS/MSD samples were not reported in this work order.
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
Not applicable, see above.

320-78378-1			
Laboratory Report Date:			
September 15, 2021			
CS Site Name:			
ADOT&PF King Salmon Airport Statewide PFAS			
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes \square No \square N/A \boxtimes Comments:			
See above.			
vii. Data quality or usability affected? (Use comment box to explain.) Comments:			
The data quality and/or usability was not affected; see above.			
d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only			
 i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples? 			
$Yes \boxtimes No \square N/A \square$ Comments:			
 ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages) Yes□ No⊠ N/A□ Comments: 			
The IDAs associated with HPFO-DA was recovered low in samples 21AKN-MW-01 and 21AKN-MW-02. HPFO-DA was not detected in the associated project samples and the results are considered estimated with no direction of bias, and have been flagged 'J' in the analytical tables.			
iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?			
Yes⊠ No□ N/A□ Comments:			
See above.			
iv. Data quality or usability affected? Comments:			
See above.			

320-78378-1			
Laboratory Report Date:			
September 15, 2021			
CS Site Name:			
ADOT&PF King Salmon Airport Statewide PFAS			
e. Trip Blanks			
 i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.) 			
Yes \square No \square N/A \boxtimes Comments:			
PFAS are not volatile compounds. A trip blank is not required for the requested analysis.			
ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)			
$Yes \square No \square N/A \boxtimes Comments:$			
See above.			
iii. All results less than LOQ and project specified objectives?			
Yes \square No \square N/A \boxtimes Comments:			
See above.			
iv. If above LOQ or project specified objectives, what samples are affected? Comments:			
Not applicable, see above.			
v. Data quality or usability affected? Comments:			
Not applicable, see above.			
f. Field Duplicate i. One field duplicate submitted non-metric analysis and 10 project complex?			
i. One field duplicate submitted per matrix, analysis and 10 project samples?			
Yes No N/A Comments:			
21AKN-MW-101 was a field duplicate of 21AKN-MW-01.			
ii. Submitted blind to lab?			
Yes⊠ No□ N/A⊠ Comments:			

Page 10 May 2020

320-78378-1		
Laboratory Report Date:		
September 15, 2021		
CS Site Name:		
ADOT&PF King Salmon Airport Statewide PFAS		
iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)		
Yes \boxtimes No \square N/A \square Comments:		
Where calculable, analytical results met the comparison criterion (≤ 30% for water) for the field duplicate pairs.		
iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:		
Not applicable, see above.		
g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?		
$Yes \square No \square N/A \boxtimes Comments:$		
Decontamination or equipment blank were not required for this project.		
i. All results less than LOQ and project specified objectives?		
Yes \square No \square N/A \boxtimes Comments:		
See above.		
ii. If above LOQ or project specified objectives, what samples are affected?Comments:		
Not applicable, see above.		
iii. Data quality or usability affected? Comments:		
Not applicable, see above.		

	320-78378-1		
La	boratory Report Date:		
	September 15, 2021		
CS	Site Name:		
	ADOT&PF King Salmon Airport S	Statewide PFAS	
7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)			
	a. Defined and appropriate?		
	Yes□ No□ N/A⊠	Comments:	
	There were no additional flags/	qualifiers required for this work order.	

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-78391-1 Client Project/Site: AKU PFAS

For:

Shannon & Wilson, Inc 2355 Hill Rd. Fairbanks, Alaska 99709-5244

Attn: Michael X Jaramillo

Jamil Olt inn

Authorized for release by: 9/10/2021 9:53:04 AM

David Alltucker, Project Manager I (916)374-4383

David.Alltucker@Eurofinset.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

5

6

8

12

IR

14

1 ~

Client: Shannon & Wilson, Inc Project/Site: AKU PFAS Laboratory Job ID: 320-78391-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Isotope Dilution Summary	11
QC Sample Results	12
QC Association Summary	17
Lab Chronicle	18
Certification Summary	20
Method Summary	21
Sample Summary	22
Chain of Custody	23
Receipt Checklists	24

3

6

0

9

10

12

4 /

41

Definitions/Glossary

Client: Shannon & Wilson, Inc Job ID: 320-78391-1

Project/Site: AKU PFAS

Qualifiers

	_	_	_
	•	N	ıc
_	L	IV	100

Qualifier	Qualifier Description
*+	LCS and/or LCSD is outside acceptance limits, high biased.
*5-	Isotope dilution analyte is outside acceptance limits, low biased.
F1	MS and/or MSD recovery exceeds control limits.
Н	Sample was prepped or analyzed beyond the specified holding time
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier	Qualifier Description
Н	Sample was prepped or analyzed beyond the specified holding time
H3	Sample was received and analyzed past holding time.

H3	Sample was received and analyzed past holding time.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)

MQL	
NC	

MPN

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent

POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

Most Probable Number

Method Quantitation Limit

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

9/10/2021

Case Narrative

Client: Shannon & Wilson, Inc Job ID: 320-78391-1
Project/Site: AKU PFAS

Job ID: 320-78391-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Job Narrative 320-78391-1

Receipt

The samples were received on 9/2/2021 11:25 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 11.1° C.

Receipt Exceptions

Samples were sent to the lab via Alaska Air on the 23rd of august and were to be picked up on the 24th of August. Due to missed internal comunication, the samples were not picked up till September 2nd, 2021. samples were out of temperature at 11.1C. 21AKN-SB-04(12.1-12.7) (320-78391-1), 21AKN-SB-04(18.6-19.3) (320-78391-2), 21AKN-SB-04(63.7-64.5) (320-78391-3), 21AKN-SB-04(82-82.6) (320-78391-4) and 21AKN-SB-04(87-87.5) (320-78391-5)

LCMS

Method EPA 537(Mod): The laboratory control sample (LCS) for preparation batch 320-522305 and analytical batch 320-522809 recovered outside control limits for the following analytes: Perfluorononanoic acid (PFNA). These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method EPA 537(Mod): The laboratory control sample (LCS) for preparation batch 320-522305 and analytical batch 320-522809 recovered outside control limits for the following analytes: Perfluorononanoic acid (PFNA). These analytes were biased high in the LCS and were lower 1/2RL in the associated samples; therefore, the data have been reported.

Method EPA 537(Mod): The matrix spike (MS) recoveries for Perfluorononanoic acid (PFNA)preparation batch 320-522305 and analytical batch 320-522809 were outside control limits. Sample matrix interference is suspected.

Method EPA 537(Mod): The Isotope Dilution Analyte (IDA) recovery associated with the following sample is below the method recommended limit: 21AKN-SB-04(12.1-12.7) (320-78391-1). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample(s).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method Moisture: The reference method does not list a specific holding time for this procedure; therefore, the laboratory defaults to an in-house holding time of 14 days. The following samples in 320-522177 were prepared and/or analyzed outside this time period: 21AKN-SB-04(12.1-12.7) (320-78391-1), 21AKN-SB-04(18.6-19.3) (320-78391-2), 21AKN-SB-04(63.7-64.5) (320-78391-3) and 21AKN-SB-04(82-82.6) (320-78391-4).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method SHAKE: The following samples were prepared outside of preparation holding time due to being logged in past holding time: 21AKN-SB-04(12.1-12.7) (320-78391-1), 21AKN-SB-04(18.6-19.3) (320-78391-2), 21AKN-SB-04(63.7-64.5) (320-78391-3) and 21AKN-SB-04(82-82.6) (320-78391-4). preparation batch 320-522305

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

5

7

10

10

13

14

15

Detection Summary

Client: Shannon & Wilson, Inc Job ID: 320-78391-1

Project/Site: AKU PFAS

|--|

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorononanoic acid (PFNA)	0.060	J H *+	0.24	0.026	ug/Kg	1	₽	EPA 537(Mod)	Total/NA
Perfluorodecanoic acid (PFDA)	0.19	JH	0.24	0.058	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.048	JH	0.24	0.035	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	3.5	Н	0.24	0.052	ug/Kg	1	☼	EPA 537(Mod)	Total/NA
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	0.33	Н	0.24	0.028	ug/Kg	1	₩	EPA 537(Mod)	Total/NA
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	2.9	Н	0.24	0.058	ug/Kg	1	₩	EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-SB-04(18.6-19.3)

'n	_									
	Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
	Perfluorohexanesulfonic acid (PFHxS)	0.036	JH	0.23	0.033	ug/Kg	1	₩	EPA 537(Mod)	Total/NA

Client Sample ID: 21AKN-SB-04(63.7-64.5) Lab Sample ID: 320-78391-3

No Detections.

Client Sample ID: 21AKN-SB-04(82-82.6) Lab Sample ID: 320-78391-4

No Detections.

Client Sample ID: 21AKN-SB-04(87-87.5) Lab Sample ID: 320-78391-5

Analyte	Result C	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorooctanesulfonic acid (PFOS)	0.48		0.21	0.044	ug/Kg	1	☼	EPA 537(Mod)	Total/NA

Lab Sample ID: 320-78391-2

Client: Shannon & Wilson, Inc Job ID: 320-78391-1

Project/Site: AKU PFAS

Date Received: 09/02/21 11:25

Client Sample ID: 21AKN-SB-04(12.1-12.7)

Date Collected: 08/17/21 09:45

Lab Sample ID: 320-78391-1

Matrix: Solid

Matrix: Solid Percent Solids: 82.4

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 Analyte Result Qualifier **MDL** Unit RL D Prepared Analyzed Dil Fac Perfluorohexanoic acid (PFHxA) ND H 0.24 0.037 ug/Kg 09/02/21 11:47 09/06/21 23:53 Perfluoroheptanoic acid (PFHpA) 0.24 ND H 0.046 ug/Kg 09/02/21 11:47 09/06/21 23:53 Perfluorooctanoic acid (PFOA) ND H 0.24 0.064 ug/Kg 09/02/21 11:47 09/06/21 23:53 0.026 ug/Kg 09/02/21 11:47 09/06/21 23:53 Perfluorononanoic acid (PFNA) 0.24 0.060 JH*+ 0.24 0.058 ug/Kg 09/02/21 11:47 09/06/21 23:53 Perfluorodecanoic acid (PFDA) 0.19 JH Perfluoroundecanoic acid (PFUnA) ND H 0.24 0.050 ug/Kg 09/02/21 11:47 09/06/21 23:53 Perfluorododecanoic acid (PFDoA) ND H 0.24 0.036 ug/Kg 09/02/21 11:47 09/06/21 23:53 Perfluorotridecanoic acid (PFTriA) ND H 0.24 0.025 ug/Kg 09/02/21 11:47 09/06/21 23:53 Perfluorotetradecanoic acid (PFTeA) ND H 0.24 0.044 ug/Kg 09/02/21 11:47 09/06/21 23:53 Perfluorobutanesulfonic acid (PFBS) ND H 0.24 0.046 ug/Kg 09/02/21 11:47 09/06/21 23:53 Perfluorohexanesulfonic acid 0.048 JH 0.24 0.035 ug/Kg 09/02/21 11:47 09/06/21 23:53 (PFHxS) © 09/02/21 11:47 09/06/21 23:53 Perfluorooctanesulfonic acid 0.24 0.052 ug/Kg 3.5 H (PFOS) N-methylperfluorooctanesulfona 0.24 0.028 ug/Kg 09/02/21 11:47 09/06/21 23:53 0.33 H midoacetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonami 09/02/21 11:47 09/06/21 23:53 2.9 H 0.24 0.058 ug/Kg doacetic acid (NEtFOSAA) 9-Chlorohexadecafluoro-3-oxanonan ND H 0.24 0.042 ug/Kg 09/02/21 11:47 09/06/21 23:53 e-1-sulfonic acid ND H 0.24 09/02/21 11:47 09/06/21 23:53 Hexafluoropropylene Oxide Dimer 0.049 ug/Kg Acid (HFPO-DA) ND H 0.24 0.037 ug/Kg 09/02/21 11:47 09/06/21 23:53 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid ND H 0.047 ug/Kg © 09/02/21 11:47 09/06/21 23:53 4,8-Dioxa-3H-perfluorononanoic acid 0.24 (ADONA) Isotope Dilution %Recovery Qualifier Limits Dil Fac Prepared Analyzed 13C2 PFHxA 51 50 - 150 09/02/21 11:47 09/06/21 23:53 13C4 PFHpA 55 50 - 150 09/02/21 11:47 09/06/21 23:53 13C4 PFOA 50 - 150 09/02/21 11:47 09/06/21 23:53 63

13C5 PFNA	48 *5-	50 - 150	09/02/21 11:47 09/06/21 23:53	1
13C2 PFDA	54	50 - 150	09/02/21 11:47 09/06/21 23:53	1
13C2 PFUnA	51	50 - 150	09/02/21 11:47 09/06/21 23:53	1
13C2 PFDoA	57	50 - 150	09/02/21 11:47 09/06/21 23:53	1
13C2 PFTeDA	65	50 - 150	09/02/21 11:47 09/06/21 23:53	1
13C3 PFBS	51	50 - 150	09/02/21 11:47 09/06/21 23:53	1
1802 PFHxS	65	50 - 150	09/02/21 11:47 09/06/21 23:53	1
13C4 PFOS	52	50 - 150	09/02/21 11:47 09/06/21 23:53	1
d3-NMeFOSAA	51	50 - 150	09/02/21 11:47 09/06/21 23:53	1
d5-NEtFOSAA	60	50 - 150	09/02/21 11:47 09/06/21 23:53	1
13C3 HFPO-DA	43 *5-	50 - 150	09/02/21 11:47 09/06/21 23:53	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	17.6	H H3	0.1	0.1	%			09/02/21 15:00	1
Percent Solids	82.4	H H3	0.1	0.1	%			09/02/21 15:00	1

3

5

<u>'</u>

10

12

14

1 E

13

Client: Shannon & Wilson, Inc Job ID: 320-78391-1 Project/Site: AKU PFAS

Client Sample ID: 21AKN-SB-04(18.6-19.3)

Lab Sample ID: 320-78391-2 Date Collected: 08/17/21 09:50 **Matrix: Solid**

Date Received: 09/02/21 11:25 **Percent Solids: 86.8**

Perfluorohexanoic acid (PFHxA)	- - - - - -			Dil Fac
Perfluorooctanoic acid (PFOA)		09/02/21 11:47	09/07/21 00:03	1
Perfluoronanoic acid (PFNA)	÷Ö-	09/02/21 11:47	09/07/21 00:03	1
Perfluorodecanoic acid (PFDA) ND		09/02/21 11:47	09/07/21 00:03	1
Perfluoroundecanoic acid (PFUnA)	₩	09/02/21 11:47	09/07/21 00:03	1
Perfluorododecanoic acid (PFDoA)	₩	09/02/21 11:47	09/07/21 00:03	1
Perfluorotridecanoic acid (PFTriA)	₩	09/02/21 11:47	09/07/21 00:03	1
Perfluorotetradecanoic acid (PFTeA)	₩	09/02/21 11:47	09/07/21 00:03	1
Perfluorobutanesulfonic acid (PFBS)	₩	09/02/21 11:47	09/07/21 00:03	1
Perfluorohexanesulfonic acid 1.036	₽	09/02/21 11:47	09/07/21 00:03	1
Perfluorocotanesulfonic acid (PFOS)	₩	09/02/21 11:47	09/07/21 00:03	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEIFOSAA) 9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid Hexafluoropropylene Oxide Dimer ND H 0.23 0.046 ug/Kg Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaundecan ND H 0.23 0.035 ug/Kg e-1-sulfonic acid 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) Isotope Dilution %Recovery Qualifier Limits 13C2 PFHxA 63 50 - 150 13C4 PFOA 73 50 - 150 13C5 PFNA 58 50 - 150 13C2 PFDA 70 50 - 150 13C2 PFDA 70 50 - 150 13C2 PFDA 70 50 - 150 13C2 PFDA 71 50 - 150 13C2 PFDA 71 50 - 150 13C2 PFDA 71 50 - 150 13C2 PFDA 71 50 - 150 13C2 PFDA 71 50 - 150 13C3 PFBS 61 50 - 150 13C3 PFBS 61 50 - 150 13C4 PFOS 69 50 - 150 13C4 PFOS 69 50 - 150 13C4 PFOS 69 50 - 150 13C4 PFOS 69 50 - 150 13C4 PFOS 69 50 - 150 13C4 PFOS 69 50 - 150	₩	09/02/21 11:47	09/07/21 00:03	1
No. Nethylperfluorooctanesulfonamidoac ND H	₩	09/02/21 11:47	09/07/21 00:03	1
etic acid (NEtFOSAA) 9-Chlorohexadecafluoro-3-oxanonan 9-Chlorohexadecafluoro-3-oxanonan ND H 0.23 0.040 ug/Kg e-1-sulfonic acid Hexafluoropropylene Oxide Dimer Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaundecan ND H 0.23 0.035 ug/Kg e-1-sulfonic acid 4,8-Dioxa-3H-perfluorononanoic acid (ABONA) Isotope Dilution Recovery 13C2 PFHxA 13C4 PFHpA 13C4 PFOA 13C5 PFNA 13C5 PFNA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C3 0.044 ug/Kg Limits 13C4 PFOA 13C5 PFNA 15B 13C6 PFDA 15C 15C 13C6 PFDA 15C 15C 13C7 PFDA 15C 15C 13C8 PFDA 15C 15C 13C8 PFDA 15C 15C 13C8 PFDA 15C 15C 13C8 PFDA 15C 15C 13C8 PFDA 15C 15C 13C8 PFDA 15C 15C 13C8 PFDA 15C 15C 13C8 PFDA 15C 15C 13C8 PFDA 15C 15C 13C8 PFDA 15C 15C 13C8 PFBS 15C 15C 13C8 PFDA 15C 15C 13C8 PFDA 15C 15C 13C8 PFDA 15C 15C 13C8 PFDA 15C	₩	09/02/21 11:47	09/07/21 00:03	1
e-1-sulfonic acid Hexafluoropropylene Oxide Dimer ND H 0.23 0.046 ug/Kg Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaundecan ND H 0.23 0.035 ug/Kg e-1-sulfonic acid 4,8-Dioxa-3H-perfluorononanoic acid ND H 0.23 0.044 ug/Kg (ADONA) Isotope Dilution %Recovery Qualifier Limits 13C2 PFHxA 63 50 - 150 13C4 PFOA 73 50 - 150 13C5 PFNA 58 50 - 150 13C2 PFDA 70 50 - 150 13C2 PFUAA 66 50 - 150 13C2 PFDA 71 50 - 150 13C2 PFDA 71 50 - 150 13C2 PFDOA 71 50 - 150 13C3 PFBS 61 50 - 150 13C3 PFBS 61 50 - 150 13C4 PFOS 69 50 - 150 13C4 PFOS 69 50 - 150 13C4 PFOS 69 50 - 150 13C4 PFOS 69 50 - 150	₩	09/02/21 11:47	09/07/21 00:03	1
Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) Isotope Dilution ISO2 PFHxA ISO2 PFHxA ISO2 PFHpA ISO2 PFHpA ISO2 PFNA ISO2 PFDA ISO3 ISO3 ISO3 ISO3 PFBS ISO3 ISO3 ISO3 ISO3 ISO3 ISO3 ISO3 ISO3			09/07/21 00:03	1
e-1-sulfonic acid 4,8-Dioxa-3H-perfluorononanoic acid ND H 0.23 0.044 ug/Kg (ADONA) Isotope Dilution Recovery 13C2 PFHxA 13C4 PFHpA 13C4 PFOA 13C5 PFNA 13C5 PFNA 13C6 PFDA 13C6 PFDA 13C6 PFDA 13C6 PFDA 13C7 PFDA 13C8 PFDA 13C9 PFDA 13	₩	09/02/21 11:47	09/07/21 00:03	1
ADONA Asotope Dilution Macovery Qualifier Limits 13C2 PFHxA 63 50 - 150 13C4 PFHpA 69 50 - 150 13C4 PFOA 73 50 - 150 13C5 PFNA 58 50 - 150 13C2 PFDA 70 50 - 150 13C2 PFUnA 66 50 - 150 13C2 PFDOA 71 50 - 150 13C2 PFTDA 83 50 - 150 13C3 PFBS 61 50 - 150 13C3 PFBS 61 50 - 150 13C4 PFOS 69 50 - 150 13C4 PFOS 69 50 - 150 13C4 PFOS 69 50 - 150 13C5 PFOSAA 76 5	₩		09/07/21 00:03	1
13C2 PFHxA 63 50 - 150 13C4 PFHpA 69 50 - 150 13C4 PFOA 73 50 - 150 13C5 PFNA 58 50 - 150 13C2 PFDA 70 50 - 150 13C2 PFUNA 66 50 - 150 13C2 PFUNA 66 50 - 150 13C2 PFDOA 71 50 - 150 13C2 PFDOA 83 50 - 150 13C3 PFBS 61 50 - 150 13C3 PFBS 61 50 - 150 13C4 PFOS 69 50 - 150 d3-NMeFOSAA 76 50 - 150	☼	09/02/21 11:47	09/07/21 00:03	1
13C4 PFHpA 69 50 - 150 13C4 PFOA 73 50 - 150 13C5 PFNA 58 50 - 150 13C2 PFDA 70 50 - 150 13C2 PFUnA 66 50 - 150 13C2 PFDOA 71 50 - 150 13C2 PFTeDA 83 50 - 150 13C3 PFBS 61 50 - 150 18O2 PFHxS 76 50 - 150 13C4 PFOS 69 50 - 150 d3-NMeFOSAA 76 50 - 150		Prepared	Analyzed	Dil Fac
13C4 PFOA 73 50 - 150 13C5 PFNA 58 50 - 150 13C2 PFDA 70 50 - 150 13C2 PFUnA 66 50 - 150 13C2 PFDOA 71 50 - 150 13C2 PFTeDA 83 50 - 150 13C3 PFBS 61 50 - 150 18O2 PFHxS 76 50 - 150 13C4 PFOS 69 50 - 150 d3-NMeFOSAA 76 50 - 150		09/02/21 11:47	09/07/21 00:03	1
13C5 PFNA 58 50 - 150 13C2 PFDA 70 50 - 150 13C2 PFUnA 66 50 - 150 13C2 PFDoA 71 50 - 150 13C2 PFTeDA 83 50 - 150 13C3 PFBS 61 50 - 150 18O2 PFHxS 76 50 - 150 13C4 PFOS 69 50 - 150 d3-NMeFOSAA 76 50 - 150		09/02/21 11:47	09/07/21 00:03	1
13C2 PFDA 70 50 - 150 13C2 PFUnA 66 50 - 150 13C2 PFDoA 71 50 - 150 13C2 PFTeDA 83 50 - 150 13C3 PFBS 61 50 - 150 18O2 PFHxS 76 50 - 150 13C4 PFOS 69 50 - 150 d3-NMeFOSAA 76 50 - 150		09/02/21 11:47	09/07/21 00:03	1
13C2 PFUnA 66 50 - 150 13C2 PFDoA 71 50 - 150 13C2 PFTeDA 83 50 - 150 13C3 PFBS 61 50 - 150 18O2 PFHxS 76 50 - 150 13C4 PFOS 69 50 - 150 d3-NMeFOSAA 76 50 - 150		09/02/21 11:47	09/07/21 00:03	1
13C2 PFDoA 71 50 - 150 13C2 PFTeDA 83 50 - 150 13C3 PFBS 61 50 - 150 18O2 PFHxS 76 50 - 150 13C4 PFOS 69 50 - 150 d3-NMeFOSAA 76 50 - 150		09/02/21 11:47	09/07/21 00:03	1
13C2 PFTeDA 83 50 - 150 13C3 PFBS 61 50 - 150 18O2 PFHxS 76 50 - 150 13C4 PFOS 69 50 - 150 d3-NMeFOSAA 76 50 - 150		09/02/21 11:47	09/07/21 00:03	1
13C3 PFBS 61 50 - 150 18O2 PFHxS 76 50 - 150 13C4 PFOS 69 50 - 150 d3-NMeFOSAA 76 50 - 150		09/02/21 11:47	09/07/21 00:03	1
1802 PFHxS 76 50 - 150 13C4 PFOS 69 50 - 150 d3-NMeFOSAA 76 50 - 150		09/02/21 11:47	09/07/21 00:03	1
13C4 PFOS 69 50 - 150 d3-NMeFOSAA 76 50 - 150		09/02/21 11:47	09/07/21 00:03	1
d3-NMeFOSAA 76 50 - 150		09/02/21 11:47	09/07/21 00:03	1
		09/02/21 11:47	09/07/21 00:03	1
d5-NEtFOSAA 84 50 - 150		09/02/21 11:47	09/07/21 00:03	1
		09/02/21 11:47	09/07/21 00:03	1
13C3 HFPO-DA 57 50 - 150		09/02/21 11:47	09/07/21 00:03	1
General Chemistry				
Analyte Result Qualifier RL MDL Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture 13.2 H H3 0.1 0.1 %			09/02/21 15:00	1

0.1

0.1 %

86.8 H H3

Percent Solids

9/10/2021

09/02/21 15:00

Client: Shannon & Wilson, Inc Job ID: 320-78391-1 Project/Site: AKU PFAS

Client Sample ID: 21AKN-SB-04(63.7-64.5)

Lab Sample ID: 320-78391-3 Date Collected: 08/17/21 14:40 Matrix: Solid

Date Received: 09/02/21 11:25 Percent Solids: 88.9

Method: EPA 537(Mod) - PFAS Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND	H	0.22	0.035	ug/Kg	— <u> </u>		09/07/21 00:12	1
Perfluoroheptanoic acid (PFHpA)	ND	Н	0.22		ug/Kg	₩	09/02/21 11:47	09/07/21 00:12	1
Perfluorooctanoic acid (PFOA)	ND	Н	0.22		ug/Kg	₩	09/02/21 11:47	09/07/21 00:12	1
Perfluorononanoic acid (PFNA)	ND	H *+	0.22		ug/Kg	₩	09/02/21 11:47	09/07/21 00:12	1
Perfluorodecanoic acid (PFDA)	ND	Н	0.22		ug/Kg	₩	09/02/21 11:47	09/07/21 00:12	1
Perfluoroundecanoic acid (PFUnA)	ND	Н	0.22		ug/Kg	☼	09/02/21 11:47	09/07/21 00:12	1
Perfluorododecanoic acid (PFDoA)	ND	Н	0.22		ug/Kg		09/02/21 11:47	09/07/21 00:12	1
Perfluorotridecanoic acid (PFTriA)	ND	Н	0.22		ug/Kg	₩	09/02/21 11:47	09/07/21 00:12	1
Perfluorotetradecanoic acid (PFTeA)	ND	Н	0.22		ug/Kg	₩	09/02/21 11:47	09/07/21 00:12	1
Perfluorobutanesulfonic acid (PFBS)	ND	Н	0.22	0.043			09/02/21 11:47	09/07/21 00:12	1
Perfluorohexanesulfonic acid (PFHxS)	ND	Н	0.22		ug/Kg	☼	09/02/21 11:47	09/07/21 00:12	1
Perfluorooctanesulfonic acid (PFOS)	ND	Н	0.22		ug/Kg	₩	09/02/21 11:47	09/07/21 00:12	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	Н	0.22		ug/Kg	₩	09/02/21 11:47	09/07/21 00:12	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	Н	0.22	0.054	ug/Kg	₩	09/02/21 11:47	09/07/21 00:12	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND	Н	0.22	0.039	ug/Kg	☼	09/02/21 11:47	09/07/21 00:12	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	Н	0.22	0.046	ug/Kg	₩	09/02/21 11:47	09/07/21 00:12	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND	Н	0.22	0.035	ug/Kg	₩	09/02/21 11:47	09/07/21 00:12	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	Н	0.22	0.044	ug/Kg	₩	09/02/21 11:47	09/07/21 00:12	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	60		50 - 150				09/02/21 11:47	09/07/21 00:12	1
13C4 PFHpA	68		50 - 150				09/02/21 11:47	09/07/21 00:12	1
13C4 PFOA	70		50 - 150				09/02/21 11:47	09/07/21 00:12	1
13C5 PFNA	55		50 - 150				09/02/21 11:47	09/07/21 00:12	1
13C2 PFDA	65		50 - 150				09/02/21 11:47	09/07/21 00:12	1
13C2 PFUnA	64		50 - 150				09/02/21 11:47	09/07/21 00:12	1
13C2 PFDoA	69		50 - 150				09/02/21 11:47	09/07/21 00:12	1
13C2 PFTeDA	78		50 - 150				09/02/21 11:47	09/07/21 00:12	1
13C3 PFBS	57		50 - 150				09/02/21 11:47	09/07/21 00:12	1
1802 PFHxS	70		50 - 150				09/02/21 11:47	09/07/21 00:12	1
13C4 PFOS	59		50 - 150				09/02/21 11:47	09/07/21 00:12	1
d3-NMeFOSAA	69		50 - 150				09/02/21 11:47	09/07/21 00:12	1
d5-NEtFOSAA	85		50 - 150				09/02/21 11:47	09/07/21 00:12	
13C3 HFPO-DA	52		50 - 150				09/02/21 11:47	09/07/21 00:12	1
General Chemistry									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Percent Moisture	11.1	H H3	0.1	0.1	%			09/02/21 15:00	1
		H H3	0.1	0.1				09/02/21 15:00	

Client: Shannon & Wilson, Inc Job ID: 320-78391-1 Project/Site: AKU PFAS

Client Sample ID: 21AKN-SB-04(82-82.6)

Lab Sample ID: 320-78391-4 Date Collected: 08/18/21 10:20 **Matrix: Solid** Date Received: 09/02/21 11:25

Percent Solids: 87.0

Method: EPA 537(Mod) - PFAS Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND	H	0.22	0.034	ug/Kg	— <u></u>		09/07/21 00:21	
Perfluoroheptanoic acid (PFHpA)	ND	Н	0.22		ug/Kg	₩	09/02/21 11:47	09/07/21 00:21	1
Perfluorooctanoic acid (PFOA)	ND	Н	0.22		ug/Kg	₽	09/02/21 11:47	09/07/21 00:21	1
Perfluorononanoic acid (PFNA)	ND	H *+	0.22		ug/Kg	₩	09/02/21 11:47	09/07/21 00:21	1
Perfluorodecanoic acid (PFDA)	ND	Н	0.22		ug/Kg	₩	09/02/21 11:47	09/07/21 00:21	1
Perfluoroundecanoic acid (PFUnA)	ND	Н	0.22		ug/Kg	₩	09/02/21 11:47	09/07/21 00:21	1
Perfluorododecanoic acid (PFDoA)	ND	Н	0.22		ug/Kg		09/02/21 11:47	09/07/21 00:21	1
Perfluorotridecanoic acid (PFTriA)	ND	Н	0.22		ug/Kg	₩	09/02/21 11:47	09/07/21 00:21	1
Perfluorotetradecanoic acid (PFTeA)	ND	Н	0.22		ug/Kg	₩	09/02/21 11:47	09/07/21 00:21	1
Perfluorobutanesulfonic acid (PFBS)	ND		0.22		ug/Kg		09/02/21 11:47	09/07/21 00:21	1
Perfluorohexanesulfonic acid (PFHxS)	ND	Н	0.22		ug/Kg	₩	09/02/21 11:47	09/07/21 00:21	1
Perfluorooctanesulfonic acid (PFOS)	ND	Н	0.22		ug/Kg	₩	09/02/21 11:47	09/07/21 00:21	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	Н	0.22		ug/Kg	₩	09/02/21 11:47	09/07/21 00:21	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	Н	0.22	0.053	ug/Kg	₩	09/02/21 11:47	09/07/21 00:21	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND	Н	0.22	0.038	ug/Kg	☼	09/02/21 11:47	09/07/21 00:21	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	Н	0.22	0.045	ug/Kg	₩	09/02/21 11:47	09/07/21 00:21	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND	Н	0.22	0.034	ug/Kg	☼	09/02/21 11:47	09/07/21 00:21	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	Н	0.22	0.043	ug/Kg	₩	09/02/21 11:47	09/07/21 00:21	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	66		50 - 150				09/02/21 11:47	09/07/21 00:21	1
13C4 PFHpA	74		50 - 150				09/02/21 11:47	09/07/21 00:21	1
13C4 PFOA	74		50 - 150				09/02/21 11:47	09/07/21 00:21	1
13C5 PFNA	63		50 - 150				09/02/21 11:47	09/07/21 00:21	1
13C2 PFDA	71		50 - 150				09/02/21 11:47	09/07/21 00:21	1
13C2 PFUnA	65		50 - 150				09/02/21 11:47	09/07/21 00:21	1
13C2 PFDoA	77		50 - 150				09/02/21 11:47	09/07/21 00:21	1
13C2 PFTeDA	86		50 - 150				09/02/21 11:47	09/07/21 00:21	1
13C3 PFBS	64		50 - 150				09/02/21 11:47	09/07/21 00:21	1
1802 PFHxS	77		50 - 150				09/02/21 11:47	09/07/21 00:21	1
13C4 PFOS	74		50 - 150				09/02/21 11:47	09/07/21 00:21	1
d3-NMeFOSAA	80		50 - 150				09/02/21 11:47	09/07/21 00:21	1
d5-NEtFOSAA	81		50 - 150				09/02/21 11:47	09/07/21 00:21	1
13C3 HFPO-DA	61		50 - 150				09/02/21 11:47	09/07/21 00:21	1
General Chemistry									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Percent Moisture		H H3	0.1	0.1				09/02/21 15:00	1
Percent Solids		H H3	0.1	0.1				09/02/21 15:00	1

Client: Shannon & Wilson, Inc Job ID: 320-78391-1

Project/Site: AKU PFAS

Analyte

Percent Moisture

Percent Solids

Client Sample ID: 21AKN-SB-04(87-87.5)

Lab Sample ID: 320-78391-5 Date Collected: 08/19/21 08:30 Matrix: Solid Date Received: 09/02/21 11:25 Percent Solids: 95.6

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 Result Qualifier Analyte RL **MDL** Unit D Prepared Analyzed Dil Fac Perfluorohexanoic acid (PFHxA) ND 0.21 0.032 ug/Kg 09/02/21 11:47 09/07/21 00:31 ND 0.21 Perfluoroheptanoic acid (PFHpA) 0.039 ug/Kg 09/02/21 11:47 09/07/21 00:31 Perfluorooctanoic acid (PFOA) ND 0.21 0.054 ug/Kg 09/02/21 11:47 09/07/21 00:31 Perfluorononanoic acid (PFNA) ND F1*+ 0.21 0.023 ug/Kg 09/02/21 11:47 09/07/21 00:31 Perfluorodecanoic acid (PFDA) 0.21 0.049 ug/Kg 09/02/21 11:47 09/07/21 00:31 ND Perfluoroundecanoic acid (PFUnA) ND 0.21 0.043 ug/Kg 09/02/21 11:47 09/07/21 00:31 Perfluorododecanoic acid (PFDoA) ND 0.21 0.031 ug/Kg 09/02/21 11:47 09/07/21 00:31 Perfluorotridecanoic acid (PFTriA) ND 0.21 0.022 ug/Kg 09/02/21 11:47 09/07/21 00:31 Perfluorotetradecanoic acid (PFTeA) ND 0.21 0.038 ug/Kg 09/02/21 11:47 09/07/21 00:31 Perfluorobutanesulfonic acid (PFBS) ND 0.21 0.039 ug/Kg 09/02/21 11:47 09/07/21 00:31 Perfluorohexanesulfonic acid (PFHxS) ND 0.21 0.030 ug/Kg 09/02/21 11:47 09/07/21 00:31 Perfluorooctanesulfonic acid 0.21 0.044 ug/Kg 09/02/21 11:47 09/07/21 00:31 0.48 (PFOS) ND 0.024 ug/Kg 09/02/21 11:47 09/07/21 00:31 N-methylperfluorooctanesulfonamidoa 0.21 cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac ND 0.21 0.049 ug/Kg 09/02/21 11:47 09/07/21 00:31 etic acid (NEtFOSAA) 0.21 09/02/21 11:47 09/07/21 00:31 9-Chlorohexadecafluoro-3-oxanonan ND 0.036 ug/Kg e-1-sulfonic acid 09/02/21 11:47 09/07/21 00:31 ND 0.21 0.042 ug/Kg Hexafluoropropylene Oxide Dimer Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaundecan ND 0.21 0.032 ug/Kg 09/02/21 11:47 09/07/21 00:31 e-1-sulfonic acid 0.040 ug/Kg 09/02/21 11:47 09/07/21 00:31 4,8-Dioxa-3H-perfluorononanoic acid ND 0.21 (ADONA) Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C2 PFHxA 62 09/02/21 11:47 09/07/21 00:31 50 - 150 13C4 PFHpA 62 50 - 150 09/02/21 11:47 09/07/21 00:31 13C4 PFOA 70 50 - 150 09/02/21 11:47 09/07/21 00:31 13C5 PFNA 60 50 - 150 09/02/21 11:47 09/07/21 00:31 13C2 PFDA 66 50 - 150 09/02/21 11:47 09/07/21 00:31 13C2 PFUnA 66 50 - 150 09/02/21 11:47 09/07/21 00:31 13C2 PFDoA 74 50 - 150 09/02/21 11:47 09/07/21 00:31 13C2 PFTeDA 81 50 - 150 09/02/21 11:47 09/07/21 00:31 13C3 PFBS 54 50 - 150 09/02/21 11:47 09/07/21 00:31 1802 PFHxS 69 50 - 150 09/02/21 11:47 09/07/21 00:31 13C4 PFOS 60 50 - 150 09/02/21 11:47 09/07/21 00:31 70 50 - 150 09/02/21 11:47 09/07/21 00:31 d3-NMeFOSAA d5-NEtFOSAA 81 50 - 150 09/02/21 11:47 09/07/21 00:31 13C3 HFPO-DA 50 - 150 09/02/21 11:47 09/07/21 00:31 54 **General Chemistry**

RL

0.1

0.1

MDL Unit

%

0.1 %

0.1

D

Prepared

Result Qualifier

4.4

95.6

6

Analyzed

09/02/21 15:00

09/02/21 15:00

Dil Fac

Isotope Dilution Summary

Client: Shannon & Wilson, Inc Job ID: 320-78391-1 Project/Site: AKU PFAS

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Matrix: Solid Prep Type: Total/NA

			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PFHxA	C4PFHA	PFOA	PFNA	PFDA	PFUnA	PFDoA	PFTDA
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150
320-78391-1	21AKN-SB-04(12.1-12.7)	51	55	63	48 *5-	54	51	57	65
320-78391-2	21AKN-SB-04(18.6-19.3)	63	69	73	58	70	66	71	83
320-78391-3	21AKN-SB-04(63.7-64.5)	60	68	70	55	65	64	69	78
320-78391-4	21AKN-SB-04(82-82.6)	66	74	74	63	71	65	77	86
320-78391-5	21AKN-SB-04(87-87.5)	62	62	70	60	66	66	74	81
320-78391-5 MS	21AKN-SB-04(87-87.5)	65	69	72	61	67	66	74	81
320-78391-5 MSD	21AKN-SB-04(87-87.5)	59	66	69	56	66	63	70	79
LCS 320-522305/2-A	Lab Control Sample	63	69	69	53	60	60	70	73
MB 320-522305/1-A	Method Blank	61	68	66	56	61	63	70	74
			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		C3PFBS	PFHxS	PFOS	d3NMFOS	d5NEFOS	HFPODA		
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)		
320-78391-1	21AKN-SB-04(12.1-12.7)	51	65	52	51	60	43 *5-		-
320-78391-2	21AKN-SB-04(18.6-19.3)	61	76	69	76	84	57		
320-78391-3	21AKN-SB-04(63.7-64.5)	57	70	59	69	85	52		
320-78391-4	21AKN-SB-04(82-82.6)	64	77	74	80	81	61		
320-78391-5	21AKN-SB-04(87-87.5)	54	69	60	70	81	54		
320-78391-5 MS	21AKN-SB-04(87-87.5)	60	72	65	73	85	54		
320-78391-5 MSD	21AKN-SB-04(87-87.5)	58	69	62	71	80	56		
LCS 320-522305/2-A	Lab Control Sample	59	68	57	72	75	51		
MB 320-522305/1-A	Method Blank	59	73	64	71	81	52		

Surrogate Legend

PFHxA = 13C2 PFHxA

C4PFHA = 13C4 PFHpA

PFOA = 13C4 PFOA

PFNA = 13C5 PFNA

PFDA = 13C2 PFDA

PFUnA = 13C2 PFUnA

PFDoA = 13C2 PFDoA

PFTDA = 13C2 PFTeDA

C3PFBS = 13C3 PFBS PFHxS = 18O2 PFHxS

PFOS = 13C4 PFOS

d3NMFOS = d3-NMeFOSAA

d5NEFOS = d5-NEtFOSAA

HFPODA = 13C3 HFPO-DA

Eurofins TestAmerica, Sacramento

Page 11 of 24

Client: Shannon & Wilson, Inc Job ID: 320-78391-1 Project/Site: AKU PFAS

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

MD MD

Lab Sample ID: MB 320-522305/1-A

Matrix: Solid

Analysis Batch: 522809

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 522305

	MR	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		0.20	0.031	ug/Kg		09/02/21 11:47	09/06/21 23:34	1
Perfluoroheptanoic acid (PFHpA)	ND		0.20	0.038	ug/Kg		09/02/21 11:47	09/06/21 23:34	1
Perfluorooctanoic acid (PFOA)	ND		0.20	0.053	ug/Kg		09/02/21 11:47	09/06/21 23:34	1
Perfluorononanoic acid (PFNA)	ND		0.20	0.022	ug/Kg		09/02/21 11:47	09/06/21 23:34	1
Perfluorodecanoic acid (PFDA)	ND		0.20	0.048	ug/Kg		09/02/21 11:47	09/06/21 23:34	1
Perfluoroundecanoic acid (PFUnA)	ND		0.20	0.042	ug/Kg		09/02/21 11:47	09/06/21 23:34	1
Perfluorododecanoic acid (PFDoA)	ND		0.20	0.030	ug/Kg		09/02/21 11:47	09/06/21 23:34	1
Perfluorotridecanoic acid (PFTriA)	ND		0.20	0.021	ug/Kg		09/02/21 11:47	09/06/21 23:34	1
Perfluorotetradecanoic acid (PFTeA)	ND		0.20	0.037	ug/Kg		09/02/21 11:47	09/06/21 23:34	1
Perfluorobutanesulfonic acid (PFBS)	ND		0.20	0.038	ug/Kg		09/02/21 11:47	09/06/21 23:34	1
Perfluorohexanesulfonic acid (PFHxS)	ND		0.20	0.029	ug/Kg		09/02/21 11:47	09/06/21 23:34	1
Perfluorooctanesulfonic acid (PFOS)	ND		0.20	0.043	ug/Kg		09/02/21 11:47	09/06/21 23:34	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		0.20	0.023	ug/Kg		09/02/21 11:47	09/06/21 23:34	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		0.20	0.048	ug/Kg		09/02/21 11:47	09/06/21 23:34	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		0.20	0.035	ug/Kg		09/02/21 11:47	09/06/21 23:34	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		0.20	0.041	ug/Kg		09/02/21 11:47	09/06/21 23:34	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		0.20	0.031	ug/Kg		09/02/21 11:47	09/06/21 23:34	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		0.20	0.039	ug/Kg		09/02/21 11:47	09/06/21 23:34	1

MD MD

	MB	MR				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	61		50 - 150	09/02/21 11:47	09/06/21 23:34	1
13C4 PFHpA	68		50 - 150	09/02/21 11:47	09/06/21 23:34	1
13C4 PFOA	66		50 - 150	09/02/21 11:47	09/06/21 23:34	1
13C5 PFNA	56		50 - 150	09/02/21 11:47	09/06/21 23:34	1
13C2 PFDA	61		50 - 150	09/02/21 11:47	09/06/21 23:34	1
13C2 PFUnA	63		50 - 150	09/02/21 11:47	09/06/21 23:34	1
13C2 PFDoA	70		50 - 150	09/02/21 11:47	09/06/21 23:34	1
13C2 PFTeDA	74		50 - 150	09/02/21 11:47	09/06/21 23:34	1
13C3 PFBS	59		50 - 150	09/02/21 11:47	09/06/21 23:34	1
18O2 PFHxS	73		50 - 150	09/02/21 11:47	09/06/21 23:34	1
13C4 PFOS	64		50 - 150	09/02/21 11:47	09/06/21 23:34	1
d3-NMeFOSAA	71		50 - 150	09/02/21 11:47	09/06/21 23:34	1
d5-NEtFOSAA	81		50 - 150	09/02/21 11:47	09/06/21 23:34	1
13C3 HFPO-DA	52		50 - 150	09/02/21 11:47	09/06/21 23:34	1

Lab Sample ID: LCS 320-522305/2-A

Matrix: Solid

Analysis Batch: 522809

Client Sample ID:	Lab C	ontro	l Sample
	Prep	Type:	Total/NA

Prep Batch: 522305

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorohexanoic acid (PFHxA)	2.00	1.92		ug/Kg		96	70 - 132	
Perfluoroheptanoic acid (PFHpA)	2.00	1.89		ug/Kg		94	71 - 131	
Perfluorooctanoic acid (PFOA)	2.00	2.20		ug/Kg		110	69 - 133	
Perfluorononanoic acid (PFNA)	2.00	2.75	*+	ug/Kg		138	72 - 129	

Eurofins TestAmerica, Sacramento

Page 12 of 24

Job ID: 320-78391-1 Client: Shannon & Wilson, Inc Project/Site: AKU PFAS

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCS 320-522305/2-A

Matrix: Solid

Analysis Batch: 522809

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 522305

	Spike	LCS LCS			%Rec.	
Analyte	Added	Result Qualifie	r Unit	D %Rec	Limits	
Perfluorodecanoic acid (PFDA)	2.00	2.29	ug/Kg		69 - 133	
Perfluoroundecanoic acid	2.00	2.23	ug/Kg	111	64 - 136	
(PFUnA)						
Perfluorododecanoic acid	2.00	2.15	ug/Kg	107	69 - 135	
(PFDoA)						
Perfluorotridecanoic acid	2.00	2.29	ug/Kg	114	66 - 139	
(PFTriA)						
Perfluorotetradecanoic acid	2.00	2.21	ug/Kg	111	69 - 133	
(PFTeA)						
Perfluorobutanesulfonic acid	1.77	2.05	ug/Kg	116	72 - 128	
(PFBS)						
Perfluorohexanesulfonic acid	1.82	2.05	ug/Kg	113	67 - 130	
(PFHxS)						
Perfluorooctanesulfonic acid	1.86	2.22	ug/Kg	120	68 - 136	
(PFOS)						
N-methylperfluorooctanesulfona	2.00	2.09	ug/Kg	104	63 - 144	
midoacetic acid (NMeFOSAA)						
N-ethylperfluorooctanesulfonami	2.00	2.02	ug/Kg	101	61 ₋ 139	
doacetic acid (NEtFOSAA)						
9-Chlorohexadecafluoro-3-oxan	1.86	2.19	ug/Kg	117	75 - 135	
onane-1-sulfonic acid						
Hexafluoropropylene Oxide	2.00	2.66	ug/Kg	133	77 ₋ 137	
Dimer Acid (HFPO-DA)	4.00	0.40		400	70 400	
11-Chloroeicosafluoro-3-oxaund	1.88	2.46	ug/Kg	130	76 - 136	
ecane-1-sulfonic acid	4.00	0.50		407	70 400	
4,8-Dioxa-3H-perfluorononanoic	1.88	2.58	ug/Kg	137	79 - 139	
acid (ADONA)						

LCS LCS

	LCS	LUS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C2 PFHxA	63		50 - 150
13C4 PFHpA	69		50 ₋ 150
13C4 PFOA	69		50 ₋ 150
13C5 PFNA	53		50 - 150
13C2 PFDA	60		50 - 150
13C2 PFUnA	60		50 ₋ 150
13C2 PFDoA	70		50 - 150
13C2 PFTeDA	73		50 ₋ 150
13C3 PFBS	59		50 ₋ 150
1802 PFHxS	68		50 - 150
13C4 PFOS	57		50 ₋ 150
d3-NMeFOSAA	72		50 - 150
d5-NEtFOSAA	75		50 - 150
13C3 HFPO-DA	51		50 - 150

Lab Sample ID: 320-78391-5 MS Client Sample ID: 21AKN-SB-04(87-87.5)

Matrix: Solid

Analysis Batch: 522809										atch: 522305
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorohexanoic acid (PFHxA)	ND		1.90	1.86		ug/Kg	<u></u>	98	70 - 132	
Perfluoroheptanoic acid (PFHpA)	ND		1.90	1.91		ug/Kg	₩	100	71 - 131	
Perfluorooctanoic acid (PFOA)	ND		1.90	2.20		ug/Kg	≎	116	69 - 133	

Eurofins TestAmerica, Sacramento

Page 13 of 24

Prep Type: Total/NA

Client: Shannon & Wilson, Inc
Project/Site: AKU PFAS

Job ID: 320-78391-1

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: 320-78391-5 MS Client Sample ID: 21AKN-SB-04(87-87.5)

Matrix: Solid

Analysis Batch: 522809

Prep Type: Total/NA
Prep Batch: 522305

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorononanoic acid (PFNA)	ND	F1 *+	1.90	2.43		ug/Kg	-	128	72 - 129	
Perfluorodecanoic acid (PFDA)	ND		1.90	2.06		ug/Kg	₩	108	69 - 133	
Perfluoroundecanoic acid (PFUnA)	ND		1.90	2.18		ug/Kg	₽	115	64 - 136	
Perfluorododecanoic acid (PFDoA)	ND		1.90	2.05		ug/Kg	≎	108	69 - 135	
Perfluorotridecanoic acid (PFTriA)	ND		1.90	2.18		ug/Kg	≎	115	66 - 139	
Perfluorotetradecanoic acid (PFTeA)	ND		1.90	2.09		ug/Kg	≎	110	69 - 133	
Perfluorobutanesulfonic acid (PFBS)	ND		1.68	2.03		ug/Kg	₽	121	72 - 128	
Perfluorohexanesulfonic acid (PFHxS)	ND		1.73	1.89		ug/Kg	₩	109	67 - 130	
Perfluorooctanesulfonic acid (PFOS)	0.48		1.76	1.99		ug/Kg	₩	85	68 - 136	
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	ND		1.90	2.16		ug/Kg	₽	114	63 - 144	
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	ND		1.90	2.15		ug/Kg	₽	113	61 ₋ 139	
9-Chlorohexadecafluoro-3-oxan onane-1-sulfonic acid	ND		1.77	2.04		ug/Kg	₽	115	75 ₋ 135	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.90	2.53		ug/Kg	₽	133	77 - 137	
11-Chloroeicosafluoro-3-oxaund ecane-1-sulfonic acid	ND		1.79	2.18		ug/Kg	₽	122	76 - 136	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.79	2.29		ug/Kg	≎	128	79 - 139	

MS MS

	IVIS	INIS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C2 PFHxA	65		50 - 150
13C4 PFHpA	69		50 - 150
13C4 PFOA	72		50 - 150
13C5 PFNA	61		50 - 150
13C2 PFDA	67		50 - 150
13C2 PFUnA	66		50 - 150
13C2 PFDoA	74		50 - 150
13C2 PFTeDA	81		50 - 150
13C3 PFBS	60		50 - 150
1802 PFHxS	72		50 - 150
13C4 PFOS	65		50 - 150
d3-NMeFOSAA	73		50 - 150
d5-NEtFOSAA	85		50 - 150
13C3 HFPO-DA	54		50 - 150

Lab Sample ID: 320-78391-5 MSD Client Sample ID: 21AKN-SB-04(87-87.5)

Matrix: Solid

Analysis Batch: 522809									Prep Ba	atch: 5	22305
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorohexanoic acid (PFHxA)	ND		2.09	2.13		ug/Kg	<u></u>	102	70 - 132	13	30
Perfluoroheptanoic acid (PFHpA)	ND		2.09	2.24		ug/Kg	₩	107	71 - 131	16	30

Eurofins TestAmerica, Sacramento

Page 14 of 24

2

3

+

6

8

10

12

13

1 4

Prep Type: Total/NA

QC Sample Results

Client: Shannon & Wilson, Inc Job ID: 320-78391-1 Project/Site: AKU PFAS

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: 320-78391-5 MSD	Client Sample

Matrix: Solid **Analysis Batch: 522809** ID: 21AKN-SB-04(87-87.5) **Prep Type: Total/NA**

Prep Batch: 522305

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorooctanoic acid (PFOA)	ND		2.09	2.33		ug/Kg	-	111	69 - 133	6	30
Perfluorononanoic acid (PFNA)	ND	F1 *+	2.09	2.71	F1	ug/Kg	☼	130	72 - 129	11	30
Perfluorodecanoic acid (PFDA)	ND		2.09	2.28		ug/Kg	☼	109	69 - 133	10	30
Perfluoroundecanoic acid (PFUnA)	ND		2.09	2.42		ug/Kg	₽	116	64 - 136	10	30
Perfluorododecanoic acid (PFDoA)	ND		2.09	2.32		ug/Kg	₩	111	69 - 135	12	30
Perfluorotridecanoic acid (PFTriA)	ND		2.09	2.41		ug/Kg	₩	115	66 - 139	10	30
Perfluorotetradecanoic acid (PFTeA)	ND		2.09	2.16		ug/Kg	≎	103	69 - 133	3	30
Perfluorobutanesulfonic acid (PFBS)	ND		1.85	2.01		ug/Kg	≎	109	72 - 128	1	30
Perfluorohexanesulfonic acid (PFHxS)	ND		1.90	2.17		ug/Kg	₽	114	67 - 130	14	30
Perfluorooctanesulfonic acid (PFOS)	0.48		1.94	2.13		ug/Kg	≎	85	68 - 136	7	30
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	ND		2.09	2.16		ug/Kg	≎	103	63 - 144	0	30
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	ND		2.09	2.27		ug/Kg	₽	109	61 - 139	6	30
9-Chlorohexadecafluoro-3-oxan onane-1-sulfonic acid	ND		1.95	2.08		ug/Kg	₽	107	75 - 135	2	30
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		2.09	2.78		ug/Kg	₽	133	77 - 137	9	30
11-Chloroeicosafluoro-3-oxaund ecane-1-sulfonic acid	ND		1.97	2.41		ug/Kg	₩	122	76 - 136	10	30
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.97	2.48		ug/Kg	₽	126	79 - 139	8	30
,											

MSD MSD

Isotope Dilution	%Recovery	Qualifier	Limits
13C2 PFHxA	59		50 - 150
13C4 PFHpA	66		50 - 150
13C4 PFOA	69		50 - 150
13C5 PFNA	56		50 - 150
13C2 PFDA	66		50 - 150
13C2 PFUnA	63		50 - 150
13C2 PFDoA	70		50 - 150
13C2 PFTeDA	79		50 - 150
13C3 PFBS	58		50 - 150
1802 PFHxS	69		50 - 150
13C4 PFOS	62		50 - 150
d3-NMeFOSAA	71		50 - 150
d5-NEtFOSAA	80		50 - 150
13C3 HFPO-DA	56		50 - 150

QC Sample Results

Client: Shannon & Wilson, Inc Job ID: 320-78391-1 Project/Site: AKU PFAS

Method: D 2216 - Percent Moisture

Lab Sample ID: 320-78391-1 DU Client Sample ID: 21AKN-SB-04(12.1-12.7) **Prep Type: Total/NA**

Matrix: Solid

Analysis Batch: 522177

Analysis Buton, offin								
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Percent Moisture	17.6	H H3	18.4		%		 4	20
Percent Solids	82.4	H H3	81.6		%		0.9	20

QC Association Summary

Client: Shannon & Wilson, Inc
Project/Site: AKU PFAS

Job ID: 320-78391-1

LCMS

Prep Batch: 522305

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-78391-1	21AKN-SB-04(12.1-12.7)	Total/NA	Solid	SHAKE	
320-78391-2	21AKN-SB-04(18.6-19.3)	Total/NA	Solid	SHAKE	
320-78391-3	21AKN-SB-04(63.7-64.5)	Total/NA	Solid	SHAKE	
320-78391-4	21AKN-SB-04(82-82.6)	Total/NA	Solid	SHAKE	
320-78391-5	21AKN-SB-04(87-87.5)	Total/NA	Solid	SHAKE	
MB 320-522305/1-A	Method Blank	Total/NA	Solid	SHAKE	
LCS 320-522305/2-A	Lab Control Sample	Total/NA	Solid	SHAKE	
320-78391-5 MS	21AKN-SB-04(87-87.5)	Total/NA	Solid	SHAKE	
320-78391-5 MSD	21AKN-SB-04(87-87.5)	Total/NA	Solid	SHAKE	

Analysis Batch: 522809

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-78391-1	21AKN-SB-04(12.1-12.7)	Total/NA	Solid	EPA 537(Mod)	522305
320-78391-2	21AKN-SB-04(18.6-19.3)	Total/NA	Solid	EPA 537(Mod)	522305
320-78391-3	21AKN-SB-04(63.7-64.5)	Total/NA	Solid	EPA 537(Mod)	522305
320-78391-4	21AKN-SB-04(82-82.6)	Total/NA	Solid	EPA 537(Mod)	522305
320-78391-5	21AKN-SB-04(87-87.5)	Total/NA	Solid	EPA 537(Mod)	522305
MB 320-522305/1-A	Method Blank	Total/NA	Solid	EPA 537(Mod)	522305
LCS 320-522305/2-A	Lab Control Sample	Total/NA	Solid	EPA 537(Mod)	522305
320-78391-5 MS	21AKN-SB-04(87-87.5)	Total/NA	Solid	EPA 537(Mod)	522305
320-78391-5 MSD	21AKN-SB-04(87-87.5)	Total/NA	Solid	EPA 537(Mod)	522305

General Chemistry

Analysis Batch: 522177

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-78391-1	21AKN-SB-04(12.1-12.7)	Total/NA	Solid	D 2216	<u> </u>
320-78391-2	21AKN-SB-04(18.6-19.3)	Total/NA	Solid	D 2216	
320-78391-3	21AKN-SB-04(63.7-64.5)	Total/NA	Solid	D 2216	
320-78391-4	21AKN-SB-04(82-82.6)	Total/NA	Solid	D 2216	
320-78391-5	21AKN-SB-04(87-87.5)	Total/NA	Solid	D 2216	
320-78391-1 DU	21AKN-SB-04(12.1-12.7)	Total/NA	Solid	D 2216	

4

6

8

10

4.6

13

14

1

Job ID: 320-78391-1

Client: Shannon & Wilson, Inc Project/Site: AKU PFAS

Client Sample ID: 21AKN-SB-04(12.1-12.7)

Lab Sample ID: 320-78391-1

Matrix: Solid

Date Collected: 08/17/21 09:45 Date Received: 09/02/21 11:25

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			522177	09/02/21 15:00	TCS	TAL SAC

Client Sample ID: 21AKN-SB-04(12.1-12.7)

Lab Sample ID: 320-78391-1 **Matrix: Solid**

Lab Sample ID: 320-78391-3

Date Collected: 08/17/21 09:45 Date Received: 09/02/21 11:25 Percent Solids: 82.4

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.05 g	10.0 mL	522305	09/02/21 11:47	FX	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			522809	09/06/21 23:53	S1M	TAL SAC

Client Sample ID: 21AKN-SB-04(18.6-19.3)

Lab Sample ID: 320-78391-2 Date Collected: 08/17/21 09:50 **Matrix: Solid**

Date Received: 09/02/21 11:25

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	D 2216		1			522177	09/02/21 15:00	TCS	TAL SAC	

Client Sample ID: 21AKN-SB-04(18.6-19.3)

Lab Sample ID: 320-78391-2 Date Collected: 08/17/21 09:50 **Matrix: Solid** Percent Solids: 86.8

Date Received: 09/02/21 11:25

Batch Batch Dil Initial Final Batch Prepared Method Amount Amount Number or Analyzed Analyst **Prep Type** Type **Factor** Run Lab 522305 Total/NA SHAKE 10.0 mL 09/02/21 11:47 FX TAL SAC Prep 5.10 g Total/NA Analysis EPA 537(Mod) 522809 09/07/21 00:03 S1M TAL SAC 1

Client Sample ID: 21AKN-SB-04(63.7-64.5)

Date Collected: 08/17/21 14:40 **Matrix: Solid**

Date Received: 09/02/21 11:25

_										
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			522177	09/02/21 15:00	TCS	TAL SAC

Client Sample ID: 21AKN-SB-04(63.7-64.5) Lab Sample ID: 320-78391-3

Date Collected: 08/17/21 14:40 Matrix: Solid Date Received: 09/02/21 11:25 Percent Solids: 88.9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.01 g	10.0 mL	522305	09/02/21 11:47	FX	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			522809	09/07/21 00:12	S1M	TAL SAC

Client Sample ID: 21AKN-SB-04(82-82.6)

Lab Sample ID: 320-78391-4 Date Collected: 08/18/21 10:20 **Matrix: Solid**

Date Received: 09/02/21 11:25

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			522177	09/02/21 15:00	TCS	TAL SAC

Eurofins TestAmerica, Sacramento

Page 18 of 24

9/10/2021

Lab Chronicle

Client: Shannon & Wilson, Inc Job ID: 320-78391-1

Project/Site: AKU PFAS

Client Sample ID: 21AKN-SB-04(82-82.6)

Date Collected: 08/18/21 10:20

Date Received: 09/02/21 11:25

Lab Sample ID: 320-78391-4

Matrix: Solid

Percent Solids: 87.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.25 g	10.0 mL	522305	09/02/21 11:47	FX	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			522809	09/07/21 00:21	S1M	TAL SAC

Client Sample ID: 21AKN-SB-04(87-87.5)

Date Collected: 08/19/21 08:30

Date Received: 09/02/21 11:25

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			522177	09/02/21 15:00	TCS	TAL SAC

Client Sample ID: 21AKN-SB-04(87-87.5)

Date Collected: 08/19/21 08:30

Date Received: 09/02/21 11:25

Lab	Sample	ID: 320-78391	-5
	_	Matrix: Sol	id

Percent Solids: 95.6

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.10 g	10.0 mL	522305	09/02/21 11:47	FX	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			522809	09/07/21 00:31	S1M	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Eurofins TestAmerica, Sacramento

3

5

7

0

10

40

12

14

15

Accreditation/Certification Summary

Client: Shannon & Wilson, Inc
Project/Site: AKU PFAS

Job ID: 320-78391-1

Laboratory: Eurofins TestAmerica, Sacramento

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority Alaska (UST)		ogram	Identification Number	Expiration Date	
		ite	17-020	02-20-24	
T1 (11)					
the agency does not c	'	rt, but the laboratory is r	not certified by the governing authority.	This list may include analytes for wh	
0 ,	'	rt, but the laboratory is r Matrix	not certified by the governing authority. Analyte	I his list may include analytes for wh	
the agency does not o	offer certification.	•	, , ,	I his list may include analytes for wh	

9/10/2021

Method Summary

Client: Shannon & Wilson, Inc Project/Site: AKU PFAS

> Protocol Laboratory EPA TAL SAC

Method **Method Description** EPA 537(Mod) PFAS for QSM 5.3, Table B-15 TAL SAC D 2216 Percent Moisture **ASTM** SHAKE Shake Extraction with Ultrasonic Bath Extraction SW846 TAL SAC

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Job ID: 320-78391-1

Sample Summary

Client: Shannon & Wilson, Inc
Project/Site: AKU PFAS

Job ID: 320-78391-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
320-78391-1	21AKN-SB-04(12.1-12.7)	Solid	08/17/21 09:45	09/02/21 11:25
320-78391-2	21AKN-SB-04(18.6-19.3)	Solid	08/17/21 09:50	09/02/21 11:25
320-78391-3	21AKN-SB-04(63.7-64.5)	Solid	08/17/21 14:40	09/02/21 11:25
320-78391-4	21AKN-SB-04(82-82.6)	Solid	08/18/21 10:20	09/02/21 11:25
320-78391-5	21AKN-SB-04(87-87.5)	Solid	08/19/21 08:30	09/02/21 11:25

4 4

No.

5

7

9

10

12

13

14

Client: Shannon & Wilson, Inc

Job Number: 320-78391-1

Login Number: 78391

List Number: 1

Creator: Alltucker, David R

List Source: Eurofins TestAmerica, Sacramento

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	1519061
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	gel packs
Cooler Temperature is acceptable.	False	Cooler temperature outside required temperature criteria.
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
ls the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Laboratory Data Review Checklist

Completed By:
Michael Jaramillo
Title:
Senior Chemist
Date:
September 23, 2021
Consultant Firm:
Shannon & Wilson, Inc.
Laboratory Name:
Eurofins / TestAmerica Laboratories, Inc. (TestAmerica)
Laboratory Report Number:
320-78391-1
Laboratory Report Date:
September 10, 2021
CS Site Name:
ADOT&PF King Salmon Airport Statewide PFAS
ADEC File Number:
2569.38.033
Hazard Identification Number:
26981

320-78391-1	
Laboratory Report Date:	
September 10, 2021	
CS Site Name:	
ADOT&PF King Salmon Airport Statewide PFAS	
Note: Any N/A or No box checked must have an explanation in the comments box.	
1. <u>Laboratory</u>	
a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample ar	alyses?
Yes \boxtimes No \square N/A \square Comments:	
The DEC certified TestAmerica of West Sacramento, CA for the analysis of per- and polyflucally substances (PFAS) on February 11, 2021 by LCMSMS compliant with QSM Version 5 B-15. These reported analytes were included in the DEC's Contaminated Sites Laboratory Ap 17-020.	.3 Table
b. If the samples were transferred to another "network" laboratory or sub-contracted to an al laboratory, was the laboratory performing the analyses ADEC CS approved?	ternate
Yes \square No \square N/A \boxtimes Comments:	
Samples were not transferred to another "network" laboratory or sub-contracted to an alternatilaboratory.	e
2. Chain of Custody (CoC)	
a. CoC information completed, signed, and dated (including released/received by)?	
Yes⊠ No□ N/A□ Comments:	
b. Correct analyses requested?	
Yes \boxtimes No \square N/A \square Comments:	

320-78391-1			
Laboratory Report Date:			
September 10, 2021			
CS Site Name:			
ADOT&PF King Salmon Airport Statewide PFAS			
3. <u>Laboratory Sample Receipt Documentation</u>			
a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?			
Yes \square No \boxtimes N/A \square Comments:			
Shannon & Wilson notified Eurofins TestAmerica that the samples were shipped to the laboratory via Alaska Air on August 23, 2021. The project samples were scheduled to be picked up August 24, 2021. However, due to an internal laboratory missed communication, the samples were not picked up until September 2, 2021 and the cooler temperature was received at 11.1 °C.			
Due to the high chemical and biological stability of PFAS, it is unlikely the integrity of the project samples was adversely affected by the high cooler temperature. In an e-mail dated August 3, 2015, one of the DEC project managers noted that he had spoken with their chemist, who "agrees the high temperature probably would not affect the PFC results." PFAS are also known as PFCs.			
b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?			
Yes \boxtimes No \square N/A \square Comments:			
c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)? Yes⊠ No□ N/A□ Comments:			
The sample receipt form notes that the samples arrived in good condition, and where required, properly preserved and on ice were received in good condition.			
d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?			
$Yes \boxtimes No \square N/A \square$ Comments:			
Refer to Section 3.a. for assessment of temperature exceedance.			
e. Data quality or usability affected?			
Comments:			

The data quality and/or usability was not affected; see above.

320-78391-1				
aboratory Report Date:				
September 10, 2021				
S Site Name:				
ADOT&PF King Salmon Airport Statewide PFAS				
4. <u>Case Narrative</u>				
a. Present and understandable?				
Yes \boxtimes No \square N/A \square Comments:				
b. Discrepancies, errors, or QC failures identified by the lab?				
Yes \boxtimes No \square N/A \square Comments:				
As mentioned in Section 3.a., Shannon & Wilson notified Eurofins TestAmerica that were shipped to the laboratory via Alaska Air on August 23, 2021. The project sampl	-			

As mentioned in Section 3.a., Shannon & Wilson notified Eurofins TestAmerica that the samples were shipped to the laboratory via Alaska Air on August 23, 2021. The project samples were scheduled to be picked up August 24, 2021. However, due to an internal laboratory missed communication, the samples were not picked up until September 2, 2021 and the cooler temperature was received at 11.1 °C. Refer to Section 3.a. for further assessment.

The laboratory control sample (LCS) associated with preparation batch 320-522305 had a high recovery failure for perfluorononanoic acid (PFNA). These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported. Refer to Section 6.b. for further assessment.

The laboratory control sample (LCS) for preparation batch 320-522305 and analytical batch 320-522809 recovered outside control limits for the following analytes: PFNA. These analytes were biased high in the LCS and were lower 1/2RL in the associated samples; therefore, the data have been reported. Refer to Section 6.b. for further assessment.

The matrix spike (MS) recovery for PFNA associated with preparation batch 320-522305 was outside control limits. Sample matrix interference is suspected. Refer to Section 6.c. for further assessment.

The isotope dilution analyte (IDA) recovery associated with sample 21AKN-SB-04(12.1-12.7) was outside control limits. Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample. Refer to Section 6.d. for further assessment.

The following samples were prepared outside of preparation holding time due to being logged in past holding time: 21AKN-SB-04(12.1-12.7), 21AKN-SB 04(18.6-19.3), 21AKN-SB-04(63.7-64.5) and 21AKN-SB-04(82-82.6) for preparation batch 320-522305. The reference method does not list a specific holding time for this procedure; therefore, the laboratory defaults to an in-house holding time of 14 days. Due to a laboratory error, samples 21AKN-SB-04(12.1-12.7), 21AKN-SB-04(18.6-19.3), 21AKN-SB-04(63.7-64.5), and 21AKN-SB-04(82-82.6) were prepared outside the recommended hold time. Refer to Section 5.b. for further assessment.

320-78391-1			
Laboratory Report Date:			
September 10, 2021			
CS Site Name:			
ADOT&PF King Salmon Airport Statewide PFAS			
c. Were all corrective actions documented?			
Yes \square No \square N/A \boxtimes Comments:			
Corrective actions were not required.			
d. What is the effect on data quality/usability according to the case narrative?			
Comments:			
Case narrative does not discuss effect on data quality, it only discusses discrepancies and what was done considering them, as applicable. Any notable data quality issues mentioned in the case narrative are discussed above in Section 4.b. or elsewhere within this DEC checklist.	<i>r</i> e		
5. <u>Samples Results</u>			
a. Correct analyses performed/reported as requested on COC? Yes⊠ No□ N/A□ Comments:			
b. All applicable holding times met? $Yes \square No \boxtimes N/A \square Comments:$			
As mentioned in Section 3.a., Shannon & Wilson notified Eurofins TestAmerica that the samples were shipped to the laboratory via Alaska Air on August 23, 2021. The project samples were scheduled to be picked up August 24, 2021. However, due to an internal laboratory missed communication, the samples were not picked up until September 2, 2021 and the cooler temperature was received at 11.1 °C and outside of the method recognized hold time for samples 21AKN-SB-04(12.1-12.7), 21AKN-SB-04(18.6-19.3), 21AKN-SB-04(63.7-64.5), and 21AKN-SB-04(82-82.6).			
Per discussions with DEC, PFAS analytes analyzed outside of hold time will be marked as tentative identified and not rejected due to the high chemical and biological stability of these analytes. In addition, the reported results are comparable to historical results for the sampled locations. The result of each PFAS in samples 21AKN-SB-04(12.1-12.7), 21AKN-SB-04(18.6-19.3), 21AKN-SB-04(63.7-64.5), and 21AKN-SB-04(82-82.6) are flagged with an "N" in the analytical database.	ılts		
c. All soils reported on a dry weight basis?			
Yes□ No□ N/A⊠ Comments:			
Soil samples were not submitted with this work order.			

	320-78391-1				
Lal	boratory Report Date:				
	September 10, 2021				
CS	Site Name:				
	ADOT&PF King Salmon Airport Statewide PFAS				
	d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?				
	Yes \boxtimes No \square N/A \square Comments:				
	Analytical sensitivity was evaluated to verify that reporting limits (RLs) met applicable DEC groundwater cleanup levels for non-detect results, as appropriate. RLs met applicable regulatory levels.				
	e. Data quality or usability affected?				
	Not applicable, see above.				
6.	QC Samples				
	a. Method Blank				
	i. One method blank reported per matrix, analysis and 20 samples?				
	Yes⊠ No□ N/A□ Comments:				
	 ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives? Yes⊠ No□ N/A□ Comments: 				
	iii. If above LOQ or project specified objectives, what samples are affected? Comments:				
	Not applicable, see above.				
	iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?				
	Yes□ No□ N/A⊠ Comments:				
	See above.				
	v. Data quality or usability affected? Comments:				
	Not applicable, see above.				

320-78391-1			
Laboratory Report Date:			
September 10, 2021			
CS Site Name:			
ADOT&PF King Salmon Airport Statewide PFAS			
b. Laboratory Control Sample/Duplicate (LCS/LCSD)			
 Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846) 			
Yes \boxtimes No \square N/A \square Comments:			
ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?			
$Yes \square No \square N/A \boxtimes Comments:$			
Metals and/or inorganics were not analyzed as part of this work order.			
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)			
Yes□ No⊠ N/A□ Comments:			
The LCS associated with preparation batch 320-522305 had a high recovery failure for PFNA. PFNA was not detected in the samples associated with preparation batch 320-522305, except for 21AKN-SB-04(12.1-12.7). However, the results for 21AKN-SB-04(12.1-12.7) were previously qualified due to a hold time exceedance. Further qualification is not required.			
iv. Precision – All relative percent differences (RPD) reported and less than method or laborated limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and of sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)			
Yes⊠ No□ N/A□ Comments:			
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:			
See above.			
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?			
$Yes \square No \square N/A \boxtimes Comments:$			
See above.			

	320-78391-1			
La	aboratory Report Date:			
	September 10, 2021			
CS	S Site Name:			
	ADOT&PF King Salmon Airport Statewide PFAS			
	vii. Data quality or usability affected? (Use comment box to explain.) Comments:			
	The data quality and/or usability was not affected; see above.			
	 c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project i. Organics – One MS/MSD reported per matrix, analysis and 20 samples? Yes⊠ No□ N/A□ Comments: 			
 ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 sample Yes□ No□ N/A⊠ Comments: 				
	Metals and/or inorganics were not analyzed as part of this work order.			
	 iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? Yes□ No⊠ N/A□ Comments: 			
	The MSD recovery for PFNA was outside acceptance criteria, biased high, for the MSD associated with parent sample 21AKN-SB-04(87-87.5). PFNA was not detected in the project sample, data qualification not required, and data quality/and for usability not affected.			
	iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.			
	$Yes \boxtimes No \square N/A \square$ Comments:			
	v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:			
	See above.			
	vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes \square No \square N/A \boxtimes Comments:			
	See above			

320-78391-1
Laboratory Report Date:
September 10, 2021
CS Site Name:
ADOT&PF King Salmon Airport Statewide PFAS
vii. Data quality or usability affected? (Use comment box to explain.) Comments:
See above.
d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only
 i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?
$Yes \boxtimes No \square N/A \square$ Comments:
ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)
$Yes \square No \boxtimes N/A \square$ Comments:
The IDAs percent recoveries for PFNA and HFPO-DA were below the QC criteria in sample 21AKN-SB-04(12.1-12.7). However, the results for 21AKN-SB-04(12.1-12.7) was previously qualified due to a hold time exceedance. Further qualification is not required.
iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?
$Yes \square No \square N/A \boxtimes Comments:$
See above.
iv. Data quality or usability affected? Comments:
The data quality and/or usability was not affected; see above.
e. Trip Blanks
 i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)
$Yes \square No \square N/A \boxtimes Comments:$
PFAS are not volatile compounds. A trip blank is not required for the requested analysis.

320	0-78391-1			
Labora	tory Report Date:			
Sep	otember 10, 2021			
CS Site	e Name:			
AD	OOT&PF King Salmon Airport Statewide PFAS			
	ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)			
F	Yes \square No \square N/A \boxtimes Comments:			
	See above.			
	iii. All results less than LOQ and project specified objectives?			
	Yes \square No \square N/A \boxtimes Comments:			
	See above.			
	iv. If above LOQ or project specified objectives, what samples are affected? Comments:			
	Not applicable, see above.			
_	v. Data quality or usability affected? Comments:			
	Not applicable, see above.			
_	f. Field Duplicate			
	i. One field duplicate submitted per matrix, analysis and 10 project samples?			
	Yes \square No \boxtimes N/A \square Comments:			
	A field duplicate was not provided with this work order. However, field duplicates were reported at the required frequency for the overall project.			
	ii. Submitted blind to lab?			
	Yes \square No \square N/A \boxtimes Comments:			
	See above.			

320-78391-1				
320-76371-1				
Laboratory Report Date:				
September 10, 2021				
CS Site Name:				
ADOT&PF King Salmon Airport Statewide PFAS				
iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)				
Yes \square No \square N/A \boxtimes Comments:				
iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:				
				The data quality and usability were not affected; see above.
g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?				
$Yes \square No \square N/A \boxtimes Comments:$				
Decontamination or equipment blank were not required for this project.				
 i. All results less than LOQ and project specified objectives? Yes□ No□ N/A⊠ Comments: 				
See above.				
ii. If above LOQ or project specified objectives, what samples are affected? Comments:				
Not applicable, see above.				
iii. Data quality or usability affected? Comments:				
Not applicable, see above.				

	320-78391-1				
La	Laboratory Report Date:				
	September 10, 2021				
CS	CS Site Name:				
	ADOT&PF King Salmon Airport Statewide PFAS				
7.	. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)				
	a. Defined and appropriate?				
	Yes \square No \square N/A \boxtimes Comments:				

There were no additional flags/qualifiers required for this work order.

Appendix D

QA/QC Summary

CONTENTS

Quality assurance/quality control (QA/QC) summary

OVERVIEW

QC/QA procedures assist in producing data of acceptable quality and reliability. We reviewed the analytical results for laboratory QC samples and conducted our own QA assessment for this project. We reviewed the chain-of-custody records and laboratory receipt forms to check that custody was not breached, sample-holding times were met, and the samples were kept chilled (between 0 degrees Celsius [°C] and 6 °C) during shipping. Our QA-review procedures allowed us to document the accuracy and precision of the analytical data, as well as check that the analyses were sufficiently sensitive to detect analytes at levels below regulatory standards.

Laboratory QC procedures included evaluating surrogate recovery, performing continuing calibration checks, and analyzing method blanks, laboratory control samples (LCS), and matrix spikes (MS) to assess accuracy and precision. LCS, LCS duplicate (LCSD), MS, MS duplicate (MSD), and surrogate recovery analyses were performed to evaluate the accuracy of the analytical process. Analytical precision was assessed by comparing the results of duplicate analyses performed on LCS/LCSD, MS/MSD, and duplicate-sample pairs.

QC procedures in the field included using single-use equipment where available, to reduce the potential for sample cross-contamination. We used a new, clean pair of nitrile gloves when sampling at each monitoring well. The laboratory reports contain a case narrative and forms documenting sample-receipt conditions. Details regarding the results of our QA review are presented below.

Refer to the SGS laboratory reports 1215191 and 1215513 and the TestAmerica laboratory reports 320-77653-1, 320-77655-1, 320-78371-1, 320-78376-1, 320-78378-1, and 320-78391-1 and corresponding DEC Laboratory Data Review Checklist for details (Appendix C).

SAMPLE HANDLING

Samples were shipped from King Salmon on August 16, 23, 26, 30, and 31 to the SGS laboratory in Anchorage, Alaska, and TestAmerica laboratories in West Sacramento, California. The samples were received in good condition at the laboratory and within the acceptable temperature range of 0 °C to 6 °C, with the exception of WO 320-78391-1. Due to an internal laboratory miscommunication, samples associated with WO 320-78391-1 were picked up over a week later than scheduled and were outside of temperature requirements and the hold time. However, due to the high chemical and biological stability of PFAS, it is unlikely the integrity of the project samples was adversely affected by the temperature exceedance; therefore, the results are considered unaffected by the temperature exceedance. Due to the hold time exceedance PFAS analytes in project samples 21AKN-SB-04(12.1-12.7),

21AKN-SB-04(18.6-19.3), 21AKN-SB-04(63.7-64.5), and 21AKN-SB-04(82-82.6) are considered tentatively identified or unidentified and are flagged "N" in the analytical table. Refer to the LDRC and Appendix C for details. We completed chain-of-custody form, which were signed upon release and receipt. The project samples were then shipped to the SGS laboratory in Anchorage and the TestAmerica laboratory in West Sacramento and analyzed for the concentrations of project specific analytes.

Additional minor discrepancies were observed that did not affect the laboratory data. Refer to the LDRCs for additional details.

ANALYTICAL SENSITIVITY

The laboratory's detection limit (DL) is the lowest analyte concentration that can be measured. The laboratory's LOQ or reporting limit (RL) is the lowest analyte concentration that can be routinely measured in the sampled matrix with confidence, the point at which a concentration is considered quantitative. Sample matrix, instrument performance, sample dilutions, and other factors may affect the DL and LOQ/RL. Analytes may be present in samples at concentrations below the reporting limits. In cases where analytes were not detected at concentrations above their DL, the analytical results are presented in our data-summary tables with reference to their LODs or RLs. For example, a sample that does not contain an analyte at a concentration greater than its DL and has an LOD of 1.5 would be tabulated as "<1.5," where "<" indicates the analyte was not detected above the DL. If the analyte is detected between the DL and the LOQ/RL, its concentration is considered an estimate; in our tables, this value is flagged with a 'J'. The flag is applied by the laboratory.

Laboratory LODs/RLs for the sampled analytes in the August 2021 sampling event were adequate for report preparation and data analysis (below the proposed project-specific sensitivity [DQOs]). Laboratory LODs/RLs where below project-specified sensitivity limits, where applicable for non-detect results.

The transition mass ratios in several samples associate with the TestAmerica WOs 320-77655-1 and 320-78376-1 were outside QC criteria; however, analyst judgement was used to positively identify the analyte. Analytes affected by this failure were identified by the lab and are considered estimated, with a high bias, and flagged accordingly. Refer to the LDRCs for details.

To evaluate the potential for cross-contamination between samples or introduction of contamination from an outside source, laboratory-supplied trip blanks were carried with the VOC samples in their cooler during sampling and shipping. A trip blank was analyzed as part of this sampling event for VOCs. The project analytes were not detected in the trip

blank, except for GRO in WO 1215191. However, the GRO detection was attributed to a method blank contamination, and the results are not affected by the trip blank detection for this analyte.

Laboratory method blanks (MBs) were also analyzed in association with samples collected for this project to check for contributions to the analytical results possibly attributable to laboratory-based contamination. The project analytes were not detected in the reported MB samples with the exceptions noted below.

- WOs 320-78378-1 and 320-78371-1 had detections of 11Cl-PF3OUdS, ADONA, 9Cl-PF3ONS, PFBS, PFDA, PFHpA, PFHxS, PFNA, PFOS, and PFOA below the RL in preparatory batch 320-522308. Several project samples were affected by these method blank detections. Refer to the LDRCs for details.
- WO 1215191 had detections for GRO below the RL in preparatory batch VXX37679. GRO were detected in project samples 21AKN-SB-01(0′-1′), 21AKN-SB-01(6.5′-7.5′), 21AKN-SB-02(0′-1′), 21AKN-SB-02(6′-7′), 21AKN-SB-03(0′-1′), and 21AKN-SB-03(7.3′-7.8′) below the RL and less than five-times the method blank detection; therefore, the GRO results were considered not-detected and flagged accordingly. Refer to the LDRC for details.
- WO 1215513 had detections for phenanthrene below the RL in preparatory batch XXX45479. Phenanthrene was detected in project samples 21AKN-MW-01, 21AKN-MW-101, 21AKN-MW-02, and 21AKN-MW-03 and equipment blank 21AKN-EB-03 below the RL and less than five-times the method blank detection; therefore, the phenanthrene results were considered not-detected and flagged accordingly. Refer to the LDRC for details.

Additional analytes were detected in the project samples due to method blank detections; however, qualifications were not required. Refer to the LDRCs for details.

An EB was collected to assess the possibility of sample contamination from reusable sampling equipment. The EB was collected post decontamination after collecting the project samples from the monitoring well 21AKN-MW-03. PAH analytes 2-methylnaphthalene, naphthalene, and phenanthrene were detected below the RL in the equipment blank. 2-methylnaphthalene was detected in project samples 21AKN-MW-01 and 21AKN-MW02 below the RL and less than five-times the equipment blank detection; therefore, the 2-methylnaphthalene results are considered not-detected and flagged accordingly. The project samples did not have detections for naphthalene and are not affected by the EB detection for this analyte. The EB detection for phenanthrene was attributed to the method blank detection noted above. No other qualifications for the data were necessary. The analyses were sufficiently sensitive for the purposes of groundwater monitoring.

ACCURACY

Accuracy refers to determining the correct analyte concentration and is a comparison between the measured value and a known or expected value. Laboratory analytical accuracy may be assessed through the analyte recoveries from LCS/LCSD analyses and MS/MSD analyses, and the recovery of analyte surrogates (for organic analytes) added to project samples. The LCS/LCSDs are spikes of known analyte concentrations added to a clean matrix; the MS/MSDs are spikes of known analyte concentrations in a matrix similar to field samples.

The laboratories' LCS, LCSD, MS, MSD, and surrogate/IDA recoveries were within laboratory acceptance criteria, except for the following that affect the analytical results:

- WO 320-7655-1 The MS and MSD associated with preparatory batch 320-517585 had high recovery failures for PFOS, PFHxS, NMeFOSAA, 9Cl-PF3ONS, and ADONA. The parent sample, 21AKN-SS-20, had a detection for NMeFOSAA and ADONA that were considered estimated and biased high, and are flagged "JH*" in the summary tables.
- WO 320-78376-1 IDA recoveries associated with analytes PFTeA, PFDoA, and HFPO-DA in a number of samples were outside the QC criteria. These analytes were not detected in the samples associated with the failures; the results were considered estimated, with no direction of bias, and flagged "J*" in the summary tables.
- WO 320-77655-1 IDA recoveries associated with analytes PFOS, PFTeDA, PFHxA, HFPO-DA, and NMeFOSAA in several samples were outside the QC criteria. PFTeA results in samples 21AKN-SS-09 and 21AKN-SS-20, HFPO-DA in sample 21AKN-SS-11, and PFHxA in sample 21AKN-SS-11 were considered estimated and flagged "J*" in the analytical summary tables.
- WO 320-77653-1 IDA recoveries associated with all analytes in project sample 21AKN-SW-08 and NMeFOSAA in project sample 21AKN-SW-07 were outside QC acceptance criteria. These results were considered estimated with no direction of bias and flagged "J*" in the analytical summary tables.
- WO 320-78378-1 IDA recoveries associated with the analyte HFPO-DA in project samples 21AKN-MW-01 and 21AKN-MW-02 were outside QC acceptance criteria These results were considered estimated with no direction of bias and flagged "J*" in the analytical summary tables.
- WO 320-78371-1 IDA recoveries associated with the analytes PFTeA in sample 21AKN-Drum-10, PFBS in sample 21AKN-MW-04-45, and HFPO-DA in sample 21AKN-MW-04-45 were outside QC acceptance criteria. These results were considered estimate with no direction of bias and flagged "J*" in the analytical summary tables.

Refer to the LDRC and Appendix C regarding additional accuracy details.

PRECISION

We collected field-duplicate samples at a frequency of ten percent of the total number of samples to evaluate the precision of analytical measurements and reproducibility of our sampling technique. 12 duplicate samples were collected for the project and submitted "blind" (i.e., the laboratory could not identify it as a duplicate). The duplicates were analyzed by the same test methods as the original samples. To evaluate the precision of the data, we calculated the relative percent difference (RPD; difference between the sample and its duplicate divided by the mean of the two). RPDs can be evaluated only if the results of the analyses for both the sample and its duplicate are reported above the DL.

The data quality objective for water samples' RPD is 30 percent and soil samples' RPD is 50 percent for field-duplicate samples. Where concentrations were reported in both samples, we calculated the RPDs. The RPDs were within acceptance criteria, where calculable, except for PFTrDA in field duplicate pair 21AKN-SW-07 / 21AKN-SW-107. The results in both samples are considered estimated with no direction of bias and flagged "J*" in the analytical summary tables.

Laboratory analytical precision can also be assessed by comparing the results of duplicate analyses performed on LCS/LCSD, MS/MSD, and laboratory-duplicate samples, and evaluating the associated RPDs. The data-quality objectives vary by analyte for the laboratory QC samples and are these objectives are reported in the laboratory report. The laboratory RPDs were within laboratory acceptance criteria, except for the LCS/LCSD associated with WO 1215513 preparatory batch XXX45479. PAH analytes 2-methylnaphthalene, acenaphthene, acenaphthylene, anthracene, fluorene, and naphthalene. These results are considered estimated with no direction of bias and flagged "J*" in the analytical summary tables.

DATA QUALITY SUMMARY

By conducting our field activities in general accordance with our standard QC/QA procedures, the samples we collected are considered representative of site conditions at the locations and times they were obtained. Based on our QA review, our completeness goal of obtaining 90-percent useable data was met. In our opinion, the data produced by SGS and TestAmerica for this project are suitable for characterizing groundwater quality at the locations sampled.

Appendix E

Conceptual Cite Model

CONTENTS

- Human Health Conceptual Site Model (CSM) Scoping Form
- Human Health CSM Graphic Form

Print Form

Appendix E - Human Health Conceptual Site Model Scoping Form and Standardized Graphic

Site Name:	DOT&PF King Salmon Airport Sitewide F	PFAS		
File Number:	2569.38.033			
Completed by: Michael Jaramillo; Shannon & Wilson, Inc.				
about which exposummary text about about about the summary text abou	be used to reach agreement with the osure pathways should be further in but the CSM and a graphic depicting work plan and updated as needed in	vestigated dung exposure palater reports.	ring site charact thways should l	erization. From this information
	ions: Follow the italicized instruc	tions in each	section below.	
1. General Ir Sources (check)	potential sources at the site)			
□ USTs □ ASTs		☐ Vehicles		
Dispensers/fu	el loading racks	☐ Transfor		
Drums	<u> </u>	Other:	Aqueous Film For	rming Foam (AFFF) release
Release Mechan	isms (check potential release mech	anisms at the	site)	
⊠ Spills		⊠ Direct d	ischarge	
		☐ Burning		
		☐ Other:		
Impacted Media	a (check potentially-impacted media	at the site)	,	
✓ Surface soil ((, , ,	⊠ Groundy	water	
Subsurface so Sub	G ,	Surface Surface		
☐ Air	· · · · · · · · · · · · · · · · · · ·	⊠ Biota		
		☐ Other:		
Receptors (check	k receptors that could be affected by	v contaminati	on at the site)	
Residents (add		⊠ Site visi	ŕ	
	or industrial worker	▼ Trespass		
▼ Construction · ■ Construction · ■ Construction · ■ Construction · ■ Construction ·		Recreati		
	arvester (i.e. gathers wild foods)	☐ Farmer		
Subsistence consumer (i.e. eats wild foods) ☐ Other				
	·			

2.	Exposure Pathways: (The answers to the following exposure pathways at the site. Check each box when		-		
a)	Direct Contact - 1. Incidental Soil Ingestion Are contaminants present or potentially present in surface soil between 0 and 15 feet below the ground surface? (Contamination at deeper depths may require evaluation on a site-specific basis.)				
	If the box is checked, label this pathway complete:	Complete			
	Comments:				
	2. Dermal Absorption of Contaminants from Soil Are contaminants present or potentially present in surface so (Contamination at deeper depths may require evaluation on		· ·		
	Can the soil contaminants permeate the skin (see Appendix	\boxtimes			
	If both boxes are checked, label this pathway complete:	Complete			
	Comments:				
	PFOS and PFOA are listed as contaminants that can permeate the ski Appendix B. However, according to the Alaska Department of Health PFOA are not appreciably absorbed through the skin. We therefore compounds to be insignificant.	n and Social Services, PFOS and			
b)	Ingestion - 1. Ingestion of Groundwater				
	Have contaminants been detected or are they expected to be or are contaminants expected to migrate to groundwater in t	×			
	Could the potentially affected groundwater be used as a curresource? Please note, only leave the box unchecked if DEC has water is not a currently or reasonably expected future source to 18 AAC 75.350.	×			
	If both boxes are checked, label this pathway complete:	Complete			
	Comments:				
	PFOS and PFOA have been detected in water supply wells used for d greater than the EPA LHA.	Irinking water at concentrations			

2. Ingestion of Surface Water Have contaminants been detected or are they expected to be detected in surface water, \overline{X} or are contaminants expected to migrate to surface water in the future? Could potentially affected surface water bodies be used, currently or in the future, as a drinking water source? Consider both public water systems and private use (i.e., during residential, recreational or subsistence activities). If both boxes are checked, label this pathway complete: Incomplete Comments: 3. Ingestion of Wild and Farmed Foods Is the site in an area that is used or reasonably could be used for hunting, fishing, or \overline{X} harvesting of wild or farmed foods? Do the site contaminants have the potential to bioaccumulate (see Appendix C in the guidance $\overline{\times}$ document)? Are site contaminants located where they would have the potential to be taken up into $\overline{\mathsf{X}}$ biota? (i.e. soil within the root zone for plants or burrowing depth for animals, in groundwater that could be connected to surface water, etc.) If all of the boxes are checked, label this pathway complete: Complete Comments: PFOS and PFOA are listed as contaminants that can bioaccumlate, per the 2017 CSM Guidance -Appendix B. These analytes were detected in several samples at concentrations greater than the DEC CULs. c) Inhalation-1. Inhalation of Outdoor Air Are contaminants present or potentially present in surface soil between 0 and 15 feet below the \overline{X} ground surface? (Contamination at deeper depths may require evaluation on a site specific basis.) Are the contaminants in soil volatile (see Appendix D in the guidance document)? If both boxes are checked, label this pathway complete: Incomplete

revised January 2017

Volatile compounds were not detected in the soil samples collected during this investigation.

Comments:

2. Inhalation of Indoor Air			
Are occupied buildings on the site or reasonably expected to be occupied or placed on the site in an area that could be affected by contaminant vapors? (within 30 horizontal or vertical feet of petroleum contaminated soil or groundwater; within 100 feet of non-petroleum contaminted soil or groundwater; or subject to "preferential pathways," which promote easy airflow like utility conduits or rock fractures)			
Are volatile compounds present in soil or groundwater (see Appendocument)?	dix D in the guidance		
If both boxes are checked, label this pathway complete:	Incomplete		
Comments:			
Volatile compounds were not detected in the soil samples collected during the	his investigation.		

3.	Additional Exposure Pathways:	(Although there are no	definitive questions provided in this section
	these exposure pathways should also be	considered at each site.	Use the guidelines provided below to
	determine if further evaluation of each p	athway is warranted.)	

Dermal Exposure to Contaminants in Groundwater and Surface Water

Dermal exposure to contaminants in groundwater and surface water may be a complete pathway if:

- O Climate permits recreational use of waters for swimming.
- o Climate permits exposure to groundwater during activities, such as construction.
- o Groundwater or surface water is used for household purposes, such as bathing or cleaning.

Generally, DEC groundwater cleanup levels in 18 AAC 75, Table C, are deemed protective of this pathway because dermal absorption is incorporated into the groundwater exposure equation for residential uses.

Check the box if further evaluation of this pathway is needed:	X
Comments:	
Inhalation of Volatile Compounds in Tap Water	
Inhalation of volatile compounds in tap water may be a complete pathway if:	
 The contaminated water is used for indoor household purposes such as showering, lawashing. 	aundering, and dish
The contaminants of concern are volatile (common volatile contaminants are listed is guidance document.)	in Appendix D in the
DEC groundwater cleanup levels in 18 AAC 75, Table C are protective of this pathway because vapors during normal household activities is incorporated into the groundwater exposure equation	
	_
Check the box if further evaluation of this pathway is needed:	
Comments:	
No volatile compounds were detected in the groundwater samples.	

Inhalation of Fugitive Dust

Inhalation of fugitive dust may be a complete pathway if:

- Nonvolatile compounds are found in the top 2 centimeters of soil. The top 2 centimeters of soil are likely to be dispersed in the wind as dust particles.
- O Dust particles are less than 10 micrometers (Particulate Matter PM₁₀). Particles of this size are called respirable particles and can reach the pulmonary parts of the lungs when inhaled.

DEC human health soil cleanup levels in Table B1 of 18 AAC 75 are protective of this pathway because the inhalation of particulates is incorporated into the soil exposure equation.

Check the box if further evaluation of this pathway is needed:	$\overline{\times}$
Comments:	
PFOS, PFOA, and DRO are present in the top interval of the soil.	

Direct Contact with Sediment

This pathway involves people's hands being exposed to sediment, such as during some recreational, subsistence, or industrial activity. People then incidentally ingest sediment from normal hand-to-mouth activities. In addition, dermal absorption of contaminants may be of concern if the the contaminants are able to permeate the skin (see Appendix B in the guidance document). This type of exposure should be investigated if:

- O Climate permits recreational activities around sediment.
- The community has identified subsistence or recreational activities that would result in exposure to the sediment, such as clam digging.

Generally, DEC direct contact soil cleanup levels in 18 AAC 75, Table B1, are assumed to be protective of direct contact with sediment.

Check the box if further evaluation of this pathway is needed:			
Comments:			

HUMAN HEALTH CONCEPTUAL SITE MODEL GRAPHIC FORM

Site: ADOT&PF King Salmon Airport Sitewide PFAS	Instructions: Follow the numbered directions below. Do not consider contaminant concentrations or engineering/land								
Completed By: Michael Jaramillo		use controls when describing pati	hways	; <u> </u>					
Date Completed: Revised March 2022							(5)		
(1) (2) Check the media that could be directly affected by the release. For each medium identified in (1), follow the top arrow and check possible transport mechanisms. Check additional media under (1) if the media acts as a secondary source.	(3) Check all exposure media identified in (2).	(4) Check all pathways that could be complete. The pathways identified in this column must agree with Sections 2 and 3 of the Human Health CSM Scoping Form.	expe "F" t futu C	osure pa for futur re recep Curre	athwa re rece otors, c	y: Ente eptors, or "I" fo & F u	otentially afformer (C) for cultiful (C) for both or insignification (C) for cultiful (C) f	rrent red th curre ant expo	ceptors ent and sure.
Media Transport Mechanisms	Exposure Media	Exposure Pathway/Route	/	(ua/	ers /	spas users	orker, siste,	nsum'	
Surface Soil (0-2 ft bgs) Direct release to surface soil check soil wignation to subsurface check soil	Exposure means		Residents	Commercial or industriction	Site visitors, tra	Construction and users	Farmers or subsistence Subsistence	Other	
Runoff or erosion check surface water	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ncidental Soil Ingestion		C/F	C/F	C/F			Ī
Uptake by plants or animals check biota	soil 🗸 🖸	Dermal Absorption of Contaminants from Soil		ı	I	I			
Other (list):		nhalation of Fugitive Dust	C/F	C/F	C/F	C/F			
Subsurface Soil (2-15 ft bgs) Direct release to subsurface soil check soil Wigration to groundwater check groundwater check groundwater check groundwater check air check biota Check biota Other (list):	☑ groundwater ☑ □	ngestion of Groundwater Dermal Absorption of Contaminants in Groundwater Charles of Volatile Compounds in Tap Water	C/F	C/F	C/F	C/F			
Ground- water Volatilization Volatilization Volatilization Volatilization Check groundwater Check groundwater Check surface water Check surface water Volatilization Check surface water Check sediment Volatilization Check surface water Check sediment Check biota Other (list):	air II	nhalation of Outdoor Air nhalation of Indoor Air nhalation of Fugitive Dust							
Surface Water Volatilization	✓ surface water	ngestion of Surface Water Dermal Absorption of Contaminants in Surface Water Chalation of Volatile Compounds in Tap Water	I	I	I	I			
Other (list): Other (list):	▼ sediment ▼ C	Direct Contact with Sediment	I		I	I	I		
Uptake by plants or animals check biota Other (list):	biota	ngestion of Wild or Farmed Foods	C/F				C/F C/F		

Important Information

About Your Environmental Report

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors that were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining

your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary, because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports, and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland